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Abstract: This paper presents an analysis of the effect of the geometry of the end-coil transition zone
on the material stress state of a machined compression spring with a rectangular wire cross-section.
The literature relationships for determining the stresses in rectangular wire compression springs
neglect the effects associated with the geometry of this zone. A series of non-linear numerical analyses
were carried out for models of machined compression springs with a wide range of variation in
geometrical parameters. The results of these analyses were used to develop a computational model to
estimate the minimum value of the rounding radius ρmin, which ensures that the stresses in this zone
are reduced to the level of the maximum coil stresses. The model is simple to apply, and allows the
radius ρmin to be estimated for springs with a spring index between 2.5 and 10, a helix angle between
1◦ and 15◦, and a proportion of the sides of the wire section between 0.4 and 5.

Keywords: helical spring; machined spring; closed end coils; stress concentration factor; spring
design; finite element method

1. Introduction

Coil springs are the most commonly used spring link in mechanical engineering. They
are an essential element in the suspension of rail vehicles, motor vehicles, support systems
for vibrating machinery, and are found in position-change mechanisms, return-locking
mechanisms, valves, mechanical seals, and many other applications [1–4]. In systems
with high-cycle alternating loads, compression springs are used, while tension springs
are avoided. This is due to the shot-blasting capability of compression springs. This
treatment significantly increases the fatigue strength of the spring wire. For instance, based
on EN 13906-1 [5], the torsional fatigue strength of a patented spring wire, 10 mm in
diameter, made in accordance with EN 10270-1 [6] after shot-blasting is approximately
410 MPa, whereas without shot-blasting treatment, this strength is only 320 MPa. Hora
and Leidenroth [7] and Berger and Kaiser [8] even state that the surface condition of the
spring wire has a much greater influence on its fatigue strength than its material properties.
Tension springs cannot be effectively shot-blasted due to the adhesion of adjacent coils
in the unstressed state, while if the wire breaks, the system completely loses integrity. In
addition, as shown in the paper [9], the maximum stress in hooks of such springs can
achieve high values. For these reasons, even in systems with tensile forces, compression
springs with appropriate intermediate elements are used for responsible devices.
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The most common industrially used compression springs are made of wire with a
round cross-section [10,11], which provides the most efficient use of material due to the
tangential stress distribution caused by wire torsion. However, there are a number of
applications where springs with a rectangular wire cross-section are preferable. Springs
with a rectangular wire cross-section have a high energy storage capacity, high stiffness,
and a small size, so they are applicable in the automotive industry [12], in automotive
vehicle suspensions [13], and are also commonly used in stamping machines [14]. These
springs are also applied as prone couplings and as flexible connectors in manipulators,
including surgical robots [15]. The favourable characteristics of rectangular wire springs
have led to attempts to make them using 3D printing technology [16] and to make them
from composites [17,18].

Springs with a rectangular wire cross-section can be made by coiling from wire or by
cavity machining. Rectangular wire is most commonly used to coil these springs. When
coiling a helix from a wire with a rectangular cross-section, the wire usually adopts a
near-trapezoidal shape, which reduces the space efficiency and energy storage capacity of
the spring [19]. Tsubouchi et al. [20] proposed a new technology involving the coiling of a
round wire spring, which is then subjected to presetting. During the presetting process,
adjacent coils of the spring are interlocked. This process is then continued, resulting in
plastic deformation of the wire caused by high pressures between the pressed coils, the
cross-section of which takes the shape of a rectangle with two rounded sides. The authors
of the cited paper indicate that this treatment increases the fatigue strength of the spring.
However, this leads to a spring with less axial stiffness due to a reduction in the original
axial moment of inertia of the wire cross-section.

