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Abstract: Adhesive joints are non-separable connections that are used in numerous ways in vehicle
construction, particularly in buses. The widespread use of adhesive joints makes it necessary to assess
their quality, especially under production conditions. The main goal of this study was to develop a
mathematical model to estimate the width of the adhesive path in a plywood-adhesive-closed-profile
joint based on selected parameters of the ultrasonic surface wave. A digital ultrasonic flaw detector
and Rayleigh wave probes were applied. The test involved evaluating different widths of hybrid
adhesive and two-component epoxy adhesive. The tests were conducted on a steel profile from a
bus construction. The attenuation of the ultrasonic waves on the steel profile (0.026 db/mm) and
the adhesive (0.264 dB/mm) was determined. A one-size-fits-all model for estimating adhesive path
width for specific conditions is proposed.

Keywords: adhesive joints; non-destructive testing; ultrasound; Rayleigh wave

1. Introduction

Testing the reliability of technical objects, including joints, is the subject of many
articles [1–3] and constitutes the basis for improving manufactured machines and vehicles.
One of the objects of reliability research is adhesive joints, widely used in every field of
industry. Adhesives have numerous applications in aerospace, electronics, automotive
and building construction, as well as branches of medicine [4–6]. In addition, adhesives
are used in light industry, such as toys, packaging and books [7]. Due to their properties,
adhesives are widely used for production, as well as repairing machine and equipment
components. Adhesive joints have numerous advantages. The main advantages are the
sealing of the structure and the favorable, uniform distribution of stresses, as well as
the reduction of production costs. The main limitations in the use of adhesive joints, in
particular, are the limited shelf life of adhesives, the need for proper surface preparation,
the difficulty in assessing the quality of the shaped joint and the relatively low resistance
to aging [8]. The strength of an adhesive joint is determined by both the phenomena of
adhesion and cohesion.

A particularly significant share of adhesive joints is observed in the automotive indus-
try [9–11]. These joints are used in numerous applications in the manufacturing stage of
cars, vans, trucks and buses (urban two axle, articulated and tourist buses). In the construc-
tion of passenger vehicles, bonding is used for fixing brake pad linings, joining windows
and elements of the door, engine covers and the body panels. An equally significant share
of adhesives in vehicle construction is observed in the production of buses [12]. During
their construction, in addition to the parts mentioned above in passenger vehicles, the floor
is also bonded to the frame, along with floor carpeting, plating, and side panels to the
vehicle frame. Additionally, the front directional panel cover and rear wall, fuel filler caps
and roof plating are bonded [13,14]. Such extensive use of bonding in the construction of
buses is due to their considerable size and the vibrations generated during operation, which
are well damped by adhesives. Adhesive joints in vehicle construction are often combined
with welded [15], spot welded [16] or shaped joints, such as clinching [9]. Combining
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different joining methods speeds up production and increases the mechanical strength
of the joint. A cross-section of the floor used in a bus construction manufactured using
adhesive bonding is shown in Figure 1.
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Adhesive joints are well known, but widespread use requires the evaluation of their
quality. Quality assessment using destructive and non-destructive methods can be carried
out. The first group of methods of testing adhesive joints are methods that allow us to
determine the quality of the joint, but at the same time cause its destruction. These methods
are relatively well understood and described in the literature [17–19]. The main methods
of destructive evaluation of bonded joints are mechanical strength tests. The most widely
used destructive method of testing adhesive joints is the determination of their shear and
tensile strengths [20]. This group of tests allows the evaluation of both the properties of
the adhesives and the appropriateness of the adhesive technology (surface preparation,
adhesive preparation, conditions for manufacturing the joint and others).

