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Abstract: The corrosion protection property of three Brij-type surfactants, namely, Brij 35, Brij 56
and Brij 58P, was considered on OLC 45 carbon steel in a 0.5 M H2SO4 medium. The efficacy for
these organic compounds was examined using potentiodynamic polarization and electrochemical
impedance spectroscopy (EIS) methods, scanning electron microscopy (SEM) procedures, and Fourier
transform infrared (FT-IR) spectroscopy. We hypothesized that these surfactants hinder the corrosion
for OLC 45 samples through a protecting mechanism owing to the adsorption of organic molecules
that form an inhibitive film or through the formation of complex oxides. These surfactants exhibited
an appreciable protective effect against OLC 45 corrosion, operating as mixed inhibitors, as could be
demonstrated by their influence on the electrochemical characteristics of the metallic substrates. The
adsorption of surfactants over the substrates zone conformed to the representation of the Langmuir
isotherm. The effect of temperature on the electrochemical comportment of the OLC 45 specimens in
H2SO4 without and with Brij at 800 ppm was examined in the temperature interval of 293 to 333 K.
The negative estimate of thermodynamic attributed as Gibbs free energy of adsorption presented
the spontaneity of the adsorption activity. The investigation with FT-IR and SEM established the
adsorption of Brij and the constitution of the corrosive components on the OLC 45 surface. Electro-
chemical determinations of these surfactants indicated its anticorrosion inhibition performance and
the highest inhibition of 96% was reached when the Brij 35 concentration was at 800 or 1000 ppm,
while for Brij 56 and Brij 58P, the highest inhibition was obtained when their concentrations were 500,
800, or 1000 ppm.

Keywords: corrosion inhibitor; surfactant; electrochemical techniques; OLC 45; SEM; FT-IR

1. Introduction

The corrosion of metals presents a considerable economic and manufacturing preoccu-
pation. Metallic materials have a huge degree of significance for mankind, and have played
a decisive role in a diversity of applications due to their flexible attributes and low cost.
Metals and their alloys represent a wide area utilized in various technological practices,
such as chemical procedures, petroleum manufacturing and purification, industrial ma-
chinery, marine processes and automotive industry, and this has enhanced the exploration
of corrosion inhibition in several aggressive media [1–7]. In many industrial practices, the
substrates of the materials utilized are exposed to extremely corrosive acid, alkali, and
saline environments, which produce (provoke) substantial destruction through corrosion.
Since corrosion is the considerable agent in the deterioration of manufacturing constituents,
many experiments were conducted to discover mechanisms to reduce corrosion and wear
expenses. Protection against the corrosion of these metallic materials can be accomplished
using several techniques, among which the treatment of corrosive environments through
the application of inhibitors is a significant procedure [8–15]. Numerous investigations
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performed for the defense of metals used in technological domains have divulged that
it is a very efficacious and simple application to utilize organic inhibitors to impede the
deterioration of metals in aggressive environments [16–25].

Organic corrosion inhibitors (amines, amides, quaternary salts, pyridines, pyrazoles,
imidazole, benzotriazoles, natural extracts, biomolecules, drugs, and ionic liquids) consti-
tute one of the largest corrosion-examining processes that can greatly diminish the corrosion
speed of metals in corrosive environments, owing to their chemical characteristics occur-
ring from their heteroatoms, such as N, O, S, and P atoms, and their ability to coordinate
efficaciously with the metal substrate through their lone pairs of electrons and the vacant d-
orbital of the iron complex, which places them as a powerful procedure for diminishing the
corrosive action on steel in aggressive solutions [26–32]. The organic substances (inhibitors)
proceed through adsorption on the metal substrate and this adsorption can be favored
by electrostatic attractiveness through charge dividing or chemical adsorption through
back donation of the lone-pair electrons. The adsorption mechanism can be appreciated by
explaining some kinetic and thermodynamic characteristics [33–38].

The efficacy of these inhibitors can be evidenced by the area covered, which is in-
fluenced by the molecule’s geometrical form, electron-donating/retro (back)-donation
functional groups, steric elements, aromatic character, and planarity of construction, etc. In
recent years, the progress of new friendly organic substances (surfactants, plants extract,
polymers) with anticorrosion properties that have ecological, biodegradable, cheap, and
healthy characteristics for active materials represents a large domain of exploration in
the area of anticorrosion protection [39–44]. Surfactants are organic inhibitor molecules
which contain hydrocarbonate chains of diversified lengths and these variations of the
attached alkyl chains can determine a notable impact on the hydrophobicity of a corrosion
inhibitor [45–48]. The extent of the alkyl chains and the existence of π-bonds, including
heteroatoms, execute a huge effect on the adsorption capacity. While the large alkyl chains
can lead to increased hydrophobicity, they can also have an agglomerating effect, which
can induce problems for inhibitor adsorption. Several studies revealed that Brij surfactants
are suitable for a large range of applications including environment depollution [49–53],
protein stabilizers, [54,55] and, more importantly, drug delivery systems (due to their
biocompatibility) [56–59]. Since these expire and become unusable, their further processing
can provide not only economically advantageous solutions for various applications, but
also a way to protect the environment. Therefore, a great way to recycle Brij-containing
expired products seems to be their use as corrosion inhibitors, but, at least to our knowl-
edge, literature regarding their corrosion inhibition features is extremely scarce [60–62].
Consequently, in this work, we explore and compare the inhibitive properties of Brij 35,
Brij 56, and Brij 58P to the corrosion of OLC 45 steel substrates, as these surfactants are
widely used in the aforementioned applications. These Brij surfactants are plant-based
fatty polyoxyethylene ethers derived from lauryl and cetyl alcohols. Brij surfactants are
stable to acids and alkalis beyond the pH domain that ester type emulsifiers can resist.
Hence, Brij is helpful for emulsifying fats and oils in highly acidic or alkaline media. Its
physical properties can be presented as follows: all are waxy solids; Brij 35: CMC 0.08 mM,
HLB 16.9, mp = 43 ◦C, ρ =1.05 g/cm3; Brij 56: CMC 0.035 mM, HLB 12.9, mp = 31 ◦C,
ρ = 0.98 g/cm3; and Brij 58P: CMC 0.075 mM, HLB 15.7, mp = 38 ◦C, ρ =1.01 g/cm3. The
aim of this study was to find new “environmentally friendly” organic compounds suitable
for the corrosion protection of base metals. Another area of interest was the optimization of
the best anticorrosion characteristics for some materials in aggressive environments.