3D printing, electro-discharge machining, laser machining, or milling technologies
make it possible to produce springs with a much wider range of geometrical parameters
than spring coil technology. In addition, these springs can be made from a much wider
spectrum of materials, including spring-brittle materials, than with coiling technology. A
significant advantage of machining is the possibility to produce springs with a very small
spring index C, i.e., the quotient of the nominal spring diameter D to the wire thickness
measured in the radial direction b. A relatively new design of machined spring is a closed-
end coil spring made from a cylinder. A drawing of such a spring with the main geometrical
parameters is shown in Figure 1a. Figure 1b illustrates an example of such a spring. As can
be seen, the end parts of the spring can be shaped to facilitate assembly, which significantly
increases the application possibilities. The spring can thus be used in compression, tension,
bending, and torsion.
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In the literature, relationships can be found to calculate the maximum stresses de-
veloped in the spring material under axial loading [13,21]. However, they do not take
into account effects related to the way the coils of machined springs are terminated, such
as those shown in Figure 1. Moreover, these relations are derived on the basis of sim-
plifying assumptions, and no comprehensive analysis of their accuracy for a wide range
of parameter variations is presented anywhere, even for classical coil springs made of
rectangular wire. An important geometrical parameter for springs of this type is the radius
ρ of the rounded end of the coil, shown in Figure 1a. If it is too small, it will cause an
increase in stress in the spring material during operation and, as a result, reduce the static
and fatigue strength of such a spring. The value of this radius also affects the stiffness of
the spring, especially for springs with a small number of coils. Using a rounding radius
larger than necessary for stress reduction results in a spring with increased dimensions
and reduced stiffness. The reason for this is that, in order to provide stable support for the
spring, its retaining surfaces should be in the form of solid rings. This compromises the
spring’s performance properties due to, among other things, increased weight and required
installation space. The lack of a model to determine the correct value of this radius makes
it difficult to correctly select parameters when selecting or designing such a spring.

The aim of this study was to provide a comprehensive analysis of the stresses in the
material of a machined coil spring with closed-coil ends. This analysis was carried out
using numerical methods for a wide range of variations in the geometrical parameters of
the springs. The first objective of this analysis was to determine the minimum value of the
rounding radius ρmin, ensuring that there is no stress concentration at the ends of the coils.
The second objective of the analysis was to develop an easy-to-use computational model to
estimate the value of the rounding radius ρmin for machined springs with arbitrary geo-
metric parameters within the assumed range of variation. This analysis and the developed
computational model will allow the springs to be designed with efficient use of material
and the application of relationships known from the literature for their calculation, which
neglect the effects associated with the geometry of the transition zone of the end coils.

2. Materials and Methods
2.1. Parameter Variation Range of the Analysed Spring Models

In order to obtain results that are representative of a wide spectrum of springs, the
following ranges of parameter variation were assumed:

• Proportion of the sides of the wire section (the so-called aspect ratio) b = b
a , b ∈

{5/1, 2.5/1, 1/1, 1/2.5}.
• Spring index C = D

b , C ∈ {2.5, 5, 10}.

• Helix angle α = tg−1
(

h
πD

)
, α ∈ {1◦, 5◦, 10◦, 15◦}.

• Number of coils n, n ∈ {1.5, 2.5, 3.5, 4.5}.

Figure 2 provides an illustration of the values of the analysed parameters C and b.
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The range of variation of the parameter ρ was not possible to determine in the first
stage of the analysis. It was assumed that a minimum value of the relative radius ρ = ρ/a
would be sought, ensuring that the stresses in the end region of the coils would be no
greater than the stresses in the prismatic part of the coils. Such a value for the relative
radius is denoted by ρmin in the remainder of the paper. The search was carried out using
an iterative method, with a step of ∆ρ = 0.1.

2.2. Development of a Parametric Numerical Model

In all analyses carried out, models with parameterised values for the size of the finite
element mesh (FE mesh) were used. Solid models of the springs were developed in the
DesignModeler module of the ANSYS 2022 R1software [22] and their dimensions were
parameterised. They were subdivided into smaller solids, allowing a high-quality FE
mesh to be obtained. In the spring models, the areas of active coils and groove ends
were extracted. Figure 3a shows an example of a solid model of a spring with selected
geometrical parameters, together with the adopted boundary conditions. Figure 3b, on the
other hand, shows the corresponding model created in the finite element method (FEM)
convention [23].
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Figure 3. Example spring model: (a) solid model with selected parameters and boundary conditions;
(b) discretisation of the model by the finite element method with enlargement of the rounded end of
the coil.

