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Abstract: Undoped and Mg2+-doped β-Ga2O3-20% In2O3 solid solution microcrystalline samples
were synthesized using the high-temperature solid-state chemical reaction method to investigate
the influence of native defects on structural, luminescent, and electrical properties. The synthesis
process involved varying the oxygen partial pressure by synthesizing samples in either an oxygen
or argon atmosphere. X-ray diffraction (XRD) analysis confirmed the monoclinic structure of the
samples with the lattice parameters and unit cell volume fitting well to the general trends of the
(Ga1−xInx)2O3 solid solution series. Broad emission spectra ranging from 1.5 to 3.5 eV were registered
for all samples. Luminescence spectra showed violet, blue, and green emission elementary bands.
The luminescence intensity was found to vary depending on the synthesis atmosphere. An argon
synthesis atmosphere leads to increasing violet luminescence and decreasing green luminescence.
Intense bands at about 4.5 and 5.0 eV and a low-intensity band at 3.3 eV are presented in the excitation
spectra. The electrical conductivity of the samples was also determined depending on the synthesis
atmosphere. The high-resistance samples obtained in an oxygen atmosphere exhibited activation
energy of around 0.98 eV. Samples synthesized in an argon atmosphere demonstrated several orders
of magnitude higher conductivity with an activation energy of 0.15 eV. The results suggest that the
synthesis atmosphere is crucial in determining the luminescent and electrical properties of undoped
β-Ga2O3-In2O3 solid solution samples, offering the potential for various optoelectronic applications.

Keywords: monoclinic Ga2O3-In2O3; crystal structure; luminescence; electrical conductivity; point defects

1. Introduction

In recent years, there has been a growing interest in exploring novel semiconductor
materials that possess improved properties and expand the potential of application in
various technological and scientific areas. Among these materials, a monoclinic gallium
oxide (β-Ga2O3) has attracted significant attention due to its unique physics and technical
characteristics. Gallium oxide is a well-known wide-bandgap semiconductor with remark-
able structural, electronic, optical, luminescent, and thermal properties, making it attractive
for applications in power electronics, optoelectronics, solar applications, sensor technolo-
gies, etc. [1–6]. It exhibits several structural polymorphs including the corundum-like (α),
monoclinic (β), defective spinel (γ), and two variations of orthorhombic structure (ε and
δ) [7]. Among these, the monoclinic phase (β-Ga2O3) stands out as the most common,
being both the most stable and the easiest to obtain under ambient conditions [8–12].
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Solid solutions of monoclinic gallium oxide with aluminum or indium oxide is a well-
known approach for tuning the physical properties ofβ-Ga2O3 over a wide range [13–16]. This
tuning is achieved primarily by modifying the crystal structure and electronic band structure
of the material (see [11,13,17] and references therein). Several recent studies confirm the high
effectiveness of this approach for the enhancement of functional properties of β-Ga2O3-based
semiconductor devices [18–21].

Solid solutions based on gallium oxide exhibit good optical properties, including high
transparency in the visible and ultraviolet spectral regions. The unique combination of
luminescent and electrical properties in β-Ga2O3-In2O3 solid solutions opens new possibil-
ities for energy-efficient lighting. The transparency and tunable wide bandgap make them
potential candidates for optoelectronic devices, such as photodetectors and light-emitting
diodes (LEDs) [4,6]. The surface properties of these solid solutions can be adapted to
enhance their sensitivity for gas molecules, enabling the development of selective and
sensitive gas sensors [3].

As it is known, doping of β-Ga2O3 gallium oxide with a divalent Mg impurity makes it
possible to obtain a high-resistance material [1,22], which is necessary for the manufacture
of power diodes and transistors based on Schottky barriers. At the same time, the ability to
change the band gap when forming β-Ga2O3-In2O3 solid solutions opens up additional
opportunities for creating heterostructures based on these wide-gap semiconductor ma-
terials. However, the influence of the divalent Mg impurity on the electrical, optical, and
luminescent properties of the β-Ga2O3-In2O3 solid solution has not yet been studied.