The reason for this research was to explore the corrosion protection performances
of three nonionic Brij-type surfactants (Brij 35, Brij 56, Brij 58P) as corrosion inhibitors
for the protection of OLC 45 in 0.5 M H2SO4 environments. The inhibition capacity
of these Brij surfactants was appraised with electrochemical impedance spectroscopy,
polarization curves, spectroscopy, scanning electron microscopy, and Fourier transform
infrared procedures. Moreover, the effect of the Brij concentration, immersion period, and
temperature on the corrosion protection was investigated.
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2. Experimental
2.1. Materials

In this work, the organic compounds examined included three surfactants: Brij 35
(polyethyleneglycol (23) lauryl ether, C12H26 (CH2CH2O)23OH), Brij 56 (polyethyleneglycol
(10) monocethyl ether, C16H33(CH2CH2O)10OH), and Brij 58P (polyethyleneglycol (20)
hexadecyl ether C16H33 (CH2CH2O)20OH) (Scheme 1) were produced from Sigma-Aldrich
of pure quality (>98%). The 0.5 M H2SO4 aggressive environment was made by diluting
97% H2SO4 (AG, Merck, Darmstadt, Germany) with bidistilled water. The substances were
of reagent grade and utilized as purchased without supplementary purification. An ALJ
120-4 analytical balance (0.1 mg resolution, 0.2 mg reproducibility, and ±0.2 mg linearity,
KERN, Eschenlohe, Germany) was employed for the solutions preparations. Corrosion
determinations were made on OLC 45 substrate with the following composition: C% 0.48,
Si 0.03%, Mn 0.79%, Fe% 98.32, P% 0.02, S% 0.025, Al% 0.027, Ni% 0.05, Cr% 0.06, Cu%
0.18, Sn% 0.012, and As% 0.006. The OLC 45 carbon steel sample was cylindrical in shape
and had an area of 0.5 cm2. This form was preferable as it provided a substantial and
borderless surface. The OLC 45 sample was mechanically abraded with sandpapers of
various sizes (600–4000 grit) to a mirror finish (shine). Next, the OLC 45 samples were
cleaned in benzene until all the greasy residue (fatty remainders) was removed; after that,
the working specimen was rinsed in double-distilled water, dried at ambient temperature,
and positioned in the work cell. All experiments were performed at 25 ◦C in atmospheric
oxygen with non-agitation.
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Scheme 1. The chemical structures of Brij35-CH3(CH2)11(OCH2CH2)23OH, Brij 56-CH3(CH2)15(O
CH2CH2)10OH and Brij 58P-CH3(CH2)15(OCH2CH2)20OH.

2.2. Methods and Instruments

Corrosion determinations were performed with and without some surfactant dosages.
The electrochemical experiments were effectuated on an electrochemical cell with three typ-
ical electrodes: a platinum plate auxiliary electrode, a saturated calomel reference electrode,
and OLC 45 with an area of 0.5 cm2 as the working electrode. The work cell was connected
to a VoltaLab 40 model automatic potentiostat/galvanostat linked to a computer working
VoltaMaster 7.09 software. The electrochemical performance of an OLC 45 specimen in
0.5 M H2SO4 without and with three Brij surfactants was examined by recording anodic and
cathodic potentiodynamic polarization procedures and electrochemical impedance spec-
troscopy determinations. The protective activity was examined using polarization curves
made using potentiodynamic measurements and evaluation of the electrochemical char-
acteristics for OLC 45 samples with and without certain doses of surfactants. Exploration
of Tafel polarization curves was performed through potential translation from cathodic to
anodic potential for OCP (±250 mV OCP) at a scan rating of 2 mV/s. The Tafel branches
of the anodic and cathodic plots were extrapolated at corrosion potential (Ecorr), and the
corrosion current density (icorr) and anodic and cathodic Tafel slopes (ba, bc) were acquired.
All potentials were registered with respect to SCE. Electrochemical impedance spectroscopy
determinations were attained for OCP over the frequency interval of 100,000 Hz to 0.04 Hz
with an AC wave of ±10 mV (peak-to-peak), and the impedance assays were realized at a
rate of 10 points per decade with varying frequency. The measurements were rehearsed
for every sample to achieve a good concordance of the result. (Each determination was
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performed three times to account for reproducibility.) A VoltaLab-PGZ402 (Radiometer
Analytical, France) potentiostat/galvanostat system was utilized in all electrochemical
determinations.

The protective layer of the inhibited sample was measured using a Bruker Optics
Tensor 37 FT-IR spectrometer (with ATR), Ettlingen, Germany in the spectral interval
4000–650 cm−1, to a resolution of 4 cm−1. The morphology of the defensive film of these
Brij-type surfactants on OLC 45 substrate was explored using scanning electron microscopy
and metallographic micrographs using a Hund H660 microscope (Wetzlar, Germany).
Substrate morphology examinations were executed using SEM in a dual-beam FEI Quanta
3D FEG model (Brno, Czech Republic) with an energy-dispersive X-ray (EDX) spectrometer
working in high-vacuum mode with an accelerating voltage of 2 to 30 kV. Bare specimen
preparation involved holding the specimen on double-sided carbon tape without a coating.
Scheme 2 is described below for the investigation and characterization of Brij surfactants as
a protective inhibitor on the substrate of OLC 45 specimen in aggressive environment.
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medium.

3. Results and Discussion
3.1. Electrochemical Studies
3.1.1. Potentiodynamic Polarization Procedures

In this exploration, one of the greatest protection procedures against the corrosion
of OLC 45 substrates in aggressive environments, the use of the organic compounds,
was inspected in terms of corrosion in the anodic or the cathodic process, or both. The
anticorrosive properties of these Brij-type surfactants on the OLC 45 sample were estimated
in 0.5 M H2SO4 using a potentiodynamic polarization practice and EIS. The polarization
curves of uninhibited and inhibited OLC 45 samples in 0.5 M H2SO4 solution are shown in
Figures 1 and 2. The surfaces inhibited by these Brij surfactants revealed a considerable
decrease in the anodic and cathodic current, which led to the diminution in the cathodic
and anodic mechanisms. It was determined that the anodic and cathodic bias curves
distinguished a reduced current density of the Brij surfactants than those considered in
the uninhibited samples. This behaviour disclosed that all the Brij-type surfactants used
had an important action in the anodic and cathodic processes for the electrochemical
procedure. From Figure 1, it can be seen that the anodic metal dissolution and cathodic
hydrogen release procedures were hindered through the introduction of these chemical
compounds into the aggressive solution. The attendance of surfactants Brij 35, Brij 56, and
Brij 58P as corrosion protectors also changed the corrosion potential (Ecorr) to be more
positive compared to the uninhibited sample, revealing that the surfactants possess a
greater influence in the anodic process than the cathodic one.
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Figure 1. Polarization curves of OLC 45 sample in 0.5 M H2SO4 at different concentrations of (a) Brij
35, (b) Brij 56, and (c) Brij 58P at 25 ◦C.
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Electrochemical characteristics, such as the corrosion current density (icorr), cathodic
and anodic Tafel slopes, corrosion potential (Ecorr), and protection efficiency (E%), are
introduced in Tables 1–3. It can be seen in Figure 1 and Tables 1–3 that the addition of Brij35,
Brij 56, and Brij 58P changed the corrosion potential, displacing the Ecorr to become more
positive and remarkably diminishing the inhibited anodic Tafel slopes (ba); the existence
of surfactants manifested an impact on the anodic dissolution action of the metal [17–24].
This case may be assigned to the adsorption of the SO4