In Figure 3a, the green colour indicates the active coil areas. In these areas, models
have been discretised using quadratic 20-node hexahedral elements. Discretisation using
these elements requires more work and is more difficult to automate than using tetrahedral
elements, but this type of finite element generally gives more accurate results for stresses
and strains than quadratic elements [24,25]. The hexahedral elements are also more reliable
in terms of the skewness parameter than the tetrahedral elements [26]. The value of the
skewness parameter was tested for each spring model, and in all cases its average value
across the model did not exceed 0.25. The size of the finite elements in the volume marked
in green in Figure 3a was dependent on the smaller of the wire cross-sectional dimensions,
the length of which, as mentioned above, was 1 mm in all analyses. For springs with an
aspect ratio of b = 5/1, the finite element size was set to 1/6 of the shorter of the sides,
while for springs with aspect ratios of b = 2.5/1, b = 1/1 and b = 1/2.5, the finite element
size was set to 1/9 or 1/12 of the shorter of the sides to ensure a high quality of the FE
mesh in each case. The dimensions b and a were normalised, assuming in all analyses that
the shorter side has a value of 1 mm. The red colour indicates the areas of groove rounding,
where the set element size ensured that the rounding arc was divided into 18 elements in all
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the analyses carried out. The total number of mesh nodes in the spring models ranged from
about 0.3 × 106 for the spring models with the smallest index and the smallest number of
coils to about 3 × 106 for the spring models with the largest index and the largest number
of coils.

The spring models described above were subjected to axial compression analyses.
Boundary conditions were assumed in accordance with Figure 3a. The lower resisting
surface of the spring was restrained, while the upper surface was deprived of all degrees of
freedom, except translation along the spring axis. In this direction, the axial displacement
δZ of this surface was given a value equal to 0.25 of the total inter-coil clearance:

δZ = −0.25en (1)

where e is the clearance between two coils measured in axial direction, as shown in Figure 1a,
and n is the number of coils.

In the analyses, large-scale deformations were considered, and material properties
representative of steel were assumed: Young’s modulus E = 200 GPa and Poisson’s ratio
ν = 0.3. The maximum equivalent von Mises stresses were measured and the location of
their occurrence was determined, and the reaction force PZ was read in the axial direction,
on the lower retaining surface, corresponding to a given displacement of each spring by δZ.
In total, more than 350 large-scale deformations analyses were performed.

2.3. Numerical Verification of the Model Reliability in Terms of Stress Representation

As it was not possible to precisely measure the stresses in the rounding region ex-
perimentally, verification of the validity of the FEM-based model was carried out using
results taken from the literature. As bending stresses in the spring wire in the rounding
region represent a significant component of all stresses, the model of bending of a stepped
flat bar with shoulder fillets, for which precise formulas for stress concentration factors
(SCFs) can be found in the literature, was therefore used. Noda et al. [27] analysed stress
concentration of round and flat stepped bars by the body force method (BFM) and proposed
new formulas of SCFs calculation with better than 1% accuracy. These relationships give
more accurate SCFs values than those found in the widespread literature such as [28,29],
where SCFs values can vary significantly to the detriment of calculation safety. The present
study compares the SCFs calculated in [27] with the values calculated from the FEM-based
analyses carried out with the model settings and analyses described in Section 2.2. This
comparison is for reference, as it was only made after all the axial compression analyses
of the springs had been carried out to determine the value of ρmin for each spring. The
minimum value of the relative rounding radius when the finite element size was set to 1/6a
was ρmin = 1, and when the finite element size was set to 1/9a the value was ρmin = 0.2
(with a being defined in Figure 1a).

Figure 4 presents the results of FEM-based bending analyses of stepped flat bars with
rounded shoulders. The dimension values shown in Figure 4 are: a = 10 mm, b = 10 mm,
W = 20 mm. The bending moment Mb was 1000 N·mm. The extreme nominal stress value
on the compression side of the beams was −6 MPa.

A comparison of the values of the stress concentration factors obtained from the
numerical analyses (SCFFEM) with the values of these factors taken from [27] (denoted by
SCFBFM) is shown in Table 1.

The high agreement between the values of the SCFs calculated from the FEM-based
analyses at the given FE mesh parameters and the reference values of these factors indicates
the high accuracy of the FEM-based models used with regard to stress determination. As
can be seen in Table 1, the largest relative difference ∆SCF between the values of these
factors for the model with ρ = 0.2 did not exceed 2.6%, and for the model with ρ = 1, the
difference was 2.2%.
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Table 1. Comparison of SCFs values obtained for numerical models with their reference values [27].

