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Abstract: After the Fukushima nuclear disaster, the nuclear materials community has been vastly
investing in accident tolerant fuel (ATF) concepts to modify/replace Zircaloy cladding material.
Iron–chromium–aluminum (FeCrAl) alloys are one of the leading contenders in this race. In this
study, we investigated FA-SMT (or APMT-2), PM-C26M, and Fe17Cr5.5Al over a time period of
6 months in simulated BWR environments and compared their performance with standard Zirc-2 and
SS316 materials. Our results implied that water chemistry along with alloy chemistry has a profound
effect on the corrosion rate of FeCrAl alloys. Apart from SS316 and Zirc-2 tube specimens, all FeCrAl
alloys showed a mass loss in hydrogen water chemistry (HWC). FA-SMT displayed minimal mass
loss compared to PM-C26M and Fe17Cr5.5Al because of its higher Cr content. The mass gain of
FeCrAl alloys in normal water chemistry (NWC) is significantly less when compared to Zirc-2.

Keywords: FA-SMT (Ferritic Alloy-Sandvik Material Technology); ATF (accident tolerant fuel);
PM-C26M; hydrothermal corrosion; FeCrAl

1. Introduction

A continued demand to generate electricity while mitigating greenhouse gas emissions
is possible to fulfill through nuclear power plants [1]. In all Light Water Reactors (LWRs),
fuel pellets are protected in cladding tubes. Cladding material (zirconium-based alloys)
plays a crucial role as a barrier by preventing the release of fuel into the coolant and by
protecting the fuel from the coolant’s corrosion [2]. Under normal operating conditions,
using Zr-based alloys as fuel cladding material is a good choice due to their low thermal
neutron absorption [3] and their acceptable mechanical properties under irradiation [4].
The problem arises in the absence of a coolant, leading to the meltdown of the core and
ultimately resulting in a loss of coolant accident (LOCA) (Fukushima nuclear disaster) [5].
Thus, there is an urgent need for the development of accident tolerant fuels (ATFs).

ATF cladding designs should survive LOCA scenarios; hence, they should be resis-
tant to oxidation at high temperatures [6] and have a good corrosion performance under
normal operating conditions [7]. Currently, materials are being explored in two different
approaches to meet the ATF cladding needs. Coated zirconium alloys are being used as
a short-term approach, along with monolithic FeCrAl alloys, and silicon carbide compos-
ites are being used as a mid-term approach [8,9]. Among these concepts, FeCrAl alloys
have exhibited superior corrosion resistance in operational conditions [10,11] and LOCA
conditions [12] and can even prevent detrimental fuel/cladding chemical interaction [13].
The enhanced corrosion resistance of FeCrAl alloys comes from the formation of a Cr
passivation layer, which will inhibit the corrosion and act as a protective layer [14]. In
the mid-term approach, FeCrAl alloys may replace Zircaloy as cladding material. Thus, it
is important to expose variants of FeCrAl alloys to simulated BWR-NWC (normal water
chemistry) and BWR-HWC (hydrogen water chemistry) operating conditions to investigate
the formation of a protective oxide on these alloys as a function of water chemistry.
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To examine the corrosion behavior of FeCrAl alloy variants under reactor operating
conditions, numerous studies were performed. In the case of first-generation FeCrAl
alloys [11], APMT (21Cr) was studied extensively, and it displayed excellent corrosion
resistance under high temperature (~300 ◦C) waters but was susceptible to radiation-
induced embrittlement due to α’ precipitates of chromium [15,16]. Hence, for second-
generation FeCrAl alloys [10], the Cr content was reduced to 12 wt%, and minor alloying
elements were added (Y, Nb, Mo, and Si) to provide mechanical strengthening to these
cladding tubes [17].

To study the impact of the microstructure, Umretiya et al. [18] performed a systematic
study to understand the effects of the microstructure, manufacturing route, and composition
on the corrosion behavior of FeCrAl alloys. They concluded that FeCrAl alloy hydrothermal
corrosion resistance has little/less sensitivity to (microstructural) the fabrication route. At
the same time, Yin et al. conducted a long-term immersion test [19], where they investigated
the hydrothermal corrosion behavior of FeCrAl variants of APMT (21Cr) and wrought
C-26M (12Cr) for over 12 months. Their results concluded that the corrosion behavior of
wrought C-26M (12 Cr) was compromised when compared to APMT (21 Cr).