2- ions and/or inhibitory molecules
on the anodic active of the OLC 45 zone and the impedance of the obstruction of the anodic
metal dissolution action. Experimental data designated that the corrosion current was
considerably diminished with the concentration of nonionic surfactants Brij 35, Brij 56, and
Brij 58P, and the inhibition efficacy increased. The experiments divulge that the constitution
of the protective layer was adsorbed on the OLC 45 substrate, obstructing the available
active seats (centers).
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Table 1. Kinetic parameters of OLC 45 in 0.5 M H2SO4 at certain concentrations of Brij 35 at 25 ◦C.

Concentration
(ppm)

icorr
(mAcm−2)

Rp
Ωcm−2 Rmpy Pmm/year

Kg

g/m2h
E (%) −Ecorr

(mV)
ba

(mVdec−1)
−bc

(mVdec−1) θ

0 0.721 21 337 8.54 7.66 - 482 82 84 -
20 0.057 105 27.55 0.69 0.49 92 400 40 63 0.92
50 0.056 106 26.13 0.66 0.59 92 402 39 67 0.92
100 0.049 125 22.86 0.58 0.52 93 435 40 71 0.93
300 0.042 130 19.6 0.49 0.44 94 400 41 60 0.94
500 0.041 110 19.13 0.48 0.43 94 403 43 53 0.94
800 0.032 196 14.93 0.38 0.34 95 417 47 72 0.96

1000 0.027 220 12.6 0.32 0.28 97 414 44 55 0.97

Table 2. Kinetic parameters of OLC 45 in 0.5 M H2SO4 at certain concentrations of Brij 56 at 25 ◦C.

Concentration
(ppm)

icorr
(mAcm−2)

Rp
Ωcm−2 Rmpy Pmm/year

Kg

g/m2h
E (%) −Ecorr

(mV)
ba

(mVdec−1)
−bc

(mVdec−1) θ

0 0.721 21 337 8.54 7.66 - 482 82 84 -
20 0.096 164 44.8 1.14 1.01 86 406 51 89 0.86
50 0.0955 156 44.56 1.13 1.01 86 402 65 86 0.86
100 0.047 140 21.93 0.55 0.49 93 405 40 51 0.93
300 0.037 188 17.26 0.43 0.39 94 422 60 68 0.94
500 0.031 160 14.46 0.37 0.33 96 403 43 50 0.96
800 0.023 208 10.73 0.27 0.24 97 402 43 50 0.97

1000 0.029 303 13.53 0.34 0.30 96 429 41 75 0.96

Table 3. Kinetic parameters of OLC 45 in 0.5 M H2SO4 at certain concentrations of Brij 58P at 25 ◦C.

Concentration
(ppm)

icorr
(mAcm−2)

Rp
Ωcm−2 Rmpy Pmm/year

Kg

g/m2h
E (%) −Ecorr

(mV)
ba

(mVdec−1)
−bc

(mVdec−1) θ

0 0.721 21 337 8.54 7.66 - 482 82 84 -
20 0.091 111 51.33 1.30 1.17 85 460 74 85 0.87
50 0.087 118 40.6 1.03 0.92 86 460 41 55 0.88
100 0.057 140 26.6 0.67 0.60 92 402 43 64 0.92
300 0.031 216 14.46 0.37 0.33 95 420 44 66 0.95
500 0.025 195 11.66 0.29 0.26 96 398 42 51 0.96
800 0.022 207 10.26 0.26 0.23 97 387 47 60 0.97

1000 0.028 352 13.06 0.33 0.29 97 460 65 64 0.97

Considering the comparison of the inhibition efficiency and the corrosion speed
(Rmpy, in mil/year; P, in mm/year and Kg, in gm−2h−1) for all surfactants, under the
same circumstances it is evident that Brij 35, Brij 56, and Brij 58P display efficacious
corrosion defense for the OLC 45 substrate in 0.5 M H2SO4. The surfactants show a greater
protective effect against metal corrosion since they have long-chain carbon bonds and
certain adsorption places (oxygen atoms) which cause considerable adsorption onto the
OLC 45 substrate, and they are influenced by the type of donor/acceptor action [31–35,47].
The protective activity was evidenced by the adsorption of the inhibitory molecules on
the active places and/or the formation of corrosion products on the surface of the OLC
45 sample. It can also be observed from Figure 1 and Tables 1–3 that a higher protection
efficacy was obtained for Brij 35/OLC 45 at concentrations of 1000 ppm and 800 ppm;
for Brij 58P/OLC 45 at concentrations of 800 ppm, 1000 ppm, and 500 ppm; and for Brij
56/OLC 45 at concentrations of 800 ppm and 1000 ppm. These surfactants showed the best
inhibition properties for the OLC 45 sample in an acidic environment (0.5 M H2SO4), when
the corrosion current was diminished and the protection performance increased with a
rising surfactant concentration. The corrosion protection efficiency of Brij 35 was very close
to that of Brij 58P, and both were superior to Brij 56. On closer inspection, it appears that
Brij 35 had the highest performance at low concentrations, whereas Brij 58P was superior
at higher concentrations (see Tables 1–3). Most probably, the main reason for this behavior
comes from the size of the polar chain of the surfactant, as at a higher number of oxyethylene
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groups, many active centers for the adsorption processes of these substances should result
in a stronger interaction between the inhibitor and the substrate (see Langmuir isotherm).
This is consistent with the electrochemical measurements (Tables 1–3) which revealed that
Brij 35 (23 oxyethylene groups) had the highest affinity for the OLC 45 substrate, followed
by Brij 58P (20 oxyethylene groups), and ultimately by Brij 56 (10 oxyethylene groups).
Therefore, it appears that at low concentrations the adsorption effect dominates, rendering
Brij 35 the most efficient inhibitor. As the concentration increases and the surface coverage
of the of the substrate becomes saturated, adsorption can no longer play an important role
and the repulsive effect of the non-polar chain becomes prevalent, turning Brij 58P into the
superior corrosion inhibitor (length of alkyl chain of B58P = 16 vs. length of alkyl chain
of B35 = 12). Unsurprisingly, Brij 56 was the least effective corrosion inhibitor among the
ones analyzed, since it neither the highest number of oxyethylene groups nor a longer
alkyl chain (length of C alkyl B56 = 16). Furthermore, the protective performance increased
with the hydrophobic molecule chain length, and, when the surfactant dosage was at a
concentration higher than the critical micelle concentration (CMC) the inhibitory activity of
these Brij-type substances rises rapidly. The appearance of the hydrocarbonate chains of
the Brij that “competitively adsorb” onto the OLC 45 substrate obstructs the active centers
and, as an effect, the SO4