The technological conditions of the production of gallium oxide and their solid solu-
tions, in particular the atmosphere of synthesis, have a decisive influence on the formation
of intrinsic point defects in the material and in such a way have a strong impact on their
physical properties. Therefore, this study aims to investigate in detail the crystal struc-
ture, photoluminescent properties and electrical conductivity of the β-(Ga1−xInx)2O3 solid
solutions synthesized under oxygen or an inert gas (argon) atmosphere. The study was
performed both for nominally pure and Mg2+-doped β-(Ga1−xInx)2O3 solid solutions syn-
thesized under different gas atmospheres. This approach allowed for a comprehensive
analysis of how the synthesis atmosphere affects the material properties.

2. Experimental Details

Polycrystalline undoped β-(Ga1−xInx)2O3 solid solution was obtained using the high-
temperature solid-state chemical reaction method. The starting materials for this synthesis
were gallium oxide (β-Ga2O3) and indium oxide (In2O3) with a minimum purity grade
of 4N. The initial mixture of solid solution components contained 20% indium oxide
(β-(Ga0.8In0.2)2O3). Some β-(Ga0.8In0.2)2O3 samples were synthesized in a pure oxygen
atmosphere at approximately 1 atm pressure, while others were synthesized under low
oxygen partial pressure (~0.01 atm) conditions using an inert argon gas atmosphere.

The oxide powder mixture was initially mechanically blended in an agate mortar until a
homogeneous mass was achieved. The synthesis samples were obtained as flat tablets with
a diameter of 8 mm and a thickness of 1 mm through mechanical pressing. Subsequently,
the tablets were wrapped in platinum foil and placed in quartz ampoules. These ampoules
and the samples were placed inside an electric furnace and synthesized at 1300 ◦C for 12 h.
Before the synthesis process, the air was removed from the ampoule, and the volume was
filled with the appropriate gas by connecting a cylinder with oxygen or argon. Undoped
β-(Ga0.8In0.2)2O3 ceramic samples synthesized in an oxygen atmosphere exhibited a white
color, while those synthesized in an argon atmosphere were of a bluish color.

XRD studies were performed to analyze the structure of the synthesized solid solution
samples. The materials were characterized using an Aeris benchtop powder diffractometer
(Malvern Panalytical, Worcestershire, UK) equipped with a PIXcel1D strip detector. Experi-
mental diffraction data were collected within a 2θ range of 10 to 105 degrees, with a 2θ step
of 0.01◦, using filtered Cu Kα radiation (λ = 1.54185 Å). To determine the precise values
of the structural parameters, the experimental XRD patterns were subjected to full-profile
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Rietveld refinement using the WinCSD software package with Version 4.19 [23]. This
refinement procedure involved refining the unit cell dimensions, positional and displace-
ment parameters of atoms, profile parameters, texture and corrections for absorption and
instrumental sample shift. Occupancies of atomic sites were refined in a soft mode during
the final refinement stage.

The photoluminescence (PL) and photoluminescence excitation (PLE) spectra were
studied at room temperature using a Solar CM2203 spectrofluorometer. A Hamamatsu
R928 type photomultiplier with a spectral resolution of 1 nm was used to record the spectra.
The PL spectra were corrected for a spectral response of the system. The PLE spectra were
corrected for the xenon lamp emission spectrum.

The electrical conductivity of the studied polycrystalline samples was determined
using the conventional two-probe method. Indium contacts were applied to the tablet
samples on both (front and back) surfaces. Current–voltage characteristics measurements
indicated that indium formed reliable ohmic contacts with high-resistance samples. The
currents measured by an electrometer ranged from 10−3 to 10−14 A.

