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Abstract: The use of biobased flame-retardant (FR) agents for reducing the flammability of polyester/
cotton (T/C) blend fabrics is highly desirable. In this study, a novel and sustainable phosphorus/
nitrogen-containing FR, namely, phytic acid–urea (PA-UR) salt, was synthesized. The PA-UR salt was
further used to enhance the FR performance of T/C fabric through surface modification. We further
explored the potential chemical structure of PA-UR and the surface morphology, thermal stability,
heat release capacity, FR properties, and mode of action of the coated fabric. The coated fabric
achieved self-extinguishing and exhibited an increased limiting oxygen index of 31.8%. Moreover,
the coated T/C blend fabric demonstrated a significantly reduced heat release capacity, indicating a
decreased fire hazard. Thermogravimetric analysis revealed the anticipated decomposition of the
coated T/C blend fabric and a subsequent increase in thermal stability. The burned char residues
also maintained their fiber shape structures, suggesting the presence of condensed FR actions in the
PA-UR-coated T/C blend fabric.

Keywords: polyester/cotton; flame retardant; functional modification; phytate; biomass

1. Introduction

Fire disasters pose a significant threat to daily life due to the widespread use of com-
bustible polymers such as textiles, plastics, and woods. Textiles, in particular, are exten-
sively used in clothing, interior decoration, and industrial packaging. Therefore, the devel-
opment of high-efficiency flame-retardant (FR) agents for textiles is highly desirable [1,2].
Among synthetic and natural fibers, polyester and cotton are the most commonly used.
Polyester/cotton (T/C) blend fabrics are widely utilized in bedding, interior decoration
textiles, and military battle suits due to their combination of comfort, breathability, high
elastic recovery, and wrinkle resistance [3–5].

However, T/C blend textiles possess a low flame retardancy because of the highly
susceptible melting nature of polyester and cellulose fibers. During combustion, cotton
decomposes during the initial stage, providing fuel, while polyester decomposes at higher
temperatures, providing continuous fuel for burning. Moreover, melted polyester tends to
adhere to charred cellulose fibers, providing additional energy and fuel. Consequently, T/C
blend textiles exhibit severe burning behavior due to the “scaffolding effect” [6], resulting
in a high fire risk that limits their application.

To address this issue, many functional modification approaches have been applied
to enhance the FR performance of T/C blend fabrics, considering the characteristics
of polyester and cotton textiles. Commercial FR systems, such as cyclic phosphonate-
based FR compounds for polyester fabrics and Pyrovatex CP for cotton fabrics, can be
used individually or in combination. Recently, the layer-by-layer (LBL) assembly tech-
nique has gained attention for constructing intumescent FR systems for T/C blend fab-
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rics [7]. For instance, poly(allylam- inehydrochloride)/sodium hexametaphosphate [8],
poly(diallydimethylammonium chloride)/poly(acrylic acid)/poly (diallydimethyl- am-
monium chloride)/ammonium polyphosphate (APP) [9], APP/colloidal silica [10], APP/
chitosan [11], and polyethyleneimine/oxidized sodium [12] systems have been employed
to develop FR coatings on T/C blend fabrics through LBL assembly.

With increasingly strict environmental regulations, there has been growing interest in
biobased FR compounds [13,14], such as proteins [15], deoxyribonucleic acid [16], aromatic
tannins [17], chitosan, and lignin [18]. Among these materials, phytic acid (PA), derived
from grains and beans, has gained widespread application in fabricating FR functional
polymeric materials. Moreover, PA has a high phosphorus content and can effectively
catalyze the formation of a physical barrier on material surfaces [19,20]. Additionally, PA
is a suitable anionic candidate for LBL assembly technology because of its high efficiency
in combination with cationic compounds and because it serves as an acid source for intu-
mescent FR systems [21]. LBL counterparts such as chitosan/PA and zirconium phosphate
nanosheets/PA/poly(hexamethylene guanidine hydrochloride) have been used to fabricate
intumescent FR coatings for T/C blend fabrics [22,23]. However, there is a need for more
feasible and effective FR approaches to enhance the FR performance of T/C blend fabrics
using PA.