2− (corrosive element) is impeded from offending the OLC 45
substrate, ensuring protection.

3.1.2. Influence of Immersion Time

Using potentiodynamic polarization, the result of a period of increased immersion
(0–192 h) for the corrosion inhibition of these Brij surfactants at an 800 ppm concentration
for the corrosion of OLC 45 in H2SO4 at 25 ◦C was studied. The protective performance
diminished slowly and a slight increase in the corrosion speed with rising immersion
period can be observed in Figure 2. This was due to the deterioration of the inhibitory layer
with the rising immersion period, as a consequence of the transformation in the active zone.
This may have been due to certain defects existing on the inhibitory film that afforded the
entry of the aggressive element (SO4

2−) at the OLC 45/surfactant interface. Additionally,
the constitution of hemimicelles aggregates by the first established surfactant molecules
reduces the substrate covered by the organic substance. The outcome of the inhibition
efficiency of the three Brij surfactants after immersion is depicted in Figure 3. It is clear that
at an immersion time of 120 h, the efficiency of the Brij surfactants was still 80%, which
shows that the nonionic surfactants are long-lasting time-protective inhibitors for OLC
45 in a 0.5 M H2SO4 environment. Consequently, the inhibited substrate can successfully
protect the OLC 45 from corrosion for a long time.

3.1.3. Electrochemical Impedance Spectroscopy (EIS)

The protective activity of three surfactants onto the OLC 45 sample in H2SO4 en-
vironment was explored using electrochemical impedance spectroscopy (EIS). The EIS
determinations detailed the protection effect of Brij surfactants as an anticorrosive protector
of the OLC 45 specimen in aggressive solutions. EIS data provide an evaluation of the
inhibitory property of surfactants through the corrosion protective film. Nyquist diagrams
for the OLC 45 obtained at the interface in the presence and absence of certain amounts of
surfactant are displayed in Figure 4.
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Figure 3. Presentation of the influence of protection efficiency to immersion period for OLC 45 in
0.5 M H2SO4 with Brij 35, Brij 56, and Brij 58P surfactants.

Materials 2024, 17, x FOR PEER REVIEW 11 of 27 
 

 

 

  

0 30 60 90 120 150 180 210 240

0

30

60

90

120

150

180

210

240

-Z
i(o

hm
xc

m
2 )

Zr(ohmxcm2)

   Brij 58P
20ppm
50ppm
100ppm
300ppm
 500ppm
 800ppm
 1000ppm
 0ppm

 
Figure 4. Nyquist diagrams for OLC 45 in 0.5 M H2SO4 medium with some concentrations of Brij 35, 
Brij 56, and Brij 58P at 25 °C. 

It can be seen in Figure 4 that the Nyquist graphs on the OLC 45 specimen indicate a 
small capacitive loop, showing that the “charge transfer” activity was dominated by the 
corrosion operation (action). The Nyquist plots for OLC 45 with surfactants denote a 
capacitive loop that is representative of a charge transfer procedure. Mainly, the capacitive 
loop as established in the Nyquist plots presumes a single constant most probably 
corresponding to the charge transfer reaction of the inhibitory surfactants on the OLC 45 
substrate. Therefore, the sizes of the capacitance loops of the inhibited substrate were 
higher than those of the uninhibited OLC 45 electrode, and the measurements of these 
loops increased with the surfactant dose, suggesting that these Brij surfactants provided 
greater protection results on the OLC 45 specimen in H2SO4. It is noticeable from the 
Nyquist plots that the impedance reaction of the OLC 45 specimen was significantly 
changed through the addition of the Brij surfactants, which indicates that the defensive 
film was confirmed through the presence of Brij 35, Brij 56, and Brij 58P surfactants. From 
Figure 4, it can be seen that the impedance diagrams are not complete semicircles and this 
fact is attributed to the frequency dispersion, mostly due to roughness and 
inhomogeneities in the OLC 45 area [23,31,32,33,34,35,36,37,47]. Figure 4 reveals that the 
capacitance loop diameters at 1000 ppm and 800 ppm for Brij35, at 800 ppm and1000 ppm 
for Brij 56, and at 800 ppm and 1000 ppm for Brij 58P were larger than those in the absence 
of surfactants, suggesting that Brij provides a better protection effect of the sample in 
H2SO4. 

The Bode plots of the OLC 45 sample uninhibited and inhibited using Brij (Figure 5) 
indicate that the impedance modulus, at low frequencies, increased with an increasing 

 

-30 0 30 60 90 120 150 180 210 240
-30

0

30

60

90

120

150

180

210

240

-Z
i(o

hm
xc

m
2 )

Zr(ohmxcm2)

    Brij 35
 20ppm
 50ppm
 100ppm
 300ppm
 500ppm
 800ppm
 1000ppm
 0ppm

 

-30 0 30 60 90 120 150 180 210 240
-30

0

30

60

90

120

150

180

210

240

-Z
i(o

hm
xc

m
2 )

Zr(ohmxcm2)

     Brij 56
20ppm
50ppm
100ppm
300ppm
500ppm
800ppm
1000ppm

Figure 4. Nyquist diagrams for OLC 45 in 0.5 M H2SO4 medium with some concentrations of Brij 35,
Brij 56, and Brij 58P at 25 ◦C.