Hence, in this article, we emphasize our findings on the hydrothermal corrosion be-
havior of the three latest variants of FeCrAl alloys along with Zirc-2 and SS316. APMT was
slightly modified as APMT-2 (FA-SMT); unlike the traditional wrought method, powder
metallurgy was used to fabricate FA-SMT and C26M alloys. Along with the modified
versions of first- and second-generation FeCrAl alloys, we also tested an in-between com-
position space of 17 Cr alloy (Fe17Cr5.5Al) to gain insights into the corrosion performance
of this variant along with standard FeCrAl alloys. The immersion test was carried out for
six months in a typical BWR environment under two simulated water chemistries at 288 ◦C.
This particular work is a continuation of our previous study, where the preliminary data
of this work were published by Rebak et al. [20]. In the current article, we are primarily
focusing on the detailed characterization of the oxide layer that was developed as a function
of water chemistry via a Transmission Electron Microscopy (TEM) analysis.

2. Experimental Conditions

As listed in Table 1, the three latest FeCrAl alloy variants along with the current
nuclear cladding materials, Zirc-2 and SS316 (for reference), were tested for a time span
of six months in simulated BWR environments. Apart from Fe17Cr5.5Al (flat coupon),
the rest of all of the test samples were kept in tubes. The thickness of the powdered
metallurgy-processed FA-SMT and PM-C26M tube walls was targeted to be 0.3 mm. The
wall thickness of the Zirc-2 specimen, including the inner diameter liner, was targeted
to be around 0.675 mm. All of the tube specimens that participated in the immersion
testing were nominally 12.7 mm (0.5′′) long sections of actual tube claddings with an OD of
10.26 mm. By using vacuum induction melting (VIM), model alloy Fe17Cr5.5Al was cast in
rod shape. Flat coupons were cut from the rod-shaped master alloy to obtain a coupon with
net exposed area of 500 mm2 with a hole to hang the coupons (1.5 mm diameter). By using
600-grit SiC paper, all samples were polished and later cleaned with Liquinox, isopropyl
alcohol (IPA), and ultra-high-purity (UHP) water prior to corrosion testing.

Table 1. Nominal compositions of FeCrAl alloys studied in this article.

Alloy Geometry Chemical Composition in wt% No. of Samples Tested

FA-SMT Tube Fe + 21Cr + 5Al + 3Mo 16
Fe17Cr5.5Al Flat coupon Fe + 17Cr + 5.5Al 6
PM-C26M Tube Fe + 12Cr + 6Al + 2Mo 16

Zirc-2 Tube Zr + 1.5Sn + 0.15Fe + 0.1Cr + 0.05Ni 16
SS316 Tube Fe + 17Cr + 10Ni + 2Mo 16

Testing was carried out on 16 samples of each tubed alloy along with 6 samples of
Fe17Cr5.5Al flat coupons. The testing conditions are shown in Table 2. By using UHP water
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of 18 Mega-Ohm (MΩ), testing was performed in a recirculating autoclave simulating
the temperatures of BWR under two different water chemistries (HWC and NWC) with
no addition of impurities. Hydrothermal corrosion testing was performed in separate
autoclaves, which were circulating at a rate of 200 cm3/min. By using the right amount
of gas, high-purity water was reconditioned in a 4 L glass column followed by pumping
the water to autoclave using a pressure pump (high). Later, by using a back-pressure
regulator, the pressure was controlled at approximately 10 MPa. The water conductivity
was measured before entering and after exiting the autoclave. Samples were taken out after
six months of immersion testing, rinsed with UHP water, and dried in ambient atmosphere.
The mass change of each specimen was calculated three times and reported in mg/dm2.
Mass gain during the autoclave exposure is shown in positive values, whereas negative
values indicate a mass loss during the exposure.

Table 2. Autoclave testing conditions.

Autoclave Test Conditions, Six-Month Immersion

S-12 Simulated BWR, Normal Water Chemistry (BWR-NWC), 0.5 ppm O2, 288 ◦C

S-13 Simulated BWR, Hydrogen Water Chemistry (BWR-HWC), 0.3 ppm H2 (<5 ppb
O2), 288 ◦C

After the water immersion, surface oxide characterization was performed using
TEM. Using focused ion beam (FIB) milling, TEM lamellae were prepared for all sam-
ples. During FIB milling, a thin layer of Pt coating was applied to protect the corroded
surface of the tested samples. At 300 kV, using a Thermo Scientific (Waltham, MA, USA)
Themis Z aberration-corrected S/TEM, scanning transmission electron microscope (STEM),
energy-dispersive X-ray spectroscopy (EDS) analysis, and bright-field (BF) TEM imag-
ing were performed. TEM Instrument Analysis (TIA) software was used for image and
composition analysis.