3. Results
3.1. Phase Composition and Crystal Structure Parameters

XRD examination revealed that as-obtained samples with nominal composition
(Ga0.8In0.2)2O3 adopt a monoclinic structure isotypic with β-Ga2O3. No traces of im-
purity phase(s) were detected in the samples, being further proved by full profile Rietveld
refinement performed in space group C2/m. As a starting model, the atomic coordinates in
β-Ga2O3 structure derived from X-ray single crystal data [24] and standardized according
to Pearson’s Crystal Data were used. Graphical results of Rietveld refinement presented in
Figure 1 demonstrate an excellent agreement between experimental and calculated XRD
patterns for the materials annealed either in oxygen or argon atmospheres. Refined values
of the lattice parameters, fractional coordinates of atoms and their displacement parameters
are collected in Table 1. It was found that the indium atoms in the (Ga1−xInx)2O3 structure
substitute for Ga2 atoms in octahedral positions, whereas the tetrahedral Ga1 sites are
occupied solely with Ga species (see Table 1). For the first time, a supposition that In
resides on the octahedral sites of β-Ga2O3 structure was made in the pioneering work of
Shannon and Prewitt more than 55 years ago [25]. Later on, it was validated by perturbed
angular correlation measurements [26] and confirmed by an analysis of XRD data [27,28].
Finally, the exclusive preference of In3+ ions for octahedral sites was recently proved by
comprehensive structural investigations of (Ga1−xInx)2O3 powders doped with Cr3+ [29]
and co-doped with Cr3+/Ca2+ ions [17].
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Figure 1. Graphical results of Rietveld refinement of the structure of (Ga1−xInx)2O3 samples synthe-
sized in oxygen (a) and argon (b) atmospheres. Experimental XRD patterns (small black circles) are
shown in comparison with a calculated pattern for β-Ga2O3 structure (pink and blue lines). Short
vertical bars indicate the positions of Bragg’s maxima in the β-Ga2O3 structure. The inset shows
polyhedral representations of the structure showing mixed occupancy of octahedra with Ga and In
atoms in (Ga1−xInx)2O3 samples.

Table 1. Lattice parameters, coordinates, and displacement parameters of atoms in monoclinic
structures of β-(Ga1−xInx)2O3 annealed in O2 and Ar atmospheres (SG C2/m, Z = 4).

Lattice Parameters Atoms, Sites x/a y/b z/c Biso/eq, Å2 Occupancy

β-(Ga1−xInx)2O3 in O2; RI = 0.0381, RP = 0.0713

a = 12.4697(2) Å Ga1, 4i 0.09048(10) 0 0.2929(3) 0.82(3) 1.01(1) Ga3+

b = 3.10206(5) Å Ga2, 4i 0.34367(7) 0 0.1885(2) 0.93(3) 0.63(2) Ga3+ + 0.38(2) In3+

c = 5.86855(9) Å O1, 4i 0.1628(4) 0 0.6187(11) 1.1(2) O2−

β = 103.379(1) o O2, 4i 0.1714(4) 0 0.0653(14) 1.6(2) O2−

V = 220.85(1) Å3 O3, 4i 0.5123(4) 0 0.2460(8) 0.7(2) O2−

Texture axis and parameter: [1 0 0] 0.563(5)

β-(Ga1−xInx)2O3 in Ar; RI = 0.0454, RP = 0.0733

a = 12.4886(2) Å Ga1, 4i 0.09041(10) 0 0.2926(3) 0.76(3) 1.00(1) Ga3+

b = 3.10717(6) Å Ga2, 4i 0.34347(7) 0 0.1884(2) 0.78(3) 0.65(2) Ga3+ + 0.35(2) In3+

c = 5.87368(10) Å O1, 4i 0.1629(4) 0 0.6191(12) 1.9(2) O2−

β = 103.337(1) o O2, 4i 0.1707(4) 0 0.0658(13) 1.0(2) O2−

V = 221.78(1) Å3 O3, 4i 0.5137(4) 0 0.2487(9) 1.6(2) O2−

Texture axis and parameter: [1 0 0] 0.584(5)