In contrast to destructive methods for evaluating adhesive joints, non-destructive
techniques are utilized. Non-destructive methods used for the estimation of adhesive joints
include—first of all—such methods as visual [21], ultrasonic [22,23], acoustic emission [24]
and thermographic [25], as well as terahertz [26] and synchrotron X-ray technology which
are also widely used in non-destructive testing [27]. Among these methods, ultrasound,
which is based on the phenomenon of the reflection and refraction of waves with frequencies
above 16 kHz, is often used. With regard to the examination technique, one can distinguish
between the echo method and the transmission method. The echo method requires the
use of a single ultrasound transducer, while the transmission method uses two ultrasound
transducers—a transmitting and a receiving one. Ultrasonic testing uses different types of
waves, such as longitudinal waves, transverse waves and plate waves [28,29]. Ultrasound
is used to detect defects in adhesive joints [30], such as kissing bonds [31,32]. Samaitis
et al. [33] conducted tests on aluminum adhesive joints of varying quality (high quality
joints and defective joints with contaminated surfaces). The results of the tests in the form
of a-scan and c-scan images of the longitudinal waves showed that without analysis using
advanced data analysis algorithms, the results of the ultrasonic testing, in the form of
changes in pulse amplitude or ultrasonic wave propagation time, are not sufficient and
give too generalized information about the state of the joint. However, Spytek et al. [34]
demonstrated the feasibility of using guided elastic waves generated by a laser beam to
evaluate adhesive joints. The proposed test method can obtain clear images of layered
joints, which are the basis for determining the quality of the connection. Similar studies
using non-contact ultrasonic wave generation in the joint area were performed by Liu
et al. [35]. The authors demonstrated the feasibility of using the resonant mode to control
metal and adhesive debonding in the tested joint. The results of the ultrasonic guided
wave testing of multilayer joints made of metals and composites are also available, proving
the usefulness of this method in detecting defects in adhesive joints [36]. Bolstad et al.
proposed a system for evaluating the quality of adhesive joints operated under harsh
conditions (high temperature and pressure) [37]. Despite the advantages of this system, it
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is not suitable for verifying adhesive joints made of plywood, adhesive and closed profiles
made of steel.

There is a lack of examples of test results available in the literature that use a surface
(Rayleigh) wave to assess the condition of an adhesive joint. An analysis of recent articles
revealed a knowledge gap in the study of adhesive joints used in bus construction. These
are joints where it is not possible to use standard ultrasonic testing that is described in the
literature (no longitudinal and transverse wave testing of the joint is possible due to the
use of a closed profile and plywood, which does not transmit ultrasonic waves). Therefore,
the authors of this article filled this gap by proposing their own procedure for evaluating
adhesive joints using surface waves. The main scientific objective of the article was to
develop a mathematical model to estimate the width of the adhesive path in a plywood-
adhesive-closed-profile joint based on selected parameters of the ultrasonic Rayleigh wave
propagating along the closed profile through the adhesive joint. The proposed method
allows us to verify the width of the adhesive path, which is important in the case of a lack
of access to the joint. The proposed method and the developed model have important
practical applications and can be used on the bus production line for the quality control of
adhesive joints.

2. Research on Adhesive Joints
2.1. Research Procedure

The experiment consisted of testing the adhesive bond boundary by ultrasonic Rayleigh
waves. A digital ultrasonic apparatus, constant coupling between the ultrasonic head and
different adhesives were used. All this research work was conducted based on the test
procedure shown in Figure 2.
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Figure 2. Research procedure used during the experiment.

The testing procedure begins with the selection of the adhesive, which should meet all
the requirements of bus manufacturers. In this case, two adhesives used at the production
stage of these vehicles were selected—a hybrid adhesive and an epoxy adhesive. In the
next part of the experiment, samples, using materials used in the construction of buses,
were produced. Earlier studies allow us to select an ultrasonic flaw detector and ultrasonic
heads with a specific frequency that will allow the wave to propagate around the perimeter
of the closed profile. In addition, the frequency of the wave and the energy of the ultrasonic
beam must guarantee the passage of the wave through the joint area—the wave must
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not be attenuated in the joint. In the following section, tests were performed to monitor
changes in the attenuation of the ultrasonic wave beam depending on the path width
of the applied adhesive. This facilitated the determination of a mathematical equation
describing the relationship between the attenuation of the Rayleigh wave and the width of
the adhesive path. The width of the adhesive path on a closed profile is very important, as
it determines the strength of the joint, especially when it covers large areas of components
with a relatively small number of places with applied adhesive.