Materials 2024, 17, 1378 10 of 24

It can be seen in Figure 4 that the Nyquist graphs on the OLC 45 specimen indicate a
small capacitive loop, showing that the “charge transfer” activity was dominated by the
corrosion operation (action). The Nyquist plots for OLC 45 with surfactants denote a capaci-
tive loop that is representative of a charge transfer procedure. Mainly, the capacitive loop as
established in the Nyquist plots presumes a single constant most probably corresponding to
the charge transfer reaction of the inhibitory surfactants on the OLC 45 substrate. Therefore,
the sizes of the capacitance loops of the inhibited substrate were higher than those of the
uninhibited OLC 45 electrode, and the measurements of these loops increased with the
surfactant dose, suggesting that these Brij surfactants provided greater protection results on
the OLC 45 specimen in H2SO4. It is noticeable from the Nyquist plots that the impedance
reaction of the OLC 45 specimen was significantly changed through the addition of the Brij
surfactants, which indicates that the defensive film was confirmed through the presence of
Brij 35, Brij 56, and Brij 58P surfactants. From Figure 4, it can be seen that the impedance
diagrams are not complete semicircles and this fact is attributed to the frequency dispersion,
mostly due to roughness and inhomogeneities in the OLC 45 area [23,31–37,47]. Figure 4
reveals that the capacitance loop diameters at 1000 ppm and 800 ppm for Brij35, at 800 ppm
and1000 ppm for Brij 56, and at 800 ppm and 1000 ppm for Brij 58P were larger than those
in the absence of surfactants, suggesting that Brij provides a better protection effect of the
sample in H2SO4.

The Bode plots of the OLC 45 sample uninhibited and inhibited using Brij (Figure 5)
indicate that the impedance modulus, at low frequencies, increased with an increasing
concentration of these Brij-type inhibitors, displaying that the adsorption of Brij surfactant
molecules raises the corrosion defense of the OLC 45 substrate in an acidic electrolyte. There
is only one time constant in the Bode plots, exemplifying that the permeated solution did
not attain the OLC 45 substrate and no corrosion had prevailed on the substrates [11,12,23].
In Figure 5, it is evident that the OLC 45 specimen only shows one time constant at a phase
angle of 47◦ at medium and low frequencies, indicating an inductive behaviour through
a poor diffusion tendency. The Bode plots from Figure 5 display that the attendance of
nonionic surfactants (Brij 35, Brij 56, Brij 58P) on the phase angle for the logarithm of
frequency manifested a well-defined maximum at a phase angle of 70–80◦, which correlates
with a relaxation time constant that assumes a large capacitive behaviour. In the Bode
plots, the phase angle significantly increased with the Brij surfactants due to obtaining the
defense film over the OLC 45 substrate. As a consequence, under these circumstances, the
inhibited substrates possessed a large capacitive comportment according to the Nyquist
determinations and the results of the potentiodynamic polarization practice. The increase
in Zmod designates a superior inhibitive capability and it is also obvious that Zmod increases
when the concentration of all elaborated surfactants rises. A higher Zmod demonstrates
a higher protection performance. The equivalent electrical circuit of R(QR) displayed
in Figure 6 was utilized to fit the EIS spectra, since only one time constant was evident
in the Bode diagrams. The assessment of the impedance data was established using
suitable results with the corresponding equivalent circuit and several parameters such
as the solution resistance (Rs), the charge transfer resistance (Rct), and the capacitance
of the double layer (Cdl), which have been presented in Tables 4–6. In this study, an
example frequency domain equivalent circuit developed to match and account for the
obtained EIS data was suggested. In this occurrence, Q (CPE), the constant phase element,
was revealed to simulate the non-ideal capacitance behaviour. The CPE was applied to
establish the deformity of the capacitance loop by assigning the heterogeneity of the area
to substrate ruggedness and impurity. The impedance PE can be defined as ZCPE = Y0

−1

(jω)−n, where ZCPE is the impedance of the CPE, ω is the “angular frequency”, “j” is the
“imaginary number” (j2 = −1), Y0 is the corresponding amplitude at a capacitance, and
“n” is the “phase shift”. The “n” rating describes the inhomogeneity state of the substrate
area. A superior rating of “n” is related to a lower degree of rugosity of the substrate
i.n., and the non-homogeneity of the substrate is low. The CPE is the resistance when
n = 0, (Y0 = R), the capacitance when n = 1 (Y0 = C), and the inductance when n = −1
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(Y0 = 1/L), or the Warburg impedance when n = 0.5 (Y0 = W), according to the appreciation
of “n” [11,12,33–37].
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Figure 5. Bode graphs of OLC 45 in 0.5 M H2SO4 at some concentrations of Brij35, Brij 56, and Brij
58P at 25 ◦C.
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Table 4. EIS characteristics of OLC 45 with Brij35 in 0.5 M H2SO4 at 25 ◦C.

Concentration
(ppm)

RS
(ohm.cm2)

Q − Yo
S·s−n·cm−2 Q − n Rct

(ohm × cm2) χ2 E%

0 0.78 0.0065 0.78 18 4.764 × 10−3 -
20 1.96 0.001495 0.85 137 2.347 × 10−3 87
50 2.41 0.001022 0.91 139 8.138 × 10−4 88

100 1.97 0.000181 0.91 178 2.456 × 10−3 90
300 2.52 0.0008204 0.92 179 1.154 × 10−3 90
500 2.2 0.0008469 0.92 187 1.649 × 10−3 91
800 2.04 0.000133 0.92 199 7.275 × 10−4 92

1000 1.18 0.0009295 0.93 251 2.897 × 10−3 93

Table 5. EIS characteristics of OLC 45 with Brij 56 in 0.5 M H2SO4 at 25 ◦C.

Concentration
(ppm)

RS
(ohm.cm2)

Q − Yo
S·s−n·cm−2 Q − n Rct

(ohm × cm2) χ2 E%

0 0.78 0.0065 0.78 18 4.764 ×10−3 -
20 2.81 0.00537 0.89 138 2.274 × 10−3 87
50 2.34 0.00142 0.93 152 2.299 × 10−3 88

100 3.11 0.00167 0.89 163 1.890 × 10−3 89
300 2.12 0.001062 0.92 169 9.114 × 10−4 89
500 2.76 0.000661 0.90 231 8.436 × 10−4 92
800 3.98 0.000591 0.88 233 7.430 × 10−4 92

1000 1.68 0.000176 0.92 241 2.988 × 10−3 93

Table 6. EIS characteristics of OLC 45 with Brij 58P in 0.5 M H2SO4 at 25 ◦C.