In this study, an effective P/N-containing FR (PA-UR) was designed and prepared
utilizing PA and urea. The ability of PA molecules to combine different states of nitrogen
increases the amount of nitrogen carried by the PA, thereby enhancing the synergistic
P/N FR effect. We further applied PA-UR to construct an FR coating for T/C blend
fabric. The chemical structure of PA-UR was characterized, and the thermal performance
and heat generation performance of the coated T/C blend fabrics were also investigated.
Additionally, the FR performance and potential mode of action were also explored.

2. Experimental
2.1. Materials

The polyester/cotton (T/C) blend fabric (65T/35C, 100 g/m2) was purchased from
Jinzhou Dongli Textile Co., Ltd., Jinzhou, China. The phytic acid (70% aqueous solution)
was provided by Shanghai Macklin Biochemical Co., Ltd., Shanghai, China. The urea was
provided by Shanghai Biochemical Technology Co., Ltd., Shanghai, China. The dicyan-
diamide, ethanol and ammonia were provided by Chinasun Specialty Products Co., Ltd.,
Changshu, China.

2.2. Preparation of the PA-UR and Coated T/C Blend Fabric

First, PA (0.01 mol, 9.4 g) and urea (0.06 mol, 3.6 g) were mixed together in a three-
necked flask. The reaction was carried out at 80 ◦C for 4 h under magnetic stirring, affording
a viscous, faint yellow product. The solvent was removed using a rotary evaporator. Finally,
the crude product was rinsed several times with ethanol to obtain purified phytic acid–urea
(PA-UR). The pure product was obtained at an 80% yield. The proposed synthetic route is
displayed in Figure 1a.

PA-UR FR solutions at various concentrations (100~500 g/L) were prepared. Their
pH was adjusted to a pH of 6 using ammonia. Dicyandiamide (50 g/L) was added to
the solutions to catalyze the reaction between the ammonium phosphate groups and the
hydroxyl groups of the cellulose fibers (Figure 1b) [24]. First, the T/C blend samples
were immersed in FR solution and heated to 60 ◦C for 30 min, and they were squeezed
through a lab-scale padder. The liquid-carrying capacity of the fabric reached 100 ± 5%.
The squeezed samples were predried at 80 ◦C and baked at 160 ◦C for 3 min. Finally, the
baked samples were washed and dried in air. The weight gain of the coated T/C blend
fabric was determined in accordance with the weight of the coated and uncoated samples.
The T/C blend samples coated with 150 and 300 g/L PA-UR were named T/C-1 and
T/C-2, respectively.
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Figure 1. The potential reaction mechanism between PA and urea (a) and the potential cross-linking 
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using a TM3030 tabletop scanning electron microscope at an accelerating voltage of 15 kV 
(Hitachi High Technologies America, Inc., Schaumburg, IL, USA), and a fiĴed energy dis-
perse spectroscopy (EDS) spectrometer was applied for elemental analysis. 

Thermogravimetry (TG) analysis of the T/C fabric was investigated using the TA 
Q600 SDT thermal analyzer (TA Instruments, New Castle, DE, USA) in both air and nitro-
gen atmospheres. Approximately 5 mg of powder was used, and the mixture was heated 
to 600 °C at a heating rate of 10 °C/min. 

The heat release performance of the coated T/C fabric was evaluated via FTT0001 
pyrolysis combustion flow calorimetry (PCFC) (Fire Testing Technology Ltd., East Grin-
stead, UK) according to ASTM D7309. 

The limiting oxygen index (LOI) and vertical burning test were applied to investigate 
the flammability of the coated T/C samples. The LOI test was conducted using an FTT0080 
oxygen index machine (Fire Testing Technology Ltd., East Grinstead, UK) with reference 
to GB/T 5454-1997 [25]. The vertical flammability was measured using a YG815B auto-
matic vertical flammability cabinet (Ningbo Textile Instrument Factory, Ningbo, Zhejiang, 
China) with reference to the GB/T 5455-2014 standard [26]. The combustion grade was 
evaluated with reference to GB/T 17591-2006 [27]. 

The tensile strength of the T/C blend samples was measured using an Instron 3365 
tester (Illinois Tool Works Inc., High Wycombe, Buckinghamshire, UK) with reference to 
ISO 13934-1-2013 [28]; the measurement was conducted 5 times to obtain an average value. 

  

Figure 1. The potential reaction mechanism between PA and urea (a) and the potential cross-linking
mechanism of PA-UR with cellulose fibers (b).