From the refined site occupancies, the composition of the samples annealed in O2 and
Ar atmospheres can be calculated as Ga1.625In0.375O3 (Ga0.813In0.187)2O3 and Ga1.645In0.355O3
(Ga0.823In0.177)2O3, respectively, which are close to the nominal starting formulae (Ga0.8In0.2)2O3.
Similar sample composition can be evaluated by comparing their unit cell dimensions with the
literature data for β-(Ga1−xInx)2O3 solid solution series, from which the In content (x) in the
samples under present investigation can be estimated as 0.18 (Figure 2).
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Figure 2. Evolution of the lattice parameters and unit cell volume vs. indium content in (Ga1−xInx)2O3

solid solution. Dashed lines represent linear fits performed by [11] for five data sets for the powder
and single crystal (Ga1−xInx)2O3 materials taken from Refs. [25,27,30–32]. Unit cell dimensions of
the nominally pure β-Ga2O3 [33] and two (Ga1−xInx)2O3 samples studied in the present work are
shown by circles and red diamonds, respectively.

Comparative analysis of the refined structural data shows that the lattice parameters
and unit cell volume of the sample synthesized in the argon atmosphere are detectably
higher than those of the oxygen-treated sample. In addition, a detectable difference in the
displacement parameters (Biso) of oxygen atoms in both structures is observed (see Table 1).
Both these observations point to the change in the defect structure and the creation of extra
oxygen vacancies after heat treatment of the material in the Ar atmosphere.

Based on the refined values of the lattice parameters and atomic coordinates, the near-
est interatomic distances in the (Ga1−xInx)2O3 samples annealed in O2 and Ar atmospheres
were calculated (see Table 2). The average metal–oxygen distances inside (Ga/In)O6 octahe-
dra in both (Ga1−xInx)2O3 structures are considerably higher compared with corresponding
values for the parent β-Ga2O3 structure, whereas the average distances inside GaO4 tetra-
hedra remains practically unchanged. This observation additionally proves our conclusion
on the substitution of In ions solely in octahedral positions of β-Ga2O3 structure.
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Table 2. Individual and average interatomic distances (in Å) inside GaO4 tetrahedra and MoO6

octahedra in two (Ga1−xInx)2O3 materials annealed in O2 and Ar atmospheres in comparison with
the parent Ga2O3 structure. Besides individual distances, the average distances inside polyhedra and
their increment are presented as well. M denote the mixture of Ga/In cations in octahedral positions.

Atoms Ga2O3 Ref. [24]
(Ga1−xInx)2O3

Atoms Ga2O3 Ref. [24]
(Ga1−xInx)2O3

in O2 in Ar in O2 in Ar

Ga-O3 (×2) 1.832 1.819(3) 1.812(3) M-O1 (×2) 1.937 1.933(4) 1.934(4)

Ga-O2 1.863 1.850(7) 1.842(7) M-O3 1.936 2.051(5) 2.073(5)

Ga-O1 1.835 1.916(7) 1.923(7) M-O2 2.005 2.102(6) 2.112(6)

M-O2 (×2) 2.074 2.128(5) 2.134(5)

Ga-O4(ave),
increment 1.841 1.851

+0.54%
1.847

+0.33%
MO6(ave),
increment 1.994 2.046

+2.61%
2.054

+3.00%

3.2. Photoluminescent Properties

Luminescence spectra obtained for β-(Ga0.8In0.2)2O3 ceramic samples when excited by
the UV light at 260 nm near the fundamental absorption edge are shown in Figure 3. When
synthesized in an oxygen atmosphere (Figure 3a), the photoluminescence exhibited a broad
spectrum from 1.5 to 3.5 eV, with the emission maximum around 2.63 eV. This complex
luminescence spectrum can be deconvoluted into elementary Gaussian peaks, with maxima
in the violet (3.08 eV), blue (2.74 eV), and green (2.47 eV) spectral regions. Each elementary
luminescence band has a full width at half maximum (FWHM) of approximately 0.4 eV.
Notably, the blue and green luminescence bands were the most prominent in ceramics
syntheses in oxygen.
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Figure 3. Photoluminescence spectra of β-(Ga0.8In0.2)2O3 ceramics synthesized in oxygen (a) and argon
(b) atmospheres. The elementary Gaussian peaks represent green, blue, and violet emission bands.