Concentration
(ppm)

RS
(ohm.cm2)

Q − Yo
S·s−n·cm−2 Q − n Rct

(ohm × cm2) χ2 E%

0 0.78 0.0065 0.78 18 4.764 × 10−3 -
20 2.15 0.0003376 0.83 117 8.791 × 10−4 85
50 1.93 0.0005022 0.88 121 5.879 × 10−4 86

100 2.37 0.0001274 0.85 125 9.0981 × 10−4 86
300 3.08 0.000625 0.91 139 7.788 × 10−4 87
500 2.11 0.000665 0.90 179 1.117 × 10−3 90
800 1.89 0.0002374 0.92 239 2.153 × 10−3 92
1000 2.19 0.0001626 0.89 243 5.802 × 10−4 93

The EIS tests showed that the charge transfer resistance, Rct, increased and the double
layer capacitance, Cdl, diminished due to the inhibition of OLC 45 substrates with Brij
surfactants. The results establish that with the increase in Rct using the dosage of Brij
surfactants, the protective effect increased considerably, which proves that surfactants
have a considerable anticorrosion impact for the OLC 45. The diminution of Cdl can be
realized by lessening the local dielectric constant and/or increasing the thickness of the
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electrical double layer, due to the fact that surfactant operates through adsorption on the
sample/electrolyte interface. Brij surfactants adsorbed to the surface of OLC 45 samples
and established an inhibitory layer on the OLC 45 surface. By increasing the value of Rct,
the inhibition efficiency also improved. The Nyquist and Bode plots denote that corrosion
activity was obstructed by Brij 35, Brij 56, and Brij 58P surfactants, and that this action was
attained as a “diffusion barrier” and through a charge transfer activity.

3.2. The Influence of Temperature

The impact of temperature on the protection performance of Brij 35, Brij 56, and Brij
58P surfactants at a dosage of 800 ppm for OLC 45 in 0.5 M H2SO4 at temperatures of 298 K,
303 K, 313 K, 323 K, and 333 K was examined with a potentiodynamic polarization practice.
It can be seen that the corrosion speed grew by raising the temperature in the inhibited
and non-inhibited electrolyte. The inhibitory activity of the Brij surfactants decreased with
increasing temperatures, while the protective performance of these surfactants for OLC 45
in a corrosive medium was affected through the surfactant adsorption; however, superior
temperatures caused the desorption of the Brij 35, Brij 56, and Brij 58P inhibitors from the
OLC 45 surface. The modification in corrosion rate as a function of temperature can be
expressed using the Arrhenius relationship and a transition formula [14,15,23,47]:

icorr = A exp
(
−Ea

RT

)

icorr =
RT
Nh

exp
(

∆S∗
a

R

)
exp

(
∆H∗

a
RT

)
where icorr is the rate of procedure, A is a pre-exponential element, Ea is the “apparent
activation energy” of the OLC 45 dissolution mechanism, T is the absolute temperature,
R is the universal gas constant, ∆H∗

a is the “apparent enthalpy of activation”, ∆S∗
a is the

“apparent entropy of activation”, h is the Planck’s constant, and N is the Avogadro number.
Figure 7a represents the Arrhenius graph of the corrosion rate for 1/T for the OLC 45
specimen in 0.5 M H2SO4 with and without the three Brij surfactants. Estimates of Ea
without and with these Brij surfactants were acquired by plotting the corrosion rate for
1/T, wherein straight lines were drawn (Figure 7a), and using the slope of these lines to
determine the activation energy (Table 7). Figure 7b illustrates a plot of the logarithmic
corrosion rate/T for 1/T. The lines were made with a slope of (−∆H*/R) and an intercept of
(ln(R/Nh) (∆S*/R), where from ∆H* and ∆S* a worth was estimated (Table 7). Inspecting
Table 7 and Figure 7 reveals that the Ea ratings were increased with Brij compared to those
which lacked the surfactants, so that the Ea rating can represent the impact of temperature
for protective activity.

Table 7. The values of Ea, ∆H◦, and ∆S◦ for three surfactants on OLC 45 in 0.5 M H2SO4.

Inhibitor Ea (KJ/mol) ∆H◦ (KJ/mol) ∆S◦ (J/mol K)

Brij 35 69 67 −48
Brij 56 52 48 −95

Brij 58P 73 76 −41
H2SO4 42 39 −113

The greater Ea values in the corrosion process with these Brij surfactants highlights the
main protective action of these surfactants. With the adsorption data, it can be considered
we found the chemisorption and physisorption of surfactants on the OLC 45 substrate. The
energy barricade for the corrosion mechanism increased and the surfactant molecules were
adsorbed onto the OLC 45 substrate, which reduced the interaction between the aggressive
environment and the OLC 45 substrate.

The superior value for Ea in the inhibited environment can be explained by the
increases in the thickness for the double layer, which realized the activation energy for
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the corrosion activity. It demonstrates that the diminishment in effectiveness with rising
temperatures can be ascribed to the increased desorption of surfactant molecules from the
substrate of the OLC 45 sample. The positive enthalpy value suggests that the endothermic
aspect of the metal dissolution mechanism and the dissolution procedure of OLC 45 was
diminished by the surfactant and that the dissolution of this sample is complex. The greater
and negative value of ∆S◦ with the surfactant and in its absence divulges that the activated
complex in the rate-setting step determines the association rather than the dissociation step,
implying a diminution in the disorder if the transition from reactant to complex is operated
by acquiring a constant adsorption film of surfactant molecules on the surface of the OLC
45 substrate.
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Figure 7. Arrhenius graph for OLC 45 in 0.5 M H2SO4 in absence and presence of Brij 35, Brij 56, and
Brij 58P at different temperatures.

3.3. Adsorption Isotherm

The adsorption isotherm supplies relevant insight into the interaction for the organic
compound and the sample surface. Furthermore, the higher effectiveness of the surfactant
was a consequence of the adsorption action. It is fully assumed that the adsorption of the
surfactant onto the OLC 45 substrate is the important activity in the defense mechanism. To
estimate the effect of the surfactant concentration for corrosion protection, it was necessary
to fit the rate results to the adsorption equilibrium relationship, in the form of a Langmuir
isotherm type. The excellent connection between the covered substrate and expression of
the isotherm was obtained by applying the Langmuir adsorption isotherm.
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The Langmuir isotherm is significant to consider the adsorption mechanism based on
the following relationship: θ/(1 − θ) = KC, wherein C is the concentration of surfactant, θ is
the degree of coverage on the sample substrate with the surfactant, and K is the adsorption
equilibrium constant. θ is acquired as follows: θ = (icorr – iinh)/icorr, where icorr and iinh are
the corrosion current in 0.5 M H2SO4 without and with the surfactant [23,33–38]. All the
correlation coefficients (R2) being greater than 0.99 (Brij 35 R2 = 0.9998; Brij 56 R2 = 0.9998;
and Brij 58P R2 = 0.9999) revealed that the defense was ascribed for adsorption of these Brij
surfactants to the sample substrate. The practicability of the Langmuir behaviour is often
determined on the grounds that protection involves adsorption. The first action step of the
metal substrate corrosion activity in 0.5 M H2SO4 by surfactants is as follows:

Me + INH↔Me(INH)ads ↔Men+ + ne− + INH. (Me = Fe, INH = Brij 35, Brij 56, Brij 58P)

In the case of an appreciable dose (dosage) of surfactant, a dense and durable film
is formed on the OLC 45 substrate sample that decreases the aggressiveness of the OLC
45 specimen. For this exploration, straight lines were acquired where the concentration
Cinh/θ was plotted versus Cinh with a slope of unity. The linear relationship suggests that
the adsorption of surfactants obeys the Langmuir isotherm (Figure 8). The Kads equilibrium
constant with the adsorption process of these Brij surfactants could be established from
the reciprocal of the intercept and its evaluation is displayed in Table 8. It is evident that
the large values of Kad represent a good adsorption, a superior defense performance of
the Brij surfactants on the OLC 45 substrate in 0.5 M H2SO4, and an intense electrical
interaction of the existing double layer and the adsorbed compounds. The adsorption of
the Brij surfactant especially amended the corrosion resistance status of a metallic material.
The Kads was introduced in the ∆G◦

ads (standard free energy of adsorption) realized by the
following relationship: ln Kads = −

(
∆Go

ads/RT
)
.
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Figure 8. Langmuir plot for Brij 35, Brij 56, and Brij 58P on OLC 45 in 0.5 M H2SO4.
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Table 8. The values of Kads and ∆G◦
ads for the Brij surfactants on OLC 45 in 0.5 M H2SO4.

The System Kads, M−1 ∆G◦
ads KJmol−1 The Adsorption

Brij 35/OLC 45/H2SO4 2.19 × 105 −39.7 Chemisorptions and
physical adsorption

Brij 56/OLC 45/H2SO4 6.3 × 104 −36.7 Chemisorptions and
physical adsorption

Brij 58P/OLC 45/H2SO4 2.14 × 105 −39.6 Chemisorptions and
physical adsorption

The determined worth of ∆G◦
ads is negative and establishes that the adsorption of

Brij surfactant is a spontaneous procedure, and, in addition, the negative values of ∆G◦
ads,

designate the strong interaction of the surfactant molecule on the substrate. The attained
worth of approximately −20 KJmol−1 or less reveals that the electrostatic interaction in the
charged surface of the sample charged most of the electrolyte (physical adsorption), while
those of approximately −40 KJmol−1 or more implied charge sharing or charge allocation
between the substrate OLC 45 and surfactant molecules to constitute a type of coordination
bond (chemisorption, Table 8) [33–39].

3.3.1. Mechanism of Inhibition

The inhibition mechanism can be explained by the determinations, and it has been
confirmed for all the surfactants considered (Brij 35, Brij 56 and Brij 58P) that they obstructed
the corrosion of OLC 45 in 0.5 M H2SO4 through the adsorption of these surfactants at the
substrate/electrolyte interface. Adsorption of these Brij surfactants was achieved using a
physical and chemical adsorption procedure. The adsorption activity was controlled by
some agents, such as the particularity and charge of the substrate, the chemical constitution
and charge of the organic molecules, and the variety of environments. The defense of these
surfactants for the metal substrate from corrosion in 0.5 M H2SO4 was realized through the
series of adsorption zones, molecular dimensions, and the mode of interaction used with the
metal substrate. It can be emphasized that the large size and high molecular magnitude of
a long hydrophobic chain of surfactants can also affect the superior protection performance
of the explored Brij. In the case of these Brij surfactants, the existence of functional groups,
such as heteroatom O, can be active centers for the adsorption processes of these substances.
The O (oxygen) atom has the largest negative charge and it possesses the most considerable
ability to settle on the metal area, and is directly adsorbed onto the metal substrate. The
protection of these surfactants can be performed by several adsorption modes: through
physical adsorption from the negatively charged of the surfactant and/or (SO4

2−), and the
positively charged metal substrate; through the chemical interaction on donor–acceptor π-
electrons of the O donor atoms of the surfactants and the available d-orbital of Fe substrate
atoms; through the large hydrophobic chain of surfactant determined to protect by replacing
the water molecule on the substrate OLC 45 with the tendency of these marked alkyl chains
to a corrosive environment and to obstruct the diffusion of the corrosive ions -SO4

2− from
the electrolyte [23,33–38]. All adsorption categories will diminish the area exhibited to the
corrosive environment, so that damage can be stopped. For the protection procedure of Brij
35 for OLC 45 in a H2SO4 environment, a form of adsorption and inhibition is proposed, as
displayed in Scheme 3 (inhibition mechanisms are suitable for Brij 58P and Brij 56).
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medium.

3.3.2. Comparison of Inhibition Efficiency of Some Nonionic Surfactants with Other
Previously Published Corrosion Surfactants

The protective performance of some nonionic surfactants for carbon steel and other
substrates in 0.5 M H2SO4 was comparable (Table 9), and even better than many surfactants.
Therefore, surfactants with a higher to critical micelle concentration (CMC) will diffuse
out of the bulk water phase and are adsorbed on the interface among carbon steel and the
aggressive environment.

Table 9. Comparison of the inhibition efficiency of Brij surfactants with other formerly published
corrosion inhibitors (surfactants).

Inhibitor Substrate Efficiency References

2,2’-(1-aminoethane-1,2 diyl)bis(1-(2 aminoethyl)-1-dodecyl-4,5-
dihydro-1H-imidazol-1ium)dichloride X-65 steel 88% [9]