Magnitude Model with ρ = 1 Model with ρ = 0.2

SCFFEM 1.123 1.537
SCFBFM 1.148 1.578

∆SCF = SCFBFM−SCFFEM
SCFBFM

× 100% 2.2% 2.6%

3. Results
3.1. Determination of ρmin as a Function of the Other Geometrical Parameters of the Springs

Figure 5a,b shows an example results of an axial compression analysis of a spring
model with the following parameters: C = 5, α = 5◦, b = 1/1, n = 1.5.
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Figure 5a presents a contour plot of the equivalent stress for a spring with a rounding
radius ρ = 0.2, and Figure 5b shows an analogous plot for a spring with a rounding radius
ρ = 0.3. Below the spring models, magnified sections of the FE mesh where regions of
maximum stress occur are shown.. As mentioned above, the relative minimum radius
ρmin was sought in all cases with a step equal to 0.1. As can be seen, in the latter case, the
maximum stress at the rounding point is smaller than at the prismatic part of the coils.
Thus, for a spring with parameters C = 5, α = 5◦, b = 1/1, n = 1.5, the minimum rounding
radius ρmin = 0.3. In the same way, the value of ρmin was determined for all spring models,
with the parameters given in Section 2.1.

When the relative difference between the maximum equivalent stress in the model
with ρ = ρmin and the maximum equivalent stress in the model with ρ smaller by 0.1 was
less than 1% then the smaller of these radii was taken as ρmin. The resulting values are
shown in Tables 2–5. In the presentation of the results, some of these are not included. They
concern combinations of such geometrical parameters of the springs, at which the clearance
between coils takes a negative value, i.e., springs that are impossible to perform.

Table 2. Values of ρmin obtained from FEM-based analyses for n = 1.5.

Spring Index C Aspect Ratio b
Minimum Relative Radius of Rounding ρmin

α = 1◦ α = 5◦ α = 10◦ α = 15◦

2.5

5/1 – 1.0 1.4 1.9
2.5/1 – 0.4 0.5 0.6
1/1 – – 0.2 0.2

1/2.5 – – – –

5

5/1 0.9 1.4 3.1 5.3
2.5/1 – 0.7 0.8 1.0
1/1 – 0.3 0.3 0.3

1/2.5 – – 0.2 0.2

10

5/1 0.9 1.5 3.7 9
2.5/1 0.5 0.6 0.8 1.0
1/1 – 0.4 0.3 0.3

1/2.5 – 0.3 0.3 0.2

Table 3. Values of ρmin obtained from FEM-based analyses for n = 2.5.

Spring Index C Aspect Ratio b
Minimum Relative Radius of Rounding ρmin

α = 1◦ α = 5◦ α = 10◦ α = 15◦

2.5

5/1 – 1.2 1.8 2.8
2.5/1 – 0.5 0.6 0.7
1/1 – – 0.3 0.3

1/2.5 – – – –

5

5/1 1.0 1.9 4.5 7.2
2.5/1 – 0.7 1.0 1.2
1/1 – 0.3 0.3 0.4

1/2.5 – – 0.3 0.3

10

5/1 1.0 2.0 5.5 10.9
2.5/1 0.6 0.7 0.9 1.4
1/1 – 0.4 0.4 0.4

1/2.5 – 0.3 0.3 0.3

For springs with certain parameters, buckling occurred at a given axial deflection
equal to 0.25 of total clearance. Examples of such cases are shown in Figure 6. In such cases,
buckling is indicated in the table instead of the ρmin value.
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Table 4. Values of ρmin obtained from FEM-based analyses for n = 3.5.

Spring Index C Aspect Ratio b
Minimum Relative Radius of Rounding ρmin

α = 1◦ α = 5◦ α = 10◦ α = 15◦

2.5

5/1 – 1.3 1.9 buckling
2.5/1 – 0.5 0.6 0.7
1/1 – – 0.3 0.3

1/2.5 – – – –

5

5/1 1.0 1.9 4.8 buckling
2.5/1 – 0.8 1.0 1.2
1/1 – 0.3 0.3 0.4

1/2.5 – – 0.3 0.3

10

5/1 1.0 2.1 5.6 buckling
2.5/1 0.6 0.7 1.0 1.4
1/1 – 0.4 0.4 0.4

1/2.5 – 0.3 0.3 0.3

Table 5. Values of ρmin obtained from FEM-based analyses for n = 4.5.