3. Results

For immersion corrosion testing, the guidance in the ASTM standards G1 and G31 [21]
was followed. The experiments were designed in the vicinity of 300 ◦C [11,19] to study the
plausible ATF candidate FeCrAl along with nuclear alloys.

After six months of immersion testing, all 16 tubes of each alloy, along with six flat
coupons of Fe17Cr5.5Al, were taken out to determine the mass change, as shown in Figure 1.
Each individual sample was measured three times. All of the samples, irrespective of their
compositions, displayed a mass gain under BWR-NWC (S-12) that contained 0.5 ppm
of dissolved oxygen. Under these autoclave testing conditions, the Zirc-2 tube samples
displayed a relatively higher mass gain (22 mg/dm2) than the FeCrAl alloys, and this
observation is consistent with the literature [20]. The lower mass gain of the FeCrAl alloys
could be due to the formation of a protective surface oxide. It is also observed that within
the FeCrAl alloys, a slightly higher mass gain was observed in FA-SMT (5 mg/dm2) when
compared to PM-C26M (4.5 mg/dm2), which may be due to the higher Cr content. The flat
coupon of Fe17Cr5.5Al recorded a mass gain of 4.9 mg/dm2. However, in the BWR-HWC
(S-13), PM-C26M and Fe17Cr5.5Al displayed a significant mass loss when compared to FA-
SMT. The lower Cr content in Fe17Cr5.5Al and PM-C26M could be the reason for the mass
loss in these alloys. The mass gain of the Zirc-2 tube specimens in BWR-HWC is relatively
less when compared to BWR-NWC. A reducing (hydrogen) environment hindering the
formation of a protective passive oxide layer could be the reason for this observation.

An optical inspection of the BWR-NWC test specimen after six months of immersion
testing is shown in Figure 2. All of the test specimens exposed to the S-12 system (oxidizing)
displayed a mass gain, as shown in Figure 1. The Zirc-2 tube specimens exposed to
oxygenated waters developed black oxide, indicating the formation of protective ZrO2. The
FA-SMT, PM-C26M, and Fe17Cr5.5Al specimens visually had a distant color compared to
the Zirc-2 tube specimens. The FA-SMT specimens displayed a slightly different appearance
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than the PM-C26M and Fe17Cr5.5Al specimens, which could be related to the different
surface corrosion products.
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The specimens tested in BWR-HWC (S-13) are shown in Figure 3. In the hydrogenated
waters, apart from the Zirc-2 and SS316 specimens, all of the FeCrAl variants showcased
a mass loss. The Zirc-2 tubes tested in S-13 had a dull gray appearance. Unlike the
FeCrAl alloy variants tested in S-12, the FeCrAl specimens tested in the S-13 system had a
distinctive visual appearance. A shiny golden appearance for FA-SMT and a shiny gray
appearance for PM-C26M were observed for the tube specimens tested in S-13, which could
be due to a higher Cr content in FA-SMT than in PM-C26M.
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Figure 3. Visual inspection of Zirc-2, FA-SMT, PM-C26M, and SS316 tubes along with Fe17Cr5.5Al
flat coupons after 6 months of immersion testing in BWR-HWC (S-13).

After the mass change measurements and optical inspection, one of each FeCrAl
alloy variant along with the Zirc-2 and SS316 tube specimens were underwent FIB for the
TEM analysis.