In the case of the ceramics synthesized in an argon atmosphere (Figure 3b), a decrease in
the overall luminescence intensity was observed, along with a shift of the emission maximum
(~2.9 eV) towards shorter wavelengths. Consequently, reducing the oxygen partial pressure
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in the synthesis atmosphere leads to an increased intensity of the short-wavelength violet
luminescence band and a decreased intensity of the green luminescence band.

Doping with Mg2+ (Figure 4) decreased the integrated luminous intensity by ap-
proximately two times compared to undoped ceramics. The luminescence maximum for
β-(Ga0.8In0.2)2O3:Mg samples synthesized in an oxygen atmosphere is about 2.67 eV. The
broad emission band of the β-(Ga0.8In0.2)2O3:Mg ceramic was also decomposed into the
same elementary Gaussian curves. The β-(Ga0.8In0.2)2O3:Mg ceramic synthesized in argon
(Figure 4b) has a maximum emission at 2.7 eV (459 nm). Synthesis in an argon atmosphere
also increased the relative intensity of the blue and violet luminescence bands.
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Figure 4. Photoluminescence spectra of β-(Ga0.8In0.2)2O3:0.05%Mg ceramics synthesized in oxygen
(a) and argon (b) atmospheres. The elementary Gaussian peaks represent green, blue, and violet
emission bands.

Based on the PL spectra for the two types of synthesized materials, the CIE 1931 chro-
maticity coordinates were estimated (see Figure 5). These coordinates are typically plotted
relative to the CIE standard illuminant D65 (natural white daylight), which has coordinates
(xi = 0.3127, yi = 0.3290) that allow for calculating the color purity (CP).

For β-(Ga0.8In0.2)2O3 solid solution samples synthesized in oxygen, the chromaticity
coordinates were x = 0.1761 and y = 0.2241, which might appear bluish-green or turquoise.
The dominant wavelength coordinates for this sample were xd = 0.0846 and yd = 0.1537,
corresponding to the wavelength 482 nm. On the other hand, for samples synthesized in
an argon atmosphere, the chromaticity coordinates were x = 0.1639 and y = 0.1214, placing
the color at a different point, which appears as a saturated blue. Also, the dominant wave-
length coordinates for this sample were xd = 0.1223 and yd = 0.0625, pointing at 470 nm
(Figure 5a). For samples of a solid solution doped with Mg2+ ions synthesized in oxygen,
the color coordinates were x = 0.085 and y = 0.154, and for samples synthesized in an argon
atmosphere, x = 0.096 and y = 0.122. The dominant coordinates of wavelengths for these
samples corresponded to emission wavelengths of 483 and 476 nm, respectively (Figure 5b).
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(b) ceramics synthesized in oxygen and argon atmospheres.

The CP calculation, which indicates the color saturation or intensity relative to the
specified standard illuminant (xi, yi) and dominant wavelength coordinates (xd, yd), was es-
tablished for both samples. As follows, the CP for the sample β-(Ga0.8In0.2)2O3 synthesized
in an argon atmosphere was relatively high, near 76.6%, while, for the sample synthesized
in oxygen, CP was estimated as 59.2%. The CP for the β-(Ga0.8In0.2)2O3:Mg sample was
slightly lower and amounted to 60.86% and 55.07% for the samples synthesized in argon
and oxygen atmospheres, respectively.