2.2. Materials and Methods

Two different types of adhesives were chosen for the study. Both are used in the
automotive industry. CX80 Poland hybrid adhesive (CX80, Chotow, Poland) and 3M DP
490 epoxy adhesive (3M company, Maplewood, MN, USA) were selected for the research.
The adhesives were applied to steel profiles made of 1.4003 steel. This is a steel with
increased corrosion resistance and is used for bus frames. The use of profiles with different
cross sections from 40 × 30 × 2 mm to 120 × 40 × 4 mm was considered. It was decided to
use the largest profile used for the lower part of the bus frame (120 × 40 × 4 mm) because
it is the most difficult to test under manufacturing conditions. The sample was prepared
according to the dimensions presented in Figure 3 and is shown in Figure 4.
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Adhesive joints used in the construction of buses are not possible to test due to the
strong damping of the materials used in its construction, namely plywood. The upper part
of the joint is plywood, while the lower part has a steel closed profile. Ultrasound will
not be transmitted by the air in the closed profile, and the use of an additional coupling
medium inside the closed profile is costly and difficult to implement. To evaluate such an
adhesive joint, it was decided to use ultrasonic Rayleigh waves. The test setup is shown in
Figure 5.
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The study used surface wave ultrasonic probes with a frequency of 4 MHz and an
8x9 mm transducer (General Electric, Krautkramer, Boston, MA, USA). It was decided
to use such heads because at a frequency of 4 MHz, a relatively low attenuation of the
wave and, at the same time, a high resolution of the ultrasonic signal was obtained. Tests
were also carried out for probes with a frequency of 10 MHz, but at this frequency the
attenuation was so strong that no pulses were obtained on the screen of the ultrasonic flaw
detector. The heads were placed opposite each other. A USM35XS GE (General Electric,
Krautkramer, Boston, MA, USA) digital ultrasonic flaw detector was used in the research.
The measurements of the ultrasonic pulse amplitude were made in different positions
of the ultrasonic heads. The tests were carried out with the following ultrasonic flaw
detector settings:

• Wave velocity 3200 m/s,
• Wave amplification 70 dB,
• P-Delay 27.86 µs
• Probe center 12 mm
• Power level

First, the attenuation of a 4 MHz ultrasonic wave in a steel profile (without adhesive)
was determined. For this purpose, 30 ultrasonic amplitude height measurements were
taken each for different distances between the probes. The measurements were conducted
for distances between the centers of the ultrasonic heads of 75, 125 and 175 mm. The
determination of the attenuation coefficient in the adhesive material was done based on
Equation (1)

α =
20
l
· log

(
H1

H2

)
(1)

where H1, H2 are the percentage height (the amplitude value) of the pulse for two adhesive
widths and l is the difference in distance between probes.

The amplitude of the ultrasonic wave measurements were carried out on the prepared
sample and the results were observed on the screen of an ultrasonic flaw detector. Mea-
surements were taken for various widths of the adhesive layer (from 35 to 60 mm). In the
preliminary tests, the number of repetitions to be performed for one measurement set of
the ultrasonic transducer was determined. For this purpose, 50 measurements were carried
out for one set of the heads and one width of the adhesive.

The gain of the ultrasonic wave was 70 dB. Measurements were taken continuously,
moving both ultrasonic heads along the side surfaces of the steel profile. In preliminary
tests, the measurements were repeated ten times.

The scheme of verification and measurement of the ultrasonic surface wave pulse
amplitude, propagating in the closed profile along the adhesive-steel connection boundary,
is shown in Figure 6.
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Additionally, adhesive hardness measurements were carried out using a Shore hard-
ness tester. Measurements were carried out in various areas of the connections, and
repeated ten times. The hardness of the adhesive was studied to see if it would affect the
attenuation of the ultrasonic waves. Measuring the hardness of the glue will enable the
selection of an ultrasonic model for testing the width of the adhesive path. The hardness
test view is shown in Figure 7.
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3. Results Analysis and Discussion

In the first stage of the research, measurements of the echo amplitude of the ultrasonic
surface waves were made for three different distances between the heads, without applying
an adhesive. The results of these measurements are summarized in Table 1.