Tween 60 OL 37 96% [15]
Tween 80 OL 37 95% [15]
Span 60 OL 37 92% [15]
Span 80 OL 37 96% [15]
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In this exploration, an FT-IR procedure was performed to establish the substantial
absorption bands noticed for Brij 35, Brij 56, and Brij 58P surfactants adsorbed onto an
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OLC 45 substrate through immersion in the aggressive environment. To evaluate the
inhibitory film acquired on the substrate of the OLC 45 sample using Brij surfactants, and
to provide new knowledge about binding on the surface of the OLC 45 specimen, we
explored this using FT-IR plots which are depicted in Figure 9. The considerable bands in
the transmittance spectra of three surfactants: Brij 35, Brij 56, and Brij 58P pure are depicted
in Figure 9A–C.
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Figure 9. FT-IR transmittance plots of Brij 35 (A), Brij 56 (B), Brij 58P (C), 800 ppm Brij 35 (D), 800 ppm
Brij 56 (E), and 800 ppm Brij 58P (F).
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The characteristic peaks in the FT-IR plots of the three pure Brij surfactants are dis-
played in Figure 9A–C and the broad absorption bands between 3500 cm−1 and 3400 cm−1

correspond to an OH group. The peaks around 2900 and 2800 cm−1 are allocated to the
aliphatic of -CH3 and -CH2 “symmetric and asymmetric stretching vibration”, and the
band at 1500 cm−1 is allocated to the C-H stretching vibration (Figure 9A–C). The band
from 1200 to 1300 cm−1 is assigned to C-H bending and the peak at 1100–800 cm−1 is
ascribed to a C-O-C vibration in (CH2CH2O)n (Figure 9A–C). The FT-IR data for the ad-
sorbed defense film procured onto the OLC 45 substrate through immersion in corrosive
environments encompassing an optimal concentration of 800 ppm Brij 35, Brij 56, and
Brij 58P are presented in Figure 9D–F. The peaks displayed at 3282 cm−1, 3299 cm−1, and
3301 cm−1 correlated to O-H stretching. The indicative peaks at 2989 cm−1, 2994 cm−1, and
2991 cm−1 were designated to the aliphatic symmetric stretching vibration of -CH3 and
-CH2. The “absorption bands” placed at approximately 1200 cm−1 were represented in
the “stretching vibration” of the C-O (Figure 9D–F). The peaks revealed at approximately
1090 cm−1, 1080 cm−1, and 1065 cm−1 could be attributed to C-H bending and the bands at
980 cm−1, 971 cm−1, and 963 cm−1 were associated with a C-O-C vibration in (CH2CH2O)n.
The bands noted at 629 cm−1, 624 cm−1, and 621 cm−1 (Brij 35, Brij 56, and Brij 58P) were
considered to correspond with the aliphatic C-H vibration of the CH2 groups. A weak band
can be noticed at 3855 cm−1 (Brij 35), 3835 cm−1 (Brij 56), and 3845 cm−1 (Brij 58P), and it is
supposed that this represents Fe-O bending, in which the direct bond between Fe atoms
and Brij 35, Brij 56, and Brij 58P molecules through O atoms and the small band to 616, 609
and 602 cm-1 are attributed at the Fe-surfactant complex, and the circumstance establishes
that there was chemisorption performed on the OLC 45 substrate. Comparing Figure 9A–F,
it can be supposed that the surfactants Brij 35, Brij 56, and Brij 58P were adsorbed onto
the OLC 45 sample substrate. This fact was confirmed using the Langmuir adsorption
isotherm examinations.

3.5. Surface Investigation using SEM (Scanning Electron Microscopy)

SEM micrographs taken of the immersion of the OLC 45 surface specimen in the 0.5 M
H2SO4 environment in the absence and presence of the 800 ppm Brij 35, Brij 56, and Brij
58P surfactants are displayed in Figure 10. Figure 10a represents the SEM micrographs of
the substrate of OLC 45 sample with immersion in 0.5 M H2SO4 media, indicating that
the OLC 45 substrate was severely deteriorated in the absence of the surfactant. It can
be remarked in Figure 10b–e that with the Brij (Brij 35, Brij 56, and Brij 58P at 800 ppm)
surfactants, the OLC 45 substrate zone presented a superior and improved morphological
substrate compared to that of the uninhibited OLC 45 substrate, showing an appreciable
ability of the surfactants to protect against corrosion. An adsorbed film is presented on the
OLC 45 substrate to produce a diminution in contact (touch) with the OLC 45 specimen
and the aggressive environment, which is liable for the corrosion inhibition [11,40,46–48].
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Figure 10. SEM images of OLC 45 electrode in 0.5 M H2SO4 (a) and with 800 ppm (b) Brij 35 (c), Brij
56 (d), Brij 58P; and after immersion time of 120 h (e) Brij 35 (f), Brij 56 (g), Brij 58P; and (h–j) EDS
plots of the Brij/OLC 45.

The existence of protective films over the OLC 45 substrate was identified in the
component peaks of C, O, Fe, and S in the EDS spectra (Figure 10h–j) [40,46–48]. These
results were in accordance with the FTIR determinations of the inhibited OLC 45. With
immersion times between 0 and 192 h in a 0.5 M H2SO4 solution, an obvious amendment in
the morphology of the protective film substrate was noticed according to the electrochemical
data. This occurrence is shown in Figure 10g–i, which divulge the diffusion of corrosive
ions SO4

2− into the protective film.

4. Conclusions

Three nonionic Brij surfactants with anticorrosion attributes were examined in this
work. The Brij surfactants (Brij 35, Brij 56, and Brij 58P) showed good protection perfor-
mances for OLC 45 substrate in 0.5 M H2SO4, whereas the corrosion current was diminished
and the efficacy raised by increasing the surfactant dosage.

The electrochemical procedure specified that anodic metal oxidation and cathodic
hydrogen release mechanisms are considerably hindered by these Brij surfactants, and
the EIS determinations disclosed that the charge transfer resistance increased with the
surfactant dosage, which shows the accomplishment of a shielding (defensive) layer over
the OLC 45 substrate through the adsorption of surfactant molecules which increased the
protective activity. Consequently, the inhibited substrate could successfully protect the
OLC 45 from corrosion for a long time.

The adsorption of the surfactants Brij 35, Brij 56, and Brij 58P was explored on the
OLC 45 substrate following the Langmuir isotherm and it exhibited chemisorption and
physisorption.

The value of the Gibbs free energy of adsorption was negative, which indicated the
spontaneousness of the adsorption activity.

An exploration and consideration of the substrate with FT-IR, SEM, and EDS facilitated
the realization of an inhibitory film on the metal substrate and showed the defense operation
of the Brij surfactant on the OLC 45 area in a 0.5 M H2SO4 electrolyte.

The corrosion protection efficiency of Brij 35 was very close to that of Brij 58P, and
both were superior to Brij 56. Consequently, Brij 35 had the highest performance for low
concentrations whereas Brij 58P was superior at higher concentrations, and was followed by
Brij 56. The large hydrophobic group of Brij surfactants constitutes a good barrier between
the OLC 45 substrate and an aggressive environment.

In conclusion, the Brij surfactants prevented the offensive of the corrosive factor-
H2SO4- on the OLC 45 substrate and provided protection to the substrate, as they exhibited
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a good adsorption performance, implying a considerable anticorrosive defense ability of
the inhibitory films.
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