Spring Index C Aspect Ratio b
Minimum Relative Radius of Rounding ρmin

α = 1◦ α = 5◦ α = 10◦ α = 15◦

2.5

5/1 – 1.4 1.9 buckling
2.5/1 – 0.5 0.6 0.7
1/1 – – 0.3 0.3

1/2.5 – – – –

5

5/1 1.0 2.0 4.8 buckling
2.5/1 – 0.8 1.0 1.2
1/1 – 0.3 0.3 0.4

1/2.5 – – 0.3 0.3

10

5/1 1.0 2.2 5.6 buckling
2.5/1 0.6 0.7 1.0 1.3
1/1 – 0.4 0.4 0.4

1/2.5 – 0.3 0.3 0.3
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Comparing the ρmin values for springs with number of coils n = 2.5 (Table 3) with
the corresponding ρmin values for springs with n = 1.5 (Table 2), with the same values of
the parameters b, C, and α, it can be seen that there are only eight repeated ρmin values
and 26 cases where a change in the number of coils from 1.5 to 2.5 caused a change in the
ρmin value. Doing the same comparison for springs with n = 3.5 and n = 2.5, it can be seen
that there are already 24 repeated values of ρmin and only seven cases where changing
the number of coils from n = 2.5 to n = 3.5 caused a change in the value of ρmin. Again,
comparing the results for a spring with n = 4.5 and n = 3.5, it can be seen that there are
already 27 repeated values of ρmin and there are only four cases of variation in ρmin with a
change in the number of coils. Comparing the results in Tables 4 and 5, it can be noted that
a change in the value of ρmin occurred for springs with the following parameters:

(a) C = 2.5, b = 5, α = 5◦

(b) C = 5, b = 5, α = 5◦

(c) C = 10, b = 5, α = 5◦

(d) C = 10, b = 2.5, α = 15◦

Additional FEM-based analyses were carried out for the above four cases, increasing
the number of coils to n = 5.5. The analyses were performed with ρmin values as determined
for n = 4.5. These analyses showed that the ρmin values in cases (a) and (b) did not change
after increasing the number of coils to n = 5.5. In case (c), at the same value of ρmin as for
the spring with n = 4.5, the maximum stress in the transition zone exceeded the maximum
stress in the prismatic part of the coils by 1.2%. In case (d), buckling of the spring occurred.

3.2. Development of a New Computational Model Approximating the Relationship between ρmin
and Other Geometrical Parameters of the Springs

In order to establish an easy-to-apply relationship to estimate the value of ρmin for
any other geometrical parameters of the springs, the computational model developed is
based on certain simplifications. Simplifying assumptions were made in order to obtain
a stable computational model giving results with high accuracy, both for intermediate
parameter values between those investigated using FEM-based analyses, as well as for
geometric parameter values outside the investigated range. In the first step, the values
of the parameter ρmin obtained from FEM-based analyses were analysed. As recognized
in Section 3.1, these analyses showed that, for fixed values of C, b, and α, increasing the
number of coils n is accompanied by a decreasing change in the value of ρmin.

By analysing the results in Tables 2–5, it can be seen that the lowest determined value
of ρmin is 0.2. However, this value occurred only five times and only for springs with
n = 1.5. In the other cases, the lowest value of ρmin is 0.3. Therefore, the values of ρmin = 0.2
were replaced by ρmin = 0.3 in the approximation process. In addition, it can be seen
that for springs with aspect ratios b = 1/1 and b = 1/2.5, changing the helix angle α in
most cases does not change the value of ρmin. In such cases, the approximation process
extrapolated the results to smaller values of angle α in order to increase the stability of the
sought function.

The determination of ρmin as a function of other geometrical parameters of the springs
is also illustrated in the graphs shown in Figure 7. As can be seen from Figure 7, the
dependence of ρmin on aspect ratio b and on helix angle α is non-linear, so an attempt was
made to approximate ρmin for all 12 combinations of parameter values α and n using a non-
linear function. The search for a suitable form of the approximating function was conducted
using a trial-and-error approach. The approximations were carried out in the MATLAB
environment (MathWorks, Natick, MA, USA) using the non-linear least squares method.
Of all the closed-form functions tested (including exponential functions with different
numbers of coefficients, polynomial functions with different numbers of coefficients and
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different powers of the variables, and products of functions of one variable), the following
exponential model of general form showed the best agreement with the data for all 12 cases:

ρmin = c1e(c2α+c3b) + c4 (2)
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Figure 7. Dependence of ρmin on the aspect ratio b and the helix angle α in the case of springs with
the spring index C equal to: (a) 2.5; (b) 5; and (c) 10 (the red dots correspond to the points collected in
Tables 2–5, the absence of ρmin values for springs with n = 3.5 and n = 4.5 for b = 5 and α = 15◦ is due
to the occurrence of buckling).
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Additionally, an important advantage of this form of the function is the small number
of its coefficients ci (for i = 1, 2, 3, 4), which simplifies the subsequent approximation
process, which involved determining the dependence of the coefficients of Equation (2) on
the other two variables, i.e., on the spring rate C and on the number of coils n. The use
of higher-degree polynomials [30] in the first approximation step, which can be prone to
overfitting, could lead to poor generalisation performance.