3.1. TEM Analysis of Alloys Tested in BWR-NWC Environment
3.1.1. Zirc-2 Tube

A TEM analysis of the Zirc-2 (tube) after 6 months of immersion in the BWR-NWC
(S-12) is shown in Figure 4. The oxide developed on the Zirc-2 tube looks almost uniform
with no signs of nodular corrosion and is ~750 nm (Figure 5). A high-magnification
TEM-EDS analysis confirmed the developed oxide to be ZrO2 with second-phase particles
embedded in it (Fe, Cr, and Ni). It is also observed that the SPPs are distributed in the Zr
substrate along with the developed oxide [22]. The Zirc-2 tube displayed a higher mass
gain and developed a thicker external protective oxide layer when compared to all FeCrAl
alloy variants under BWR-NWC.
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3.1.2. FA-SMT Tube

After immersion testing in the BWR-NWC (S-12) for six months, a TEM analysis was
performed on one of the 16 FA-SMT tube specimens. The oxide layer thickness on the
FA-SMT tube was calculated to be ~500 nm using a TEM bright field image (Figure 6).
Low-magnification TEM-EDS elemental maps showcased a fine-grained internal layer at
the oxide–alloy matrix along with a continuous thick external Fe-Cr spinel oxide. The
fine-grained internal layer was mainly composed of Fe and Cr. As shown in Figure 7, no
aluminum enrichment was observed to form beneath the surface oxide layers, as confirmed
by the line scans and high magnification TEM-EDS maps, which is contradictory to the
literature [10]. Even though the Fe-Cr-rich spinel oxide acts as a top-layer barrier between
the water and substrate to allow for Cr oxide growth, the Cr oxide is non-uniform and
defective. As shown in Figure 1, mass gain of the FA-SMT tube under this testing condition
is due to the oxide formation as it limits the mass loss.
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3.1.3. PM-C26M Tube

Figure 8 shows the oxide at ~450 nm that was developed on the PM-C26M tube after
6 months of BWR-NWC (S-12) exposure. In the EDS maps in Figure 9, it can be seen that the
external oxide layer mainly consists of Cr oxide and Fe oxide, respectively. The oxide layer
developed externally on PM-C26M is not continuous as Cr oxide regions are embedded
in the surface Fe oxide layer. Due to this non-continuous protective Cr oxide layer, no
enrichment of aluminum oxide is observed at the oxide–substrate interface (Figure 9). In
the current test, the weight gain of PM-C26M was slightly lower than that of FA-SMT.
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of Al is proposed to be due to the low oxygen and partial pressure below the Cr oxide
layer and above the substrate [23]. It should also be noted that the oxide developed on
Fe17Cr5.5Al (flat coupon) is thinnest of all the FeCrAl alloys tested in this study.

3.1.5. SS316 Tube

After immersion testing in the BWR-NWC (S-12) for six months, a TEM analysis was
conducted on the SS316 tube specimens. The oxide layer formed on the SS316 tube was
calculated to be ~500 nm using a TEM bright field image (Figure 12). As shown in Figure 13,
the high-magnification TEM-EDS elemental maps showcase a surface oxide spinel along
with a fine-grained inner oxide layer at the oxide–alloy matrix interface. The surface oxide
mainly consists of an Fe-Cr spinel, whereas the fine-grained internal layer is composed of
Fe, Cr, and Ni. Under oxygenated water, the SS316 tube specimens displayed a lower mass
gain than the Zirc-2 tube specimens.
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3.2. TEM Analysis of Alloys Tested in BWR-HWC Environment
3.2.1. Zirc-2 Tube

The TEM analysis of the Zirc-2 tube after 6 months of immersion in the BWR-HWC is
shown in Figure 14. The oxide developed on the Zirc-2 tube looks almost uniform and is
~900 nm. A high-magnification TEM-EDS analysis (Figure 15) confirmed the developed
oxide to be ZrO2 with SPP distributed in the Zr substrate along with the oxide [22]. Even
though the thickness of the oxide developed on the Zirc-2 tube in BWR-HWC is slightly
higher than the oxide formed in BWR-NWC, the weight gain is seen to be higher in BWR-
NWC when compared to that in BWR-HWC.

Materials 2024, 17, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 13. (a) shows the EDS line scan direction, (b) shows the line scans of the oxide–substrate 
interfaces in the SS316 tube after 6 months of simulated BWR-NWC exposure, and (c–g) show the 
high-magnification EDS mapping of the SS316 tube. 

3.2. TEM Analysis of Alloys Tested in BWR-HWC Environment 
3.2.1. Zirc-2 Tube 

The TEM analysis of the Zirc-2 tube after 6 months of immersion in the BWR-HWC 
is shown in Figure 14. The oxide developed on the Zirc-2 tube looks almost uniform and 
is ~900 nm. A high-magnification TEM-EDS analysis (Figure 15) confirmed the developed 
oxide to be ZrO2 with SPP distributed in the Zr substrate along with the oxide [22]. Even 
though the thickness of the oxide developed on the Zirc-2 tube in BWR-HWC is slightly 
higher than the oxide formed in BWR-NWC, the weight gain is seen to be higher in BWR-
NWC when compared to that in BWR-HWC. 

 

Materials 2024, 17, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 14. Low-magnification TEM-EDS images for Zirc-2 (Tube) after 6 months of exposure in 
BWR-HWC (S-13). Marker is 2000 nm long. 

 
Figure 15. (a) shows the EDS line scan direction, (b) shows the line scans of the oxide–substrate 
interfaces in the Zirc-2 tube after 6 months of simulated BWR-HWC exposure, and (c–h) show the 
high-magnification EDS mapping of the Zirc-2 tube. 

3.2.2. FA-SMT Tube 
After six months of immersion testing in BWR-HWC (S-13), a low-magnification 

TEM-EDS analysis was conducted on the FA-SMT tube, and the results are shown in Fig-
ure 16. The TEM bright field images display a ~150 nm thick oxide layer on the FA-SMT 
tube (Figure 17). The EDS elemental maps confirmed the oxide to be in the form of an FeCr 
oxide layer. This oxide layer is depleted of iron, indicating the dissolution of Fe under 
BWR-HWC. At the oxide–alloy interface, a slight enrichment of Al can also be observed 
via a line scan. After 6 months of immersion testing, the mass loss on the FA-SMT tube 
specimen is relatively less due to a higher Cr content when compared to PM-C26M (tube) 
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Figure 14. Low-magnification TEM-EDS images for Zirc-2 (Tube) after 6 months of exposure in
BWR-HWC (S-13). Marker is 2000 nm long.

3.2.2. FA-SMT Tube

After six months of immersion testing in BWR-HWC (S-13), a low-magnification TEM-
EDS analysis was conducted on the FA-SMT tube, and the results are shown in Figure 16.
The TEM bright field images display a ~150 nm thick oxide layer on the FA-SMT tube
(Figure 17). The EDS elemental maps confirmed the oxide to be in the form of an FeCr
oxide layer. This oxide layer is depleted of iron, indicating the dissolution of Fe under
BWR-HWC. At the oxide–alloy interface, a slight enrichment of Al can also be observed
via a line scan. After 6 months of immersion testing, the mass loss on the FA-SMT tube
specimen is relatively less due to a higher Cr content when compared to PM-C26M (tube)
and Fe17Cr5.5Al (flat coupon).
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Figure 17. (a) shows the EDS line scan direction, (b) shows the line scans of the oxide–substrate
interfaces in the FA-SMT tube after 6 months of simulated BWR-HWC exposure, and (c–g) show the
high-magnification EDS mapping of the FA-SMT tube.

As Cr oxide is stable in this environment, and the coefficient of diffusivity (D0) of the
Fe cation is higher than that of the Cr cation, the faster Fe cation diffusion can result in
mass loss. In the meantime, the formation of a dense and continuous Cr oxide layer may
prevent the further diffusion of Fe from the alloy matrix, thus inhibiting the dissolution of
Fe from the alloy matrix.

3.2.3. PM-C26M Tube

Figure 18 shows the low-magnification TEM-EDS analysis of PM-C26M (tube) after
six months of immersion testing in BWR-HWC (S-13). The bright field images and line
scans (Figure 19) confirm the thickness of the oxide developed to be ~8 µm. This thicker
oxide layer could be primarily due to a lower Cr content in the alloy matrix. The EDS
elemental maps show the external oxide layer to be a mixed Fe-Cr-Al oxide. Even though a
similar mass loss was observed on PM-C26M (Tube) and Fe17Cr5.5Al (flat coupons), the
thickness of the oxide layer developed on PM-C26M (tube) is twofold higher than the oxide
developed on Fe17Cr5.5Al (flat coupons).

3.2.4. Fe17Cr5.5Al Flat Coupon

Figure 20 shows the low-magnification TEM-EDS analysis of Fe17Cr5.5Al (flat coupons),
after six months of immersion testing in BWR-HWC (S-13). The high-magnification bright
field image and line scan (Figure 21) confirm the thickness of the oxide developed to be
~4 µm. This thicker oxide layer on the flat coupon could be due to a lower Cr content
in the Fe17Cr5.5Al alloy when compared to FA-SMT (tube). The EDS elemental maps
showcase a mixed Fe-Cr-Al oxide. The thickness of the oxide developed on Fe17Cr5.5Al
(flat coupon) is several orders of magnitude higher than the oxide developed on FA-SMT. It
is also observed that a significant mass loss is seen in Fe17Cr5.5Al (flat coupons) due to the
continuous oxidation of the metal along with a continuous dissolution of the Fe oxide at
the water–oxide interface.
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Figure 19. (a) shows the EDS line scan direction, (b) shows the line scans of the oxide–substrate
interfaces in the PM-C26M tube after 6 months of simulated BWR-HWC exposure, and (c–g) show
the high-magnification EDS mapping of the PM-C26M tube.
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Marker is 3000 nm long.
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Figure 21. (a) shows the EDS line scan direction, (b) shows the line scans of the oxide–substrate
interfaces in the Fe17Cr5.5Al flat coupon after 6 months of simulated BWR-HWC exposure, and
(c–g) show the high-magnification EDS mapping of the Fe17Cr.5.5Al flat coupon.
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3.2.5. SS316 Tube

After immersion testing in the BWR-HWC (S-13) for six months, a TEM analysis was
conducted on the SS316 tube specimens. The oxide layer formed on the SS316 tube was
calculated to be ~500 nm using a low-magnification TEM-EDS analysis (Figure 22). As
shown in Figure 23, the high-magnification TEM-EDS elemental maps showcase a surface
oxide spinel along with an inner oxide layer at the oxide–alloy matrix interface. The surface
oxide mainly consists of Fe spinel and is not continuous, whereas the continuous internal
layer is composed of FeCr oxide. Under hydrogenated water, the SS316 tube specimens
displayed a lower mass gain than that of the Zirc-2 tube specimens.
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Figure 23. (a) shows the EDS line scan direction, (b) shows the line scans of the oxide–substrate
interfaces in the SS316 tube after 6 months of simulated BWR-HWC exposure, and (c–h) show the
high-magnification EDS mapping of the SS316 tube.
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3.3. Comparison of Oxide Thickness on Alloys as Function of Water Chemistry

Based on the data in Sections 3.1 and 3.2, a box-plot was generated to compare the
oxide thickness of all the FeCrAl alloy variants. Figure 24 shows that the oxide thick-
ness developed on the FeCrAl alloy variants was tested in both water chemistries. In
oxygenated water, the FeCrAl alloy variants developed thinner oxides. Among the alloy
variants, the Fe17Cr5.5Al flat coupon had the thinnest oxide compared to the other FeCrAl
alloys, FA-SMT and PM-C26M and the reference materials, Zirc-2 and SS316. However, in
hydrogenated water, the oxide that developed on the FA-SMT tube specimen was in nm
range, whereas the oxide that developed on PM-C26M and Fe17Cr5.5Al was in the micron
range. A trend of increase in the oxide thickness was observed with the decrease in the Cr
content and is consistent with Raiman’s observations [10].
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4. Discussion

The current results show the corrosion behavior of the latest generation of FeCrAl
alloys tested in simulated BWR water chemistries for 6 months. In Figure 1, especially for
hydrogenated water, the weight loss for all FeCrAl alloy variants is seen and is significantly
high for the PM-C26M and Fe17Cr5.5Al specimens. In the case of BWR-NWC, weight
gain was observed for the FeCrAl alloy variants and is contradictory with the long-term
immersion testing data of the previous generation of FeCrAl alloys developed at ORNL [10]
and GE [14,24]. This observation could be due to the lower oxygen concentration (0.5 ppm)
used in the current study. Long-term immersion tests need to be conducted to gain further
insights into the mass change in these alloys.

After immersion testing in BWR-NWC for six months, a clear enrichment of an FeCr
oxide spinel was observed on the FA-SMT specimen. The Cr oxide layer developed
underneath the Fe-Cr oxide spinel structure is not continuous and is defective, probably
because of the short testing time (Figure 6). On PM-C26M (tube), the Fe-Cr oxide spinel is
still growing to be an effective water barrier (Figure 8) so that it can prevent the Cr oxide
beneath the spinel from continuously dissolving into the water [25]. This observation can
also be attributed to the lower O2 concentration in the testing solution (0.5 ppm), which did
not provide sufficiently acute oxygen supply for a continuous Cr oxide layer to grow below
the Fe-Cr oxide spinel. In the case of the model alloy Fe17Cr5.5Al flat coupon specimens, a
surface Fe-Cr oxide spinel was observed, followed by enriched Cr and Al oxides (Figure 10).
It is believed that the continuous Cr oxide layer underneath the spinel provides a low
partial pressure of oxygen activity [26] that is needed to stabilize Al oxide [27]. While the
FA-SMT and PM-C26M tube specimens are fabricated by powder metallurgy, the model
alloy flat coupons are manufactured by VIM. Based on our observations, the difference in
manufacturing route could be the reason for the enrichment of Al oxide in the Fe17Cr5.5Al
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flat coupon specimens [18]. Thus, the oxide layer of the model Fe17Cr5.5Al specimen
(~200 nm) is much thinner than that of the PM-C26M and FA-SMT (~600 nm) tubes. A
summary of the FeCrAl claddings’ oxidation behavior in simulated BWR-NWC is shown
in Figure 25.
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In the case of BWR-HWC after six months of immersion testing, a trend of increase in
the oxide thickness with a decrease in the Cr content was observed (Figure 24). No surface
crystals were observed in hydrogenated water compared to oxygenated water, and this
finding is consistent with the literature [14]. At 288 ◦C, even though the thicknesses of
the oxides developed on the Fe17Cr5.5Al (flat coupons) (Figure 19) and PM-C26M (tube)
(Figure 21) alloys are much larger than that on FA-SMT (tube) (Figure 17), these oxide layers
may not form rapid passivation by the Cr oxide due to a smaller Cr content. The fact that
Cr oxide is not continuous could be the reason for a huge weight loss of 120 mg/dm2 in the
alloys containing a lower Cr content after 6 months of exposure, which is consistent with
Rebak’s [20] and Raiman’s observations [10]. The literature also hints that the presence of a
higher Cr content may possibly slow down the diffusion of other cations [28].

The oxygen activity in BWR-HWC is lower due to hydrogen addition [29]. The
corrosion with the higher Cr content (FA-SMT tube) may procced by facilitating the outward
diffusion of Fe and Cr towards the electrolyte interface, which may enhance the formation
kinetics of chromia, thus preventing the dissolved oxygen and hydrogen ingress into the
alloy with the high Cr content. At the same time, this continuous protective chromia layer
may prevent the further diffusion of Fe from the alloy, thus decreasing the Fe dissolution.
Hence, a thinner oxide layer and a lower mass loss is possible, as observed for the FA-SMT
tube specimen under this testing condition. Unlike the FA-SMT specimens, the Cr contents
in the PM-C26M (tube) and Fe17Cr5.5Al flat coupons are lower. As a result, the chances for
the formation of protective chromia are smaller, leading to a continuous dissolution of Fe
from the alloys. Hence, a thicker oxide layer and higher mass loss was observed for alloys
with lower Cr contents under hydrogenated waters. A summary of the FeCrAl claddings’
oxidation behavior in simulated BWR-HWC is shown in Figure 26.

While all of the FeCrAl alloys displayed a mass loss in BWR-HWC and a slight mass
gain in BWR-NWC, the Zirc-2 tubes, irrespective of the test conditions, developed a uniform
film of oxide post-test. Due to the formation of this protective oxide in both NWC and
HWC, mass gain was observed on the Zirc-2 tubes [10].
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5. Conclusions

To design and study an FeCrAl alloy composition space that results in next-generation
ATF cladding candidates, an attempt was made to study the latest versions of FA-SMT,
PM-C26M, and Fe-17Cr-5.5Al specimens in BWR-NWC and BWR-HWC for 6 months. The
conclusions from the current study are as follows:

1. All three variants of FeCrAl displayed a weight gain in BWR-NWC. However, in
BWR-HWC, all variants displayed a mass loss.

2. For the Fe17Cr5.5Al specimen in simulated BWR-NWC, due to the low partial pressure
of oxygen, an Al oxide layer formed beneath the Cr oxide layer.

3. In BWR-HWC, only the FA-SMT specimen displayed a slight enrichment of Al under
the protective Cr oxide.

4. Unlike the BWR-NWC specimens, no surface spinel was observed in any FeCrAl alloy
variants tested in BWR-HWC.

5. Overall, the latest generation of FeCrAl alloys fabricated via powder metallurgy have
little sensitivity to microstructural impact when compared to previous generations
of alloys.
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