2.3. Characterizations

The 13C and 31P liquid-state nuclear magnetic resonance (NMR) spectra of the FR
agent were obtained using a Bruker Avance III 400 MHz spectrometer (Bruker BioSpin
GmbH, Rheinstetten, Germany). The attenuated total reflection Fourier transform infrared
(ATR/FT-IR) spectra of the samples were measured by means of a Nicolet iS50 FT-IR
spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA).

The surface morphologies of the T/C blend fabric and char residues were measured
using a TM3030 tabletop scanning electron microscope at an accelerating voltage of 15 kV
(Hitachi High Technologies America, Inc., Schaumburg, IL, USA), and a fitted energy
disperse spectroscopy (EDS) spectrometer was applied for elemental analysis.

Thermogravimetry (TG) analysis of the T/C fabric was investigated using the TA Q600
SDT thermal analyzer (TA Instruments, New Castle, DE, USA) in both air and nitrogen
atmospheres. Approximately 5 mg of powder was used, and the mixture was heated to
600 ◦C at a heating rate of 10 ◦C/min.

The heat release performance of the coated T/C fabric was evaluated via FTT0001 py-
rolysis combustion flow calorimetry (PCFC) (Fire Testing Technology Ltd., East Grinstead,
UK) according to ASTM D7309.

The limiting oxygen index (LOI) and vertical burning test were applied to investigate
the flammability of the coated T/C samples. The LOI test was conducted using an FTT0080
oxygen index machine (Fire Testing Technology Ltd., East Grinstead, UK) with reference to
GB/T 5454-1997 [25]. The vertical flammability was measured using a YG815B automatic
vertical flammability cabinet (Ningbo Textile Instrument Factory, Ningbo, Zhejiang, China)
with reference to the GB/T 5455-2014 standard [26]. The combustion grade was evaluated
with reference to GB/T 17591-2006 [27].

The tensile strength of the T/C blend samples was measured using an Instron 3365
tester (Illinois Tool Works Inc., High Wycombe, Buckinghamshire, UK) with reference to
ISO 13934-1-2013 [28]; the measurement was conducted 5 times to obtain an average value.
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3. Results and Discussion
3.1. NMR and ATR/FT-IR of PA-UR

Figure 1a shows that four types of bonding that would occur between PA and urea,
namely (1) hydrogen bonding, (2) ligand bonding, (3) chemical condensation, and (4) ionic
bonding [29–31]. Figure 2a,b display the 13C and 31P NMR spectra of the synthesized
PA-UR. The peaks at approximately 75.43 and 72.26 ppm in the 13C NMR spectrum should
be assigned to the carbon atoms (C1~C6) of the inositol ring in PA. A weak 13C signal at
161.71 ppm is attributed to the residual urea carbonyl carbons through the hydrogen bonds
with the phosphate roots in the PA-UR. The peaks at 56.85 and 16.21 ppm are assigned to the
carbon atoms of the residual urea carbonyl carbons through the coordination bonds with the
phosphate roots and O-C=O groups [29–31]. The 31P NMR spectrum shows P proton signals
at −0.79, −1.38, and −2.03 ppm, indicating unreacted and reacted phosphate groups in
different environments, which confirms the formation of new phosphate functional groups.
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Figure 2. 13C (a) and 31P (b) NMR spectra and ATR/FT-IR spectra of developed PA-UR (c) and coated
T/C samples (d).

In the FT-IR spectrum of PA (Figure 2c), the stretching of the P=O and P-O groups
occurs at approximately 1147 and 991 cm−1, respectively [32,33]. For the urea spectrum,
the peaks at 3427 and 1672 cm−1 are ascribed to N-H stretching and deformation vibrations,
respectively. The absorptions at 1587 and 1454 cm−1 can be attributed to C=O and C-N
bonds, respectively [34]. However, the spectrum of PA-UR exhibited several different
absorption peaks. Bands at 1147 and 944 cm−1 for the absorption of the P=O and P-O
groups, respectively, are observed. The peak of the N-H groups shifts from 1672 cm−1 to
1708 cm−1 due to the changing environment. These absorption peaks are in good agreement
with the structure of PA-UR (Figure 1a).
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3.2. ATR/FT-IR and the Morphology of the Coated Fabric

As shown in Figure 2d, the changes in the absorption at approximately 3332 and
1672 cm−1 indicate the introduction of N-H groups by the FR coating. Furthermore, the
spectra of the coated T/C blend samples exhibited new absorptions at approximately 1587,
1160, and 1050 cm−1, which correspond to the NH4+, C=O, P=O, and P-O structures in the
PA-UR. This suggested the successful grafting of PA-UR onto the T/C blend fabric.

The surface morphology of the T/C blend fabric was evaluated using SEM (Figure 3).
The uncoated fabric exhibited a clean surface, with regular smooth cylindrical fibers corre-
sponding to the polyester fibers and fibers with slight cracks and dents representing the
cellulose fibers. The coated T/C blend fibers displayed depositions and aggregations of
FR compounds. The T/C-2 sample, with a weight gain of 17.9%, exhibited more robust
depositions than did the T/C-1 sample, with a weight gain of 12.3%. The coated T/C blend
samples also showed free gaps between the adjacent fibers. EDS mapping revealed that P
was evenly distributed on the fibers, in addition to C and O. These results demonstrated
the fine introduction of the FR coating onto the T/C fabric surface. The SEM images and
EDS mapping supported the deposition of the PA-UR compound onto the T/C samples.
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3.3. Thermal Performance

The thermal and thermal-oxidative stabilities of the coated T/C samples were esti-
mated through TG analysis. Figure 4 displays the TG and derivative TG (DTG) curves, and
Table 1 lists the key degradation data, including T5%, Tmax1, Tmax2, Tmax3 (temperature at
5% and the first, second and third maximum weight loss), and the char residues at 600 ◦C.
Three degradation stages were observed for the T/C blend fabric in air, while two degra-
dation stages were observed in nitrogen. The first degradation stage at approximately
288.7 ◦C in air indicates the degradation of cotton fibers, while the second degradation
stage at approximately 324.7 ◦C corresponds to the decomposition of polyester [9,35]. The
coated T/C blend samples exhibited a thermal decomposition similar to that of the pristine
fabric. However, the PA-UR coating accelerated the thermal degradation of the cotton
portion, as suggested by the significantly lowered T5% and decreased Tmax1 values listed in
Table 1. The degradation pathway of the polyester fibers remained unchanged before and
after the FR coating, as indicated by the unchanged Tmax2 value.



Materials 2024, 17, 1346 6 of 12

Materials 2024, 17, 1346 6 of 12 
 

 

It is hypothesized that the degradation of the FR agent in the early stage generated 
phosphoric acid and polyphosphoric acid, which acted as catalysts for the dehydration of 
the cellulose fibers, promoting the generation of a thermally stable char layer. This inhib-
ited the exchange of heat, energy, and fuel between the gaseous and condensed phases, 
leading to the enhanced thermal stability and FR performance of the coated T/C samples. 
The third degradation stage in air can be aĴributed to the thermal-oxidative degradation 
of the carbohydrate polymers at higher temperatures. It was evident that the coated T/C 
blend samples exhibited a higher thermal stability in air, with increased Tmax3 values and 
increased char residue at 600 °C. Furthermore, the thermal degradation of the coated T/C 
samples in nitrogen was similar to that in air, except for the absence of thermal-oxidative 
degradation. 

 
Figure 4. TG and DTG curves of the coated T/C samples under air (a,b) and nitrogen (c,d). 

Table 1. TG parameters of the coated T/C samples under air and nitrogen. 

Samples T5% (°C) Tmax1 (°C) Tmax2 (°C) Tmax3 (°C) Residue at 
600 °C (%) 

Air 
Control 288.7 324.7 404.0 485.2 0.8 
T/C-1 247.8 276.5 405.5 513.6 14.4 
T/C-2 226.5 267.6 402.6 524.8 10.3 

Nitrogen 
Control 329.5 369.8 434.7 — 10.1 
T/C-1 256.9 300.1 427.5 — 25.1 
T/C-2 232.5 283.1 441.6 — 27.8 

Figure 5 clearly demonstrates that the coated T/C blend fabric exhibited earlier car-
bonization before 300 °C than did the pristine fabric. Moreover, it also displayed improved 
thermal stability at higher degradation temperatures, indicating that the FR properties of 
the PA-UR coating on the coated T/C blend fabric were in the condensed phase. 
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Table 1. TG parameters of the coated T/C samples under air and nitrogen.

Samples T5% (◦C) Tmax1 (◦C) Tmax2 (◦C) Tmax3 (◦C) Residue at
600 ◦C (%)

Air
Control 288.7 324.7 404.0 485.2 0.8
T/C-1 247.8 276.5 405.5 513.6 14.4
T/C-2 226.5 267.6 402.6 524.8 10.3

Nitrogen
Control 329.5 369.8 434.7 — 10.1
T/C-1 256.9 300.1 427.5 — 25.1
T/C-2 232.5 283.1 441.6 — 27.8

It is hypothesized that the degradation of the FR agent in the early stage generated
phosphoric acid and polyphosphoric acid, which acted as catalysts for the dehydration
of the cellulose fibers, promoting the generation of a thermally stable char layer. This
inhibited the exchange of heat, energy, and fuel between the gaseous and condensed
phases, leading to the enhanced thermal stability and FR performance of the coated T/C
samples. The third degradation stage in air can be attributed to the thermal-oxidative
degradation of the carbohydrate polymers at higher temperatures. It was evident that
the coated T/C blend samples exhibited a higher thermal stability in air, with increased
Tmax3 values and increased char residue at 600 ◦C. Furthermore, the thermal degradation
of the coated T/C samples in nitrogen was similar to that in air, except for the absence of
thermal-oxidative degradation.

Figure 5 clearly demonstrates that the coated T/C blend fabric exhibited earlier car-
bonization before 300 ◦C than did the pristine fabric. Moreover, it also displayed improved
thermal stability at higher degradation temperatures, indicating that the FR properties of
the PA-UR coating on the coated T/C blend fabric were in the condensed phase.



Materials 2024, 17, 1346 7 of 12Materials 2024, 17, 1346 7 of 12 
 

 

 
Figure 5. Digital images of coated T/C char residues after calcination in a muffle furnace. 

3.4. Heat Release Capacity 
According to Figure 6, the pristine T/C fabric exhibited multiple peaks because of the 

presence of various organic components, which aligned well with the TG analysis. The 
first and second peaks of heat release were observed at 374.2 and 432.9 °C, with peak heat 
release rates (pHRR) of 166.1 and 212.8 W/g, respectively. Upon FR coating, the first heat 
release peak associated with cellulose degradation nearly disappeared. Additionally, the 
coated T/C blend fabric displayed a diminished second heat release peak, with pHRR re-
ductions of 18.9% and 42.3% for T/C-1 and T/C-2, respectively. Similarly, the total heat 
release (THR) also showed a downward trend. 

These findings demonstrated the effective suppression of heat release in the T/C 
blend fabric by the FR coating. This can be aĴributed to the shielding function of the ther-
mal resistance protective layer, which hindered the exchange of energy and combustible 
species between the solid and gaseous phases. The increased residue amount observed in 
the coated T/C blend fabric indicated incomplete combustion, further contributing to the 
inhibition of heat release. Consequently, the coated T/C samples also displayed obviously 
decreased heat emissions. 

 
Figure 6. HRR curves and corresponding parameters of the coated T/C blend fabrics. 

  

Figure 5. Digital images of coated T/C char residues after calcination in a muffle furnace.

3.4. Heat Release Capacity

According to Figure 6, the pristine T/C fabric exhibited multiple peaks because of the
presence of various organic components, which aligned well with the TG analysis. The
first and second peaks of heat release were observed at 374.2 and 432.9 ◦C, with peak heat
release rates (pHRR) of 166.1 and 212.8 W/g, respectively. Upon FR coating, the first heat
release peak associated with cellulose degradation nearly disappeared. Additionally, the
coated T/C blend fabric displayed a diminished second heat release peak, with pHRR
reductions of 18.9% and 42.3% for T/C-1 and T/C-2, respectively. Similarly, the total heat
release (THR) also showed a downward trend.
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These findings demonstrated the effective suppression of heat release in the T/C blend
fabric by the FR coating. This can be attributed to the shielding function of the thermal
resistance protective layer, which hindered the exchange of energy and combustible species
between the solid and gaseous phases. The increased residue amount observed in the
coated T/C blend fabric indicated incomplete combustion, further contributing to the
inhibition of heat release. Consequently, the coated T/C samples also displayed obviously
decreased heