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Abstract: High-velocity oxy-fuel (HVOF) thermally sprayed Cr3C2-NiCr coatings have been shown to
be effective in shielding important machinery and equipment components from wear in harsh, high-
temperature conditions. In this investigation, the HVOF thermal spray coating technique was used to
deposit Cr3C2-NiCr powder with 10% Co particles onto ductile cast iron. The effect of the Co particles
on the mechanical, tribological, and microstructure characteristics of a Cr3C2-NiCr/ductile cast iron
system was investigated. The microstructure analysis employed various techniques, including light
microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron
microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDS). Scratch tests were applied
to analyze the coating quality and adhesion. The coatings created using the HVOF spray method
with Cr3C2-NiCr powders mixed with Co particles exhibited a dense structure containing large
Co particles, partially melted, and very fine Cr3C2 particles embedded into the NiCr alloy matrix.
Additionally, they possessed high hardness and excellent adhesion to the substrate. The results of
bending strength tests were also presented, together with information on the coating’s microhardness
and fracture toughness. These included an analysis of the cracks and delamination in the Cr3C2-
NiCr/ductile cast iron system. It was observed that the addition of Co particles significantly increased
the resistance to cracking and wear behavior in the studied system.

Keywords: HVOF; (Cr3C2-NiCr+Co) composite coating; mechanical properties; scratch bond strength;
coating quality

1. Introduction

Various thermal spraying techniques, including but not limited to HVOF (high-velocity
oxy-fuel), are widely used for coating applications to enhance protection against wear and
the erosion and corrosion of large structural components. This is particularly relevant in in-
dustries such as thermal and nuclear power plants, where industrial turbine blades require
effective protective coatings [1,2]. These techniques are also utilized in the regeneration of
machine parts, involving comprehensive repair of elements such as the working surfaces
of shafts, pump components, bushings, transport rollers, and guides [3,4]. In particular, the
HVOF process is dedicated to applying coatings based on chromium and tungsten carbides
on substrates made of iron, aluminum, and magnesium alloys [5,6]. The HVOF process
offers numerous benefits. It is capable of ejecting partially molten particles at exceptionally
high velocities, reaching speeds of around 900 m/s. This results in the formation of a dense
coating that adheres effectively to the substrate. However, it is important to note that the
specified velocity of 900 m/s may vary based on the process conditions and the type of
equipment used. Additionally, the coatings exhibit a fine-grained microstructure, a low
oxide content, and minimal carbide decomposition. As a result, the coatings produced
using HVOF have a significantly higher hardness compared to those created using the
conventional plasma spraying technique [7–10]. HVOF technology stands out for its direct
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applicability in real boiler installations. Unlike techniques such as CVD or PVD, it does
not impose restrictions on the coating thickness or alter the substrate material’s structure.
HVOF-sprayed coatings based on Cr3C2-NiCr are primarily utilized to protect against
the erosive and corrosive wear of machine parts and devices operating at elevated tem-
peratures, including temperatures up to 870 ◦C. This is attributed to their high structural
stability under heavy loads for prolonged periods, excellent resistance to abrasive wear,
and favorable sliding properties, characterized by low coefficients of friction within the
temperature range of 25–850 ◦C [11,12]. Additionally, the hard and well-adhering layer
of chromium oxide formed on their surface during the HVOF process, resulting from
chromium’s direct reaction with oxygen, renders them resistant to oxidation in the temper-
ature range of 650–1200 ◦C. This layer serves as an effective diffusion barrier during the
process, preventing the material from losing its hardness and abrasion resistance [13,14].
However, it is widely acknowledged that at temperatures between 850 and 900 ◦C, further
oxidation leads to the breakdown of the protective Cr2O3 oxide scale, which is crucial
for their resistance to oxidation and corrosion, resulting in the formation of volatile CrO3.
The coating’s corrosion resistance is effectively provided by the NiCr matrix; however,
the carbide particles are the main component affecting its wear resistance. In Cr3C2-NiCr
coatings produced using supersonic spraying, smaller chromium carbide particles, reaching
nanometric sizes, have been found to enhance wear resistance and smoothness. However,
due to the intensification of the decarburization process in the case of smaller chromium
carbide particles, nanostructured coatings show a lower fracture toughness compared to
conventional coatings. The increased microhardness of the coating is attributed to the
dissolution of carbon in the metal matrix during the decarburization process. Nevertheless,
this process can lead to the formation of brittle structures (Cr7C3, Cr23C6), which may
adversely affect durability [15–20]. The great advantage of these coatings is the similar
expansion coefficient of iron and chromium carbide (Cr3C2) [21,22], which has an impact
on the minimization of internal stresses in the process of spraying these coatings onto
substrates made of iron alloys. According to the studies [23–25], starting powders with
a regulated morphology and grain size are used in an effort to enhance the mechanical,
tribological, and microstructural characteristics of Cr3C2-NiCr HVOF coatings. In par-
ticular, the studies [26,27] have revealed that adding nickel particles to starting powder
composed of chromium and tungsten carbide leads to decreased porosity and the formation
of a beneficial structure, resulting in enhanced mechanical durability and wear resistance
during the HVOF process. This enhancement is attributed to the increased plasticity of the
matrix due to the doping. It has been effectively conveyed by Zhou et al. [18] and Varis
et al. [19] that one of the main factors influencing the mechanical properties of coatings is
the strengthening of the binder (NiCr). Also, the addition of Co particles to the starting
powder base of Cr3C2-NiCr, owing to cobalt’s resistance to oxidation and thermal stability,
is expected to reinforce the binder, enhancing its mechanical properties, adhesion, thermal
stability, and oxidation resistance, thereby extending the coating’s lifespan in extremely
severe conditions. It is also worth noting that the application of heat treatment to Cr3C2-
NiCr coatings and their laser remelting have had a beneficial effect on their mechanical and
tribological properties [28–31].

The aim of the work was to assess the effect of modifying the chemical composition by
doping standard Cr3C2-25NiCr powders with metallic Co particles during the consolidation
of coatings onto ductile cast iron in the HVOF process on the microstructure, mechanical
properties, and scratch resistance of the coating system (Cr3C2-NiCr)/ductile cast iron,
combined with an analysis of the cracking and delamination of the coating at the interface.

2. Materials and Methods
2.1. Preparation of the Coatings

Coatings of Cr3C2-NiCr and Cr3C2-NiCr+Co were applied using supersonic flame
spraying of commercially available carbide powder containing Cr3C2-25(Ni20Cr) (75 wt%
Cr3C2-25 wt.% NiCr) with a nominal grain size distribution of −45 + 5.5 µm (Diamal-
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loy 3004 Sulzer Metco, Pfattikon, Switzerland) onto a ductile iron substrate. The Cr3C2-
NiCr+Co composite coating was obtained by introducing 10 wt.% of 20 µm Co particles
(Xi’an Function Material Group Co., Ltd., High-Tech Zone, Xi’an City, China) into the
carbide powder. The volume composition of the powder mixture used to create the com-
posite coating was as follows: 67.5 wt.% Cr3C2-22.5 wt.% NiCr-10 wt.% Co. A plasma
equipment firm (Siemianowice, Silesia, Poland) employed the HV-50 HVOF spraying
equipment to apply the coating. Table 1 summarizes the spraying parameters that were
optimized. The substrate made of EN-GJS-500-7 ductile iron had the following chemical
composition—3.61% C, 2.29% Si, 0.45% Mn, 0.045% P, 0.009% S, 0.03% Cr, 0.01% Ni, 0.057%
Mg, 0.75% Cu, and the rest Fe (in weight percentages)—and was characterized by the
following mechanical properties: yield strength = 340 (MPa), tensile strength = 500 (MPa),
elongation = 7%, hardness = 220 HB. The substrate samples measured 100 by 15 by 5 mm3.
For better coating mechanical adherence, the substrates’ surfaces were sandblasted using
a loose corundum with 20-mesh granulation prior to spraying. The substrate’s surface
roughness parameter Ra was 30 µm. The average thickness of the applied coating was
250 µm.

Table 1. Spraying parameters of Cr3C2-NiCr coatings using HVOF technology.

Gun Movement Speed,
mm/s

Oxygen,
L/min

Kerosene,
L/h

Powder Feed Rate,
g/min

Powder Feed Gas,
L/min

Spraying Distance,
mm

583 850 24 65 Nitrogen, 9.5 370

2.2. Microstructure Characterization

The microstructure and chemical composition of the coating/substrate system were
examined using a Zeiss Axio Observer Zm1 light microscope (LM, Jena, Germany), a
Scios DualBeam FEI scanning electron microscope (SEM, Valley City, ND, USA), and
a JEOL 2010 ARD transmission electron microscope (TEM, Akishima, Japan) equipped
with EDS spectrometers. For the TEM examinations, thin foils of the coating/substrate
specimens were prepared using a Gatan PIPS 691 V3.1 ion thinner in Pleasanton, CA, USA,
following standard procedures such as cutting out a 3 mm diameter disc, thinning using
a dimpler, and ion polishing [32]. Phase composition studies were conducted using the
X’Pert Pro Panalytical Diffractometer (Malvern Panalytical Ltd., Cambridge, UK) in the
angular range of 20–90◦ with CuKα radiation (wavelength λ of 1.54 Å, X-ray power of
45 kV and 40 mA). The obtained spectra underwent preliminary numerical processing
using the “EVA” software (Diffrac.Eva V4), involving background removal and noise reduction
using Fourier transform. Phase identification was performed with the assistance of the ICDD
database. Utilizing Rietveld analysis of the XRD data with GSAS/EXPGUI software (https:
//subversion.xray.aps.anl.gov/trac/EXPGUI accessed on 13 March 2024), a set of software
phase compositions was derived, and the average crystallite size was calculated using
the Scherrer formula after accounting for instrumental broadening. The carbide coating
porosity was measured using X-ray computed tomography using a Phoenix Nanotom X-ray
nanotomograph (GE Sensing & Inspection Technologies, Wunstorf, Germany), equipped
with AxioVision image analysis software (4.8.2.0). The tests were carried out on 10 areas of
the coating. Examination of the surface topography of the coatings and quantification of the
surface roughness parameters, specifically Ra (the mean deviation of the surface profile from
the mean line) and Rz (the mean of the absolute values of the five highest peaks and five
deepest valleys within a specified sampling length), were performed utilizing an Olympus
LEXT OLS4100 laser confocal microscope (Hamburg, Germany). Three measurement lines
of the coating’s surface roughness were used to calculate the parameters for each type
of coating. Utilizing three-dimensional imaging and subsequent analytical procedures
facilitated accurate delineation and characterization of the geometric structure of the
examined surfaces.

https://subversion.xray.aps.anl.gov/trac/EXPGUI
https://subversion.xray.aps.anl.gov/trac/EXPGUI
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2.3. Mechanical Properties and Scratch Resistance

Studies of the mechanical properties, which included indentation measurements of
the hardness (HIT), Young’s modulus of elasticity (EIT), and fracture toughness (KIC), were
carried out using the multifunctional measurement platform Micro Combi Tester from
the Swiss company CSM Instruments. HIT, EIT, and KIC were determined according to
sample indentation (cross-section of coating/substrate samples) using a Vickers diamond
indenter. Every cycle of loading and unloading involved continuous measurements of the
indentation’s load and depth of penetration. The maximum load value for the hardness
measurement and Young’s modulus was 1 N, the load and unload speed was 2 N/min, the
maximum hold time was 10 s, and the contact force was 0.03 N. For The micromechanical
parameters were analyzed using Oliver and Pharr’s method, which computed the pene-
tration curve’s hardness (HIT) and Young’s modulus of elasticity (EIT) (Figure 1). For each
coating/substrate system, the microhardness was measured using a matrix distribution
with 15 measuring sites on the coating’s cross-section (Figure 1). The measurement posi-
tions along one measuring line, I, II, II, IV, and V, were precisely defined using the special
“Visual Advanced Matrix” module thanks to the integrated light microscope.
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Figure 1. Measurement of microhardness (HIT) by matrix distribution on the cross-section of the
coating and typical relationship between load and displacement during indentation.

The indentation fracture toughness, that is, the critical value of the stress intensity
coefficient (KIC), was determined through direct measurement of the length of the cracks
appearing in the corners as a result of the penetration of a Vickers indenter under the
influence of specified loads: 5, 10, 15, and 20 N (the speed of loading and unloading
was 40 N/min, the maximum load holding time was 10 s, and the contact load was
0.03 N). Using an integrated light microscope, the lengths of the cracks and the indentation
diagonals were measured for this purpose (Figure 2). Three indentations were made in
each coating/substrate type sample at a given load. After determining the total length of
the cracks, the type of cracks was identified, taking into account the length ratio l/a. When
the l/a ratio is > 1.5, the Anstis formula [33] is used. Two factors must be considered in
order to calculate the fracture toughness: the load (P) and the crack’s length (l).

Anstis formula:

KIC = 0.016
(

E
HV

)0.5
· P
c1.5 (1)

where KIC—the fracture toughness coefficient, P—the indenter load [N], HV—Vickers
hardness, E—Young’s modulus of elasticity [MPa], c = a + l—the length of half of the
indent’s diagonal + the length of the crack initiated from the corner of the Vickers indent
[m], a—the length of half of the indent’s diagonal [µm], l—length of the crack initiated
from the corner of the Vickers indent [µm].
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Figure 2. Scheme for measuring indentation fracture toughness (KIC) in the Cr3C2-NiCr and Cr3C2-
NiCr+Co coatings at a load of 20 N.

Using a specifically made holder for samples measuring 36 × 13 × 3 mm3, the Instron
8800M testing equipment (Instron, Norwood, MA, USA) was used to conduct a 4-point
bending test (Figure 3) to assess the strength of the coating/substrate joint. The supports
were spaced 25 mm apart, and the rate of deformation was 1 mm/min. For one test, three
samples were used. Using a scanning microscope, fracture surfaces were seen following
the 4-point bending test.
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Figure 3. A schematic diagram of the 4-point bend test.

The bending strength was calculated according to the formula:

σ =
3
2
·Ff

l
d·h2 (2)

where σ—the bending strength [MPa] Ff—the load at a given point on the load deflection
curve [N], l—the load spacing [mm], d—the width of the specimen [mm], h—the height of
the specimen [mm].

Tests were conducted to assess the adhesion of the coatings to the substrate and
determine various mechanical types of damage, such as the depth of the penetration by
the indenter, the formation of cracks, and the initiation of delamination along the scratch
path. These tests were performer using a Rockwell C-type diamond indenter with a
radius of curvature of 100 µm. Various penetrator forces of 5, 10, 15, 20, and 25 N were
applied. The experiments utilized a multifunctional measuring platform (Micro Combi
Tester, Buchs, Switzerland) equipped with Anton Paar scratch test heads, following the
guidelines outlined in the standard [34]. The cross-sectioned samples were placed in
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DuroFast hard epoxy resin and tested. After that, they were polished according to the
normal procedures for metallographic samples. When performing the scratch test, a steady
stress is applied, and the indenter travels from the substrate through the coating and into
the resin, encasing the sample. The scratch length was 1.2 mm. The indenter speed was
0.4 mm/min. Three scratches were made under a specified penetration load. Failure of the
coating/substrate system was detected and evaluated by observing the resulting scratch
on light and scanning electron microscopes. The critical load is the typical force at which
failure happens. The quality of the coating-substrate bond is defined by the critical loads
for cohesive and adhesive cracks, which were established. Furthermore, the projected area
of a cone-shaped fracture in the coating was determined after the scratch test, Acn = Lx·Ly
(Figure 4), for the constant load scratch force, determining the cohesion of the coatings, and
even the wear resistance was measured using a light microscope.
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Figure 4. An example image of a scratch track in the substrate/composite coating/resin system
created at a load of 10 N.

3. Results and Discussion
3.1. Identification of the Coating Systems’ Microstructure and Phases: Cr3C2-NiCr/Ductile Cast
Iron and Cr3C2-NiCr+Co/Ductile Cast Iron

The chromium carbide coatings’ microstructure, with and without metallic particles,
was typical for thermal spraying; that is, layers of flattened powder particles formed
the grains, which undergo geometric changes and plastic deformation during the HVOF
process. Furthermore, the coatings were characterized by a compact structure without
cracks. Additionally, there were few pores and oxide impurities in the coatings, and they
showed good adherence to the substrate with a continuous interface. All these attributes
together indicate ideal application circumstances, which, in turn, guarantee the creation
of coatings of a superior quality. The NiCr alloy matrix of both coatings contained fine
variously sized chromium carbide particles embedded into it, and the composite coating
contained large partially melted Co particles that changed in height and length when they
came into contact with the substrate (Figure 5). The porosity decreased and the surface
roughness parameters increased in the Cr3C2-NiCr+Co composite coating compared to
the coating without cobalt particles. The composite coating has an average porosity of
2.3 ± 0.6%. The surface roughness parameters Ra and Rz have values of 6.1 ± 2.1 µm
and 36.6 ± 14.8 µm, respectively. For the Cr3C2-NiCr coating, the porosity and the values
of Ra and Rz parameters are, respectively, 3.6 ± 0.8%, 4.8 ± 1.1 µm, and 26.9 ± 4.9 µm.
A beneficial effect on porosity reduction is seen when ductile Co particles are added to
the carbide coating. This can be explained by the way that Co particles operate as a
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kind of “cushion”, supporting and softening the impact of the Cr3C2-NiCr particles. This
interaction facilitates densification, which is more difficult in a Cr3C2-NiCr coating because
of its reduced ductility and increased hardness. But the higher roughness parameter of the
composite coating may be due to the crystallization of the elongated-shaped Co particles
and their “island” arrangement within the coating matrix, potentially providing better
abrasion resistance. A surface image obtained from the 3D scaling of the Cr3C2-NiCr and
Cr3C2-NiCr+Co coatings is shown in Figure 6.

Materials 2024, 17, x FOR PEER REVIEW 7 of 18 
 

 

added to the carbide coating. This can be explained by the way that Co particles operate 
as a kind of “cushion”, supporting and softening the impact of the Cr3C2-NiCr particles. 
This interaction facilitates densification, which is more difficult in a Cr3C2-NiCr coating 
because of its reduced ductility and increased hardness. But the higher roughness pa-
rameter of the composite coating may be due to the crystallization of the elongat-
ed-shaped Co particles and their “island” arrangement within the coating matrix, poten-
tially providing better abrasion resistance. A surface image obtained from the 3D scaling 
of the Cr3C2-NiCr and Cr3C2-NiCr+Co coatings is shown in Figure 6. 

 
Figure 5. Microstructures of the systems at low and high magnification: (a) Cr3C2-NiCr/ductile cast 
iron and (b) Cr3C2-NiCr+Co/ductile cast iron. 

 
Figure 6. Three-dimensional view recorded using a confocal laser scanning microscope of surfaces 
of (a) Cr3C2-NiCr and (b) Cr3C2-NiCr+Co coatings. 

Using the SEM-EDS microanalysis, surface, linear, and point analyses of the chemi-
cal composition were carried out in order to demonstrate in detail the differences in the 
chemical composition of the Cr3C2-NiCr coating and the composite coating 
(Cr3C2-NiCr+Co) (Figures 7 and 8). There are places in the coatings with different degrees 
of remelting (the dendritic structure is diagnostic of areas incorporating Co particles) and 
a notable concentration of either nickel or chromium. Although the metallic phase Ni-Cr 
is present in the light matrix of the composite coating (Cr3C2-NiCr+Co), the black grains 

Figure 5. Microstructures of the systems at low and high magnification: (a) Cr3C2-NiCr/ductile cast
iron and (b) Cr3C2-NiCr+Co/ductile cast iron.

Materials 2024, 17, x FOR PEER REVIEW 7 of 18 
 

 

added to the carbide coating. This can be explained by the way that Co particles operate 
as a kind of “cushion”, supporting and softening the impact of the Cr3C2-NiCr particles. 
This interaction facilitates densification, which is more difficult in a Cr3C2-NiCr coating 
because of its reduced ductility and increased hardness. But the higher roughness pa-
rameter of the composite coating may be due to the crystallization of the elongat-
ed-shaped Co particles and their “island” arrangement within the coating matrix, poten-
tially providing better abrasion resistance. A surface image obtained from the 3D scaling 
of the Cr3C2-NiCr and Cr3C2-NiCr+Co coatings is shown in Figure 6. 

 
Figure 5. Microstructures of the systems at low and high magnification: (a) Cr3C2-NiCr/ductile cast 
iron and (b) Cr3C2-NiCr+Co/ductile cast iron. 

 
Figure 6. Three-dimensional view recorded using a confocal laser scanning microscope of surfaces 
of (a) Cr3C2-NiCr and (b) Cr3C2-NiCr+Co coatings. 

Using the SEM-EDS microanalysis, surface, linear, and point analyses of the chemi-
cal composition were carried out in order to demonstrate in detail the differences in the 
chemical composition of the Cr3C2-NiCr coating and the composite coating 
(Cr3C2-NiCr+Co) (Figures 7 and 8). There are places in the coatings with different degrees 
of remelting (the dendritic structure is diagnostic of areas incorporating Co particles) and 
a notable concentration of either nickel or chromium. Although the metallic phase Ni-Cr 
is present in the light matrix of the composite coating (Cr3C2-NiCr+Co), the black grains 

Figure 6. Three-dimensional view recorded using a confocal laser scanning microscope of surfaces of
(a) Cr3C2-NiCr and (b) Cr3C2-NiCr+Co coatings.



Materials 2024, 17, 1484 8 of 19

Using the SEM-EDS microanalysis, surface, linear, and point analyses of the chemical
composition were carried out in order to demonstrate in detail the differences in the chem-
ical composition of the Cr3C2-NiCr coating and the composite coating (Cr3C2-NiCr+Co)
(Figures 7 and 8). There are places in the coatings with different degrees of remelting
(the dendritic structure is diagnostic of areas incorporating Co particles) and a notable
concentration of either nickel or chromium. Although the metallic phase Ni-Cr is present
in the light matrix of the composite coating (Cr3C2-NiCr+Co), the black grains have a
high chromium content, indicating that they are chromium carbide grains. Generally, the
studied coatings and the coating/substrate interface had chromium carbide grain sizes
ranging from 0.5 to 2 µm.
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Figure 8. (a) Cross-sectional SEM images of Cr3C2-NiCr+Co coatings; (b) EDS spectra taken from the
marked points 1, 2, 3, and 4; (c) linear representation of concentrations of C, Cr, Fe, Co, and Ni; and
(d) mapping the distribution of Cr, Ni, Co, Fe, and C taken from the region of interface.

The lack of elemental penetration (diffusion) from the base material to the coating
and vice versa suggests that the coated material was not mechanically mixed, and the
microstructure of the cast iron remained unchanged following the spraying process (ferrite
and pearlite comprise the initial and post-spraying cast iron matrix, Figure 5b).

Detailed microstructural tests of the composite coating carried out on a thin TEM foil
from cross-section of the sample showed a highly fine crystalline structure with a band-like
character. In the coating microstructure, there are longitudinal bands with thicknesses
of 100–300 nm arranged parallel to each other. The presence of amorphous areas inside
these bands was confirmed according to the diffractogram, which only showed halo rings
(Figure 9). The Cr, Ni, and Co particles that make up the coating were identified using the
energy-dispersive X-ray spectroscopy (EDS) technique, which also allowed us to study the
chemical point composition of the coating.
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Figure 9. TEM analysis of the composite coating (Cr3C2-NiCr+Co) deposited on ductile cast iron:
(a) representative TEM image; (b) area diffraction pattern indicating the presence of an amorphous
area; and (c) EDS spectrum collected from the designated point.

The phases of the carbide coatings were identified using X-ray analysis as Cr3C2,
Cr7C3, NiCr, and Ni3Co (Figure 10). Furthermore, the weight percentage of each phase as
well as the average crystallite size of each phase in the tested coating were established. The
Cr3C2 phase made up 85.4% of the Cr3C2-NiCr coating, whereas the phases NiCr and Cr7C3
had corresponding amounts of 9.9% and 4.7%. The coating contains a relatively low content
of Cr7C3 (resulting from the decomposition of Cr3C2 due to the impact of the spray jet on
the powder grains), indicating a low degree of decomposition of the Cr3C2 carbide into
Cr7C3. In the composite coating (Cr3C2-NiCr+Co), the volume fraction of the Cr3C2 phase
in the coating structure is also significant (79%), which is associated with smaller losses of
Cr3C2 during the coating spraying process. On the other hand, the volume fraction of the
Ni3Co phase (9.4%) is comparable to the NiCr phase (11.6%). It is important to notice that
the extremely fine crystalline structure of the coating is reflected in the average crystallite
sizes of particular phases. Reducing the size of the chromium carbide shortens the mean
free path in the matrix, thereby enhancing the coating’s resistance to deformation, hardness,
and reducing the likelihood of binder phase extrusion. [15,21]. The presence of Cr7C3
carbide in the NiCr matrix, originating from the decomposition of Cr3C2, has the potential
to alter the microstructure of the coating, thereby enhancing its resistance to cracking
and wear. The Cr7C3 phase is characterized by a relatively high critical stress intensity
coefficient (KIC) value of 2.64–4.53 MPa m1/2 [13]. For Cr3C2 chromium carbide produced
using pulsed electric current pressure sintering, the critical value of the stress intensity
coefficient (KIC) is 7.1 MPa m1/2 [35]. In addition, very fine carbide phases may have an
impact on a reduction in crack propagation. It is worth mentioning that the Cr3C2 phase
(HVIT = 18.3 GPa [36]) is characterized by a higher microhardness in relation to the Cr7C3
phase (HVIT = 16.2 GPa) [35] and a twice-higher module of elasticity (416 GPa) compared
to Cr7C3 (226 GPa) [17]. Therefore, it is not anticipated that the formation of a multi-phase
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coating structure with a higher concentration of retained Cr3C2 and a limited number of
brittle phases will have a negative effect on its anti-wear properties. Some researchers have
proposed that the presence of an amorphous structure with chromium carbides, such as
Cr7C3 and Cr23C6, enhances the cohesiveness of the hard Cr3C2 particles with the binder
phase. As a result, the coating’s ductility and wear resistance are enhanced [24,37].
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3.2. Co Particles’ Effects on Coating Systems’ Mechanical and Tribological Characteristics:
Cr3C2-NiCr/Ductile Cast Iron and Cr3C2-NiCr+Co/Ductile Cast Iron

Micromechanical measurements of the coating systems’ cross-sections (Cr3C2-NiCr/ductile
iron and Cr3C2-NiCr+Co/ductile iron) were analyzed, and the results showed that the
addition of metallic particles significantly decreased the hardness (HIT) of the carbide
coating (Tables 2 and 3). In both the Cr3C2-NiCr and composite coatings (Cr3C2-NiCr+Co),
the maximum microhardness was noted at a depth of around 200 µm from the surface. The
improvements in the coating cohesiveness and strain hardening that occur throughout the
spraying process are responsible for this result. On ductile cast iron, the microhardness of
the Cr3C2-NiCr and (Cr3C2-NiCr+Co) coatings is differentiated; at a depth of 25 µm from
the surface, it is 9.72 ± 2.21 and 7.97 ± 0.76 GPa; at a depth of 200 µm, it is 12.46 ± 2.46
and 10.09 ± 0.51 GPa, respectively; and it then decreases to a value of approximately
7.80 ± 1.65 GPa near the substrate. Additionally, the maximum value of Young’s modulus
is found for the carbide coating with and without metal particles at a depth of 200 µm.
It is significant to notice that the coating free of metal particles has a higher hardness-to-
Young’s-modulus ratio than the composite coating. The material’s increased ability to
withstand strains within an elastic deformation regime without plasticizing is indicated
by this lower ratio. Compared to the coating free of metal particles, the composite coating
notably shows a lower value for the ratio of hardness to its Young’s modulus (H3/E2).
This shows that there is greater resistance to plastic deformation during indentation in the
composite covering. This indicates a more favorable reaction to localized stresses and gives
information about the material’s behavior under concentrated loads. This suggests that in
addition to having a better resistance to plastic deformation, the material also has a higher
degree of elasticity, which can help to reduce some types of wear and failure. The Cr3C2-
NiCr coating’s brittleness is decreased by a localized decrease in hardness brought on by the
doping of the metal particles. The softer Co particles added to the brittle chromium carbide
grains improve the coating’s plastic deformation flexibility. Because of this combined action,
coatings are produced that have a healthy balance between high hardness and flexibility,
making them resistant to fatigue wear and cracking. For the composite coating in the
load range of 5–20 N, there are higher critical fracture toughness coefficient (KIC) values
than for the coating without metallic particles (Figure 11). An important characteristic of
supersonic sprayed coatings is that the initiated cracks in the coating/substrate system’s
cross-section propagate in a direction parallel to the coating/substrate interface [22]. For
the composite coating, the average KIC values in the load range of 5–20 N are between
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7.74 and 3.56 MPa m1/2, and for the coating free of metallic particles, they are between 5.30
and 3.42 MPa m1/2. Due to the coating’s heterogeneous structure, tests of the indentation
fracture toughness (KIC) of the composite coating are characterized by a wider dispersion
of results. The greater plastic deformation capacity of the composite coatings than the
Cr3C2-NiCr coating is indicated by higher KIC values for the composite coatings in the load
range of 5–20 N, shorter cracks, and a higher value in the E/H ratio (the coating becomes
more plastic, and cracking is constrained by the added metallic particles). The NiCr alloy
matrix of the coating is characterized by a higher absorption energy after the addition
of metallic particles, which reduces the growth and propagation of cracks, improving
its fracture toughness and also indicating better cohesion between the lamellae in the
supersonic sprayed coating. Additionally, the lower porosity of the composite coatings
may lead to higher KIC values.

Table 2. Indentation hardness (HIT) and Young’s modulus (EIT) values of Cr3C2-NiCr coating.

Indenter Print Image Measuring
Line

HIT
[GPa]

EIT
[GPa]

Average HIT
[GPa]

Average EIT
[GPa]
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Figure 12 compares the bending test results, with respect to the bending stress–
deflection value, for the systems Cr3C2-NiCr/ductile iron and (Cr3C2-NiCr+Co)/ductile
iron. The maximum bending stress of the Cr3C2-NiCr+Co/ductile cast iron system in-
creased by more than 1.5 times when compared to the Cr3C2-NiCr/ductile cast iron sys-
tem. The highest bending stresses for the (Cr3C2-NiCr+Co)/ductile cast iron and Cr3C2-
NiCr/ductile cast iron systems are 880 ± 12 MPa and 1330 ± 15 MPa, respectively. The
deflection is 0.83 mm for the Cr3C2-NiCr/ductile cast iron system and 1.12 mm for the
composite coating system. These values indicate a deflection followed by a decrease in
stress, leading to system failure. When comparing the resulting curves, it can be observed
that the system with the coating free of metallic particles experiences a 66% decrease in
deflection (reducing to a value of 0.83 mm) and a decrease in the strength parameters of
the bending process. In the absence of Co particles, chromium carbide coatings become
more brittle and tougher, reducing the amount of energy that can be released during plastic
deformation. Crack propagation is accelerated, and the deflection range is reduced due to
the rapidly increasing load.
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NiCr+Co)/ductile cast iron.

Interestingly, despite differences in the linear expansion coefficients between the
substrate and coating, there was no significant loss in strength in any of the studied
coating systems due to internal stresses. The 75Cr3C2-25NiCr coating, with a coefficient
of thermal expansion of 11.10 × 10−6 K−1 [7], similar to that of the iron-based substrate
(13.2 × 10−6 K−1), does not delaminate from the substrate, indicating minimal internal
stresses during spraying, as the coefficients of linear expansion for both the substrate
and coating are very close. Furthermore, there should not be any internal stresses that
could compromise the mechanical durability of the substrate–coating bond because the
substrate’s and coating’s coefficients of linear expansion, denoted as Co (12 × 10−6 K−1),
are extremely close to each other during the spraying process. Additionally, the (Cr3C2-
NiCr+Co)/ductile cast iron system is stronger because fewer stresses are created at the
coating–substrate interface. This is due to the composite coating’s elasticity modulus being
less different from the substrate’s modulus (E = 165 GPa for ductile cast iron) than that
of the coatings without metallic particles is [38]. The sample fractures observed under a
scanning electron microscope following the bending tests (Figure 13) demonstrate that,
in the Cr3C2-NiCr/ductile cast iron system, degradation occurs both along the coating–
substrate interface and within the coating, whereas in the composite coating system, it only
happens along the interface.
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The results of the scratch test, carried out on the coating/substrate systems’ cross-section
with constant loads of 5, 10, 15, and 20 N, are displayed in Figure 14 and Tables 4 and 5. The pro-
jected area cone (Acn) values of the composite coating system are generally lower than those
of the Cr3C2-NiCr/ductile cast iron system, suggesting that the (Cr3C2-NiCr+Co)/ductile
cast iron system possesses a stronger scratch bond strength. Both coating systems exhibit
an interior cone-shaped fracture, indicating cohesive failure within the coating/substrate
system. Cohesive cracks initiate simultaneously in the Cr3C2-NiCr coating at a relatively
low load of 5 N, while in the composite coating, they begin at 10 N. At the highest load of
25 N, significant fractures occur in the Cr3C2-NiCr coating surrounding the scratch, leading
to delamination of the coating from the substrate and adhesive degradation. Since the
composite coating (Cr3C2-NiCr+Co) has good adhesion to the substrate at very high loads
above 20 N (only cohesive cracks form), such catastrophic destruction is not observed for
this coating. The addition of cobalt particles to the coating increases both its ductility and its
resistance to scratching. Specifically, above a contact stress of 15 N, it was demonstrated that
the coating’s metallic particles limited the intender’s penetration depth, making scratching
more difficult (Figure 15). Importantly, the addition of metallic particles to the chromium
carbide powder deflects and prevents microcracks, improving the coating’s adhesion to
the substrate.

Table 4. Average results from scratch bond tests for the investigated coatings.

Coating System Load
[N]

Lx
[µm]

Ly
[µm]

Acn × 10−3

[mm2]

Cr3C2-NiCr/ductile cast iron

5 56.16 71.76 4.03
10 103.37 104.41 10.79
15 200.00 212.50 42.50
20 206.79 242.28 50.10
25 delamination

Cr3C2-NiCr+Co/ductile cast iron

5 51.34 76.33 3.92
10 83.43 104.17 8.69
15 111.36 137.50 15.31
20 141.67 191.65 27.15
25 166.67 316.67 52.78
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Table 5. Percentage of the characteristic forms of failure under constant load (no cracks, cohesive
cracks, adhesive cracks) according to the standard ISO 27307:2015 “Thermal spraying, Evaluation of
adhesion/cohesion of thermal sprayed ceramic coatings by transverse scratch testing” [39].

Coating System Load
[N]

No
Crack

[%]

Cohesive
Crack [%]

Adhesive
Crack [%]

Maximum
Load at
Which

Cohesive
Cracks

Appears

Maximum
Load at
Which

Adhesive
Cracks

Appears

Cr3C2-
NiCr/ductile

cast iron

5 85 15 0 over 5 N
10 70 30 0
15 50 50 0
20 70 30 0
25 0 0 100 delamination

Cr3C2-
NiCr+Co/ductile

cast iron

5 95 5 0
10 90 10 0 over 10 N
15 80 20 0
20 70 30 0
25 60 40 0
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4. Conclusions

The key findings are summarized as follows:
The composite coating (Cr3C2-NiCr+Co) applied by means of the HVOF technique

to ductile cast iron is characterized by low porosity, a compact lamellar structure, and
good adhesion to the substrate. The coating’s microstructure contains relatively large
partially melted Co particles as well as highly fine chromium carbide particles embedded
into nickel–chromium.

The hardness of the composite coating (Cr3C2-NiCr+Co) is lower than that of the
Cr3C2-NiCr coatings. This is mainly attributed to the distribution of Co particles within the
matrix and a decrease in the concentration of the hard carbide phases.

Cobalt was added to chromium-carbide-based coatings to improve their mechanical
properties, such as plasticity and fracture toughness. This enhancement is attributed to
cobalt’s influence on the binding phase, which alters the cohesion and the coating’s ability
to transfer loads efficiently.

The (Cr3C2-NiCr+Co)/ductile cast iron system demonstrates an improved bending
strength and crack resistance, with failures primarily occurring at the coating–substrate
interface due to the high quality and ductility of the coating. In contrast, failures in
the Cr3C2-NiCr/ductile cast iron system are experienced within the coating and along
the interface.

This effectively indicates that the (Cr3C2-NiCr+Co)/ductile cast iron system demon-
strates stronger bonding compared to using only Cr3C2-NiCr on the same substrate. This
improvement occurs because Co particles can inhibit or deflect crack propagation within their
distribution regions, thereby strengthening the bond between the coating and substrate.
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