Table 1. Compilation of the measurement results to calculate the damping coefficient α.

No Distance
mm

Average Pulse
Height%

Standard
Deviation

Half Confidence
Interval

1 75 75.567 1.116 1.896
2 125 65.233 1.542 2.620
3 175 56.667 1.619 2.751

The results summarized in above table clearly show that the greater the distance
between the ultrasonic heads, the smaller the amplitude of the ultrasonic wave pulse. This
is related to the damping of this wave and the damping coefficient, the value of which was
determined in the next step. The average damping coefficient α for only a steel profile
(without adhesive) was determined, and was equal to 0.026 dB/mm. In the following
part of the research, 50 measurements were performed (results presented in Table 2) and
on their basis, the number of measurements for one position of the ultrasonic heads was
determined (for one width of the adhesive path applied to the closed profile). The number
of measurements was determined based on Equation (2), for a measurement accuracy of
1% of the amplitude height. The determined value was 10 ultrasonic measurements for
each selected width of the adhesive path applied to the closed profile.

n =
t2
0.05·σ
d2 (2)

where n is the number of measurements, σ is the standard deviation, and d is the ex-
pected accuracy.
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Table 2. Results of the preliminary measurements of the ultrasonic Rayleigh wave parameters.

No H [%] No H [%] No H [%] No H [%] No H [%]

1 51 11 51 21 54 31 56 41 52
2 51 12 50 22 53 32 55 42 51
3 49 13 52 23 55 33 53 43 53
4 52 14 51 24 56 34 53 44 53
5 52 15 52 25 52 35 53 45 51
6 50 16 54 26 53 36 55 46 53
7 51 17 52 27 53 37 51 47 55
8 51 18 54 28 53 38 55 48 51
9 53 19 51 29 53 39 54 49 55

10 51 20 53 30 54 40 52 50 50

The results of the adhesive hardness measurements are presented in Table 3. No
significant changes in hardness were found in the area of the tested joints. Nevertheless,
the hardness results of the adhesives are important from the point of view of damping the
ultrasonic wave propagating through the steel-adhesive connection.

Table 3. Hardness measurement results.

Medium Shore Hardness on
the D Scale

Standard
Deviation

Half Confidence
Interval

Hybrid adhesive 55.4 1.066 2.411
Epoxy adhesive 72.8 0.916 2.073

The results of the pulse amplitude’s average value obtained from the flaw detector
screen, taking into account the adhesive path width, are shown in Figure 8. It can be seen
that as the width of the adhesive path changes, the pulse height obtained on the flaw
detector screen decreases.
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The ultrasonic wave damping coefficient at the joint boundary was determined for
both types of adhesives. For both adhesives, the value of the ultrasonic wave damping
coefficient was similar and was about 0.264 dB/mm, which was much higher than the
damping coefficient of the steel profile, where it was equal to 0.026 dB/mm. Taking into
account the test results obtained in the figure above, the relationship (3) and (4) was
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determined. This relationship describes the width of the adhesive path applied to the
closed profile (steel sheet) depending on the amplitude (height) of the ultrasonic Rayleigh
wave pulse.

WH = −0.013X2 + 0.5791X + 54,363 (3)

WE = −0.0336X2 + 1.275X + 91,687 (4)

where X is the pulse height on the ultrasonic flaw detector screen, WH is the hybrid adhesive
path width and WE is the epoxy adhesive path width.