The approximations were carried out using weights, with values inversely propor-
tional to the value of ρmin. This way of approximation allowed us to obtain a model with a
better agreement with the data for small values of ρmin. During the approximation process,
modifications were made to the default coefficient constraints in order to stabilise the values
obtained. Table 6 shows the values of the coefficients ci together with the coefficients of
determination R2 and mean squared error (MSE) [31].

Table 6. Values of the coefficients ci.

Spring Index C Number of Coils n c1 × 103 c2 × 103 c3 × 103 c4 × 103 R2 MSE

2.5

1.5 21.61 68.85 660.8 233.2 0.9886 0.0256
2.5 21.49 87.23 690.8 225.3 0.9820 0.0484
3.5 26.49 78.44 670.6 209.3 0.9739 0.0491
4.5 28.06 75.51 668.6 207.7 0.9770 0.0472

5

1.5 10.92 138.3 817.3 232.4 0.9618 0.0768
2.5 14.71 130.7 844.5 248.8 0.9854 0.2572
3.5 5.219 186.9 975.4 259.2 0.9406 0.1071
4.5 5.035 186.4 985.5 264.0 0.9425 0.1062

10

1.5 3.187 190.6 1010 322.3 0.9978 0.1139
2.5 5.629 166.1 1012 323.3 0.9934 0.2407
3.5 2.817 214.2 1079 328.1 0.9894 0.1493
4.5 2.724 209.0 1095 330.7 0.9452 0.1010

The next step in the development of the computational model was to determine the
approximation formulas for the dependence of the coefficients ci on the spring index C and
the number of coils n. After a number of tests, finally, a polynomial of second degree with
respect to the spring index C, and of third degree with respect to the number of coils n,
were used as approximating functions:

ci = p00 + p10C + p01n + p20C2 + p11Cn + p02n2 + p21C2n + p12Cn2 + p03n3 (3)

Of all the functions tested, this form gives the best agreement with the data. Table 7
shows the values of the constants appearing in Equation (3), and Figure 8 graphically shows
the values of the coefficients ci together with the functions approximating the dependence
of the values of these coefficients on the spring index C and the number of coils n.

Table 7. Values of the determined constants of Equation (3).

ci p00 × 103 p10 × 103 p01 × 103 p20 × 103 p11 × 103 p02 × 103 p21 × 103 p12 × 103 p03 × 103 R2 MSE

c1 −10.61 1.603 40.84 −0.3275 −3.916 −10.76 0.3358 −0.1104 1.223 0.9739 0.0030
c2 245.6 17.98 −288.3 0.2936 9.604 99.83 −1.269 1.247 −11.85 0.9746 0.0168
c3 901.8 −0.9397 −421.3 4.021 47.64 124.2 −4.208 1.536 −15.12 0.9931 0.0270
c4 304.1 −41.49 −20.83 4.046 17.56 −8.525 −1.255 −0.040 0.9389 0.9974 0.0047
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4. Discussion on the Accuracy of the Developed Computational Model

The results obtained with the proposed computational model, described by Equations (2)
and (3) and the coefficients shown in Table 7, were compared with the results of the
FEM-based analyses and presented graphically in Figures 9–11.
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Figure 9. Dependence of ρmin on the other parameters of the analysed springs (for n = 1.5), together
with points showing the values of ρmin obtained from FEM-based analyses and residuals plots for
springs with the spring index C equal to: (a) 2.5; (b) 5; and (c) 10.
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Figure 10. Dependence of ρmin on the other parameters of the analysed springs (for n = 2.5 and
n = 3.5), together with points showing the values of ρmin obtained from FEM-based analyses and
residuals plots for springs with the spring index C equal to: (a) 2.5; (b) 5; and (c) 10.