The typical PLE spectra for β-(Ga0.8In0.2)2O3 and β-(Ga0.8In0.2)2O3:Mg solid solutions
synthesized either in oxygen or argon atmospheres are shown in Figure 6. These spectra are
similar in the energy range of 3.0–5.5 eV due to the overlap of the elementary luminescence
bands. Moreover, the excitation spectra of all elementary emission bands reach their
maximum intensity at energies near ~4.5 eV for β-(Ga0.8In0.2)2O3.
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Figure 6. The photoluminescence excitation spectra of the β-(Ga0.8In0.2)2O3 (a) and β-(Ga0.8In0.2)2O3:
0.05%Mg (b) ceramics synthesized in oxygen (black curve) and argon (red curve) atmospheres.

The excitation spectra overlap with the material’s fundamental absorption region
of 4.7–5.5 eV and the transparency region of 2.7–4.5 eV. The low-intensity band at 3.3 eV,
located in the transparency region of the material, has an excitation intensity of approxi-
mately 0.1 from the maximum intensity. It should be noted that these broad luminescence
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excitation bands correlate with the positions of the fundamental absorption edge and
photoconductivity maxima in β-(Ga0.8In0.2)2O3 solid solution single crystals [27]. For β-
(Ga0.8In0.2)2O3 solid solution samples synthesized in an argon atmosphere (Figure 5), a
slight increase in the relative intensity of the excitation bands at about 3.3 and above 4.5 eV
was observed.

For the β-(Ga0.8In0.2)2O3:Mg samples synthesized in an oxygen atmosphere (Figure 6b),
a stronger change in the shape of the luminescence excitation spectrum is observed. The
maximum of the luminescence excitation curve is in the longer wavelength region of the
spectrum. The displacement of the maximum of the integral excitation curve occurred
due to a substantial increase in the intensity of the 4.2 eV band, which becomes the main
luminescence excitation band.

3.3. Electrical Conductivity

Figure 7 shows the temperature dependence of the electrical conductivity of undoped
and Mg-doped β-(Ga0.8In0.2)2O3 solid solution samples. The electrical conductivity of
UID and Mg-doped β-(Ga0.8In0.2)2O3 ceramics, which were synthesized in an oxygen
atmosphere, was relatively low at 295 K. It varied in the range from ~1.2·10−13 Ohm−1·cm−1

for samples doped with Mg2+ to 5·10−12 Ohm−1·cm−1 for UID samples. The activation
energy of electrical conductivity in such high-resistance samples was significant and was
in the energy range of 1.04–1.06 eV.
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(Ga0.8In0.2)2O3:0.05%Mg solid solutions synthesized in oxygen or argon gas atmospheres.

At the same time, for β-(Ga0.8In0.2)2O3 ceramics samples that were synthesized in an
argon atmosphere, the conductivity was much higher and varied greatly depending on
the doping impurity from ~1.3 × 10−10 Ohm−1·cm−1 for samples doped with Mg2+ to
~1.1 × 10−5 Ohm−1·cm−1 for UID samples. The activation energy of electrical conductivity
in such samples was 0.15 and 0.68 eV for UID and Mg-doped β-(Ga0.8In0.2)2O3 samples.
Note that in all cases, the electrical conductivity of β-(Ga0.8In0.2)2O3 samples synthesized in
an argon atmosphere was higher than that of samples synthesized in an oxygen atmosphere.
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4. Discussion

The luminescence spectra of polycrystalline samples of β-(Ga0.8In0.2)2O3 (shown in
Figure 3) resemble the luminescence of pure gallium oxide reported elsewhere [34–39].
Doping with divalent Mg2+ metals did not lead to significant changes in the form of the
luminescence spectrum. Results of the present work suggest that relative intensities of the
elementary luminescence bands are considerably redistributed depending on the synthesis
atmosphere applied. When synthesized in an oxygen atmosphere, the relative intensity of
long-wave luminescence increases. Conversely, synthesis in an atmosphere of inert argon
gas increases the intensity of short-wavelength luminescence bands.

The luminescence of β-(Ga0.8In0.2)2O3 solid solutions can be explained using the mod-
els of luminescence centers proposed previously for gallium oxide [34–39]. In particular, the
violet, blue, and green luminescence occurs due to the radiative recombination of carriers
through DAP (donor–acceptor pairs). However, the elementary luminescence bands in
β-(Ga0.8In0.2)2O3 are shifted towards longer wavelengths with respect to β-Ga2O3, which
is consistent with a decrease in the bandgap of β-Ga2O3 when alloyed with In2O3. Like
gallium oxide, β-(Ga0.8In0.2)2O3 contains background donor impurities (e.g., Si4+, Ge4+,
Sn4+) at a relatively high concentration of around 2–10 ppm. Shallow donors, such as
background impurities of tetravalent metals, interstitial gallium (Gai), or deep donors, such
as oxygen vacancies with two trapped electrons (VO

2+ + 2e), can act as donor components
of DAP. The acceptor component of DAP consists of native acceptor-type defects, such as
gallium vacancies (VGa

3−) and bi-vacancies (VGa
3−-VO

2+) [40,41]. The β-(Ga0.8In0.2)2O3
contains both shallow and deep donors, allowing the DAP luminescence bands to appear
in a wide range of wavelengths from 350 to 500 nm. For example, by the authors [34], the
blue luminescence band has been related to the transitions between deep donors such as
oxygen vacancies (VO) or interstitial Ga (Gai) and deep acceptors such as Ga vacancies
(VGa) or VO-VGa complexes. Violet luminescence in β-(Ga0.8In0.2)2O3 can also occur by
recombining electrons with self-trapped holes or holes localized on defects [42]. Further
studies with a controlled change in the concentration of defects that form the donor and
acceptor levels are required for an unambiguous correlation of emission bands with host
point defects and impurities.

During synthesis in an oxygen atmosphere, the high partial pressure of oxygen in-
creases the energy required to form oxygen vacancies, decreasing their concentration in
such a way. A low partial pressure of oxygen, vice versa, reduces the energy needed to form
oxygen vacancies and increases the energy required to create gallium vacancies. Therefore,
oxygen vacancies become the dominant defects in the ceramics synthesized in the argon
atmosphere. As it was shown above, β-(Ga0.8In0.2)2O3 has a monoclinic structure similar to
β-Ga2O3, where 40% of gallium atoms in octahedral coordination are replaced by indium
atoms (see also Refs. [17,25]). Therefore, similar energy dependencies for forming intrinsic
defects should be observed in both β-Ga2O3 and β-(Ga0.8In0.2)2O3.

The low conductivity of β-(Ga0.8In0.2)2O3 samples synthesized in an oxygen atmo-
sphere suggests that the total concentration of compensating acceptors is comparable to that
of donors. The raw material specification indicates a lower concentration of background
impurity of acceptors than donors. Consequently, samples synthesized in an oxygen
atmosphere have more native acceptors such as gallium vacancies or bi-vacancies, and
their concentration is consistently higher in samples synthesized in oxygen than in those
synthesized in argon.

The acceptors generate energy levels near the top of the valence band, and transitions
from electron-filled acceptor levels to the conduction band give rise to excitation bands. The
excitation band around 4.5 eV may be associated with electronic transitions from native
acceptor defect levels to the conduction band. All undoped solid solution samples exhibit
an excitation band with a peak near 3.3 eV. This band can be attributed to defects that form
during synthesis in an argon atmosphere with a low partial pressure of oxygen, such as oxygen
vacancies. Specifically, it may arise when an electron is excited from an oxygen vacancy to the
conduction zone. However, further research is required to confirm this hypothesis.
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Divalent Mg2+ ions replace Ga3+ ions in the crystal lattice. When doping with Mg2+

impurities, a sufficiently high concentration of positively charged oxygen vacancies VO
2+

is also formed to ensure the electrical neutrality of the material. A high concentration of
VO