In the next step of the experiment, the determined relationship describing the depen-
dence of the amplitude of the ultrasonic surface wave pulse on the width of the adhesive
path was verified. For this purpose, a sample with different adhesive path widths was
prepared, and is shown in Figure 9. The sample was made from a 120 × 30 × 4 mm steel
profile with a length of 250 mm. This is the kind of profile that is used in the production
of city buses. Hybrid glue was applied in such a way that there was a different width of
the glue path. Then, such plywood as is used for the floor was applied. After the joint was
constituted, measurements were taken using surface wave heads. After the measurements
were completed, the plywood was separated from the glue and the width of the glue path
was measured, which allowed verification of the model. Then, the ultrasonic Rayleigh
wave pulse amplitudes were determined in different places of the sample and the width of
the adhesive path was calculated using Equation (3). The values determined in this way
were compared with the situation presented in Figure 10.
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The average difference between the measurements for the hybrid adhesive and the
values calculated based on the model is 12%. The proposed model is characterized by high
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accuracy in the verification of the width of the adhesive path from about 20 mm to 65 mm,
which corresponds to the amplitude of the pulses on the flaw detector screen, from about
25 to 80 percent of the screen height. To effectively test the adhesive joints of smaller widths,
it is necessary to use ultrasonic heads at a higher frequency, e.g., 8 MHz. To test joints with
an adhesive path width exceeding 65 mm, it is better to use heads with a lower frequency,
e.g., 1 or 2 MHz. The issue of adhesive damping is an important issue, considered from
various aspects. In [38], the damping of adhesives used to protect elements undergoing
machining against vibrations was investigated. These works were carried out for relatively
low vibration frequencies (up to 100 kHz) and it was possible to reduce the unfavorable
vibrations by 58% using polyurethane adhesive. Research was carried out on the influence
of adhesives on the damping of lap-bonded samples [39]. It was found that the attenuation
due to adhesives in the vibrating structures is small and much less than in the case of
adhesive alone. It should not be expected that bonding can be used to increase the damping
of the structure. It should be emphasized that the research included different samples than
in this study. Work in the area of ultrasonic assessment of adhesive joints was also carried
out using ultrasonic guided waves [40]. A relatively low frequency of 500 kHz was used,
and the results of simulation tests were verified with laboratory measurements. The authors
stated that the simulations are consistent with the measurement results. The methods used
by researchers do not enable the testing of connections such as those made on a closed
profile. The test object presented in this article is an object with low susceptibility for
ultrasonic testing. It is difficult, or even impossible, to implement ultrasonic longitudinal
waves. The results of the research confirm that the proposed method will make it possible
to inspect adhesive joints where it has not been possible so far. These are mainly such
objects as the bodies of passenger-carrying vehicles (buses, streetcars, railroad cars), that
is, such objects where the plating is adhered to steel frames. Since the plating and floors
are made from different materials (skeleton, plastic, sheet metal), the proposed inspection
method is particularly relevant. Research on adhesive joints using various ultrasonic waves
is a promising field in materials and industrial engineering [41,42]. However, the use of
the ultrasonic method of transmitting an ultrasonic wave beam was not used, and the
proposed surface wave testing technique facilitates the assessment of the width of the
adhesive path under conditions of limited access to the joint. Research available in the
literature focuses on understanding the impact of various ultrasonic parameters, such as
the frequency and amplitude of the ultrasonic waves, on the assessment of the quality and
strength of an adhesive joint [43]. As a result, the approach used by the authors not only
expands the knowledge about the use of ultrasonic methods in the process of assessing
the quality of adhesive joints, but above all allows for the verification of these joints in
vehicle production conditions. This is an undoubted advantage of the proposed approach
to controlling adhesive connections currently used in manufactured buses.

4. Conclusions

The research results confirmed that ultrasonic Rayleigh waves allow us to determine
the adhesive path regardless of the type of adhesive. A section of a bus floor was tested.
The tests used two different adhesives—a hybrid adhesive and an epoxy adhesive. The tests
were conducted on a 120 × 40 × 4 mm steel profile using ultrasonic surface wave heads.
The study also examined the hardness of the two adhesives, which differed significantly. It
was found that the hardness of the hybrid adhesive was 55 Shore on the D scale, while that
of the two-component epoxy adhesive was 73 Shore on the D scale. It was also verified that
it was possible to detect areas with varying adhesive path widths. The proposed method
can find application where adhesive joints are used to join closed sections.

Directions for further research should include the use of amplitude–frequency analysis
in assessing the width of the adhesive path. Moreover, the authors plan to perform similar
tests not only for different widths but also for different thicknesses of adhesives applied to
the closed profile. As a result, a database of mathematical models will be created that will
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allow us to estimate the surface on which the adhesive was applied in relation to the entire
covering of a different bus body element.
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