Comparing the differences between the ρmin values obtained from the FEM-based
analyses and the ρmin values obtained with the proposed computational model, it can be
seen that the proposed model has a high agreement with the input data, over a wide range
of variation in the parameters C, b, α, and n. It can also be seen that for springs with small
values of ρmin, the proposed model generally overestimates the values of this parameter,
which is beneficial for the safety of the calculations. The largest differences between the
results of the FEM-based analyses and the results of the developed model occur at large
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values of the helix angle α and the aspect ratio b. However, the relative differences in
these cases are small. For example, for a spring with n = 1.5, C = 10, b = 5/1 and α = 15◦,
the difference in the ρmin value between the result of the FEM-based analyses and the
developed model was 0.8. For a spring with these parameters, the ρmin value obtained from
the FEM-based analyses was 9 (Table 2), so the relative difference did not exceed 9% in
this case. The lowest value of the coefficient of determination R2 was obtained for springs
with the spring index C = 2.5 and the number of coils n = 2.5 and n = 3.5. The values of the
coefficient of determination R2 for these springs were 0.92. In all other cases, the values of
the coefficient of determination R2 exceeded 0.95 and in four cases it was 0.99.
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In order to validate the developed computational model, a number of additional
FEM-based analyses were carried out for springs with the spring index C = 7.5 and the
number of coils n = 1.5. A comparison of the ρmin values obtained from the FEM-based
analyses (red dots) with the course of the function described in Equation (2) is presented in
Figure 12.
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It can be seen that the results obtained are in good agreement, which is confirmed by
the coefficient of determination R2 value of 0.96.

Table 8 summarises the three extreme values of the absolute differences ∆abs that were
observed between the results of the FEM-based analyses and the results of the proposed
computational model. This table also shows the relative differences ∆rel . The values of
the radius of roundness of the transition zone obtained from the FEM-based analyses
are denoted as ρminF, and those obtained from the developed approximation model are
denoted as ρminA.

Table 8. Comparison of extreme differences between the results of FEM-based analyses and the
proposed model.

b C α [◦] n ρminF ρminA ∆abs ∆rel [%]

5 10 15 2.5 10.9 12.9 −2 −18
5 7.5 15 1.5 7.7 9 −1.3 −17
5 10 15 1.5 9 8.2 0.8 9

As can be seen, even for the largest observed absolute differences between the results of
the FEM-based analyses and the results of the approximation model, the relative differences
did not exceed 20% in the worst case.

5. Conclusions

This paper presents a new computational model to estimate the geometrical param-
eters of the transition zones of helical springs with rectangular wire cross-section and
closed-end coils, ensuring that the maximum stresses in these zones are reduced to a level
corresponding to the stresses in the coils. The model is an approximation and is based on
results from more than 350 large deflection FEM-based analyses. The validity of the results
of the numerical analyses with respect to stresses was checked using literature data.

The model proposed in this paper, described by Equations (2) and (3) and the data
in Table 7, is characterised by a simple formulation and high agreement with the results
of FEM-based analyses over a wide range of spring geometric parameters. It is, to the
authors’ knowledge, the first such model in the literature to allow the estimation of the
minimum radius of the groove rounding in the transition zone of a helical coil spring with
a rectangular wire cross-section, for which the stress coefficient factor is 1. This model
therefore allows efficient use of the spring material and the space required for its assembly.
An additional advantage of the proposed model is that it can be used to calculate springs
with wire cross-sectional ratios b/a both greater and less than one.

The proposed computational model shows good agreement with the results of the
FEM-based analyses even in areas with a strongly non-linear relationship between ρmin
values and the other parameters of the analysed springs. In these areas, especially for
springs with a small number of coils, in a few cases, large absolute differences were
observed between the results, which, however, did not exceed 20% in relation to the values
of ρmin obtained from the FEM-based analyses.

The model can be used for springs with an index between 2.5 and 10, a helix angle
between 1◦ and 15◦, and a proportion of the sides of the wire section between 1/2.5 and
5/1. It was developed for the number of coils n between 1.5 and 4.5, but in the case of
springs with a higher number of coils, the value n = 4.5 can be inserted in Equation (3)
because, as analyses have shown, at this number of coils, the values of ρmin stabilise.

Additional analyses carried out during the development of this article, which are not
presented here due to their excessive volume, indicated that the stiffness of the analysed
springs may differ significantly from the stiffnesses calculated based on the known literature
relationships [13,19,21]. This justifies the need to carry out research in this area as well.
This research has commenced and will be the subject of a subsequent article.
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