2+, in turn, leads to an increase in the probability of the formation of divacancies. The
Mg2+ ions create acceptor levels near the top of the valence band. Transitions of electrons
from the energy levels of compensating acceptors to the conduction zone are manifested
in the excitation bands. The β-(Ga0.8In0.2)2O3:Mg2+ samples synthesized in an oxygen
atmosphere always had very high resistance. In such samples, the concentration of intrinsic
and impurity background donors (Si4+, Sn4+, etc.) is negligible. Therefore, only a part of
the acceptors participates in the compensation, while band–band transitions dominate the
excitation spectrum.

The β-(Ga0.8In0.2)2O3:Mg2+ samples synthesized at low oxygen pressure have a con-
ductivity of ~10−10 Ohm−1·cm−1. The concentration of impurity Mg2+ acceptors is high
and exceeds the concentration of intrinsic acceptors (VGa

3− or VGa
3−-VO

2+); therefore, the
conductivity increased primarily due to additional donors formed during synthesis under
conditions of low oxygen partial pressure. Since the donor concentration increased, more
acceptors can capture electrons. Since the concentration of the Mg2+ dopant is higher than
the concentration of its native acceptor defects, such as VGa

3− or VGa
3−-VO

2+, the intensity
of the impurity excitation band is also higher. Transitions of electrons from Mg2+ acceptor
levels to the conduction band appear as an intense dominant excitation band located in the
transparency region before the fundamental absorption edge at energies of 4.2 eV (295 nm)
for β-(Ga0.8In0.2)2O3:Mg.

5. Conclusions

The synthesis of undoped and Mg2+-doped β-(Ga1−xInx)2O3 solid solutions (x = 0.2) in
different atmospheres allowed us to investigate the effect of the oxygen partial pressure on
native point defects responsible for the material’s properties. The XRD analysis confirmed
the desired monoclinic structure of the samples without any impurity phases. It was
revealed that In atoms in the (Ga1−xInx)2O3 structure substitute for Ga2 atoms in octahedral
positions, whereas the tetrahedral Ga1 sites are occupied solely with Ga species. Moreover,
the XRD data suggest the creation of extra oxygen vacancies in the material synthesized in
the argon atmosphere.

The luminescence spectra of the materials synthesized either in an oxygen or argon
atmosphere exhibited the same broad emission bands in the violet, blue, and green regions;
however, their relative intensities were revealed to be quite different. In particular, the
synthesis in an oxygen atmosphere led to enhanced long-wavelength luminescence and
lower electrical conductivity, likely due to decreased oxygen vacancies and increased gal-
lium vacancies. In contrast, synthesis in an argon atmosphere increased short-wavelength
luminescence and electrical conductivity, suggesting a higher concentration of oxygen
vacancies. The observed luminescence behavior in the studied β-(Ga0.8In0.2)2O3 solid
solutions can be explained by the radiative recombination of carriers through the donor-
acceptor pairs (DAP) like in pristine β-Ga2O3. The conductivity of samples synthesized in
an argon atmosphere is six orders of magnitude higher than those synthesized in an oxygen
atmosphere. The main excitation band at about 5.0 eV also confirms the involvement of
interband transitions in the luminescent behaviour of the materials.

This study highlights the importance of controlling the synthesis atmosphere when
fabricating β-Ga2O3-based solid solutions. The results provide valuable information about
the relationship between native defects, luminescent properties, and electrical conductivity,
which are crucial for understanding the optoelectronic behavior of these materials. The
relatively high color purity of the β-(Ga0.8In0.2)2O3 samples synthesized in an argon atmo-
sphere, together with their high conductivity and intense luminescence, indicate that these
materials are promising for use as blue light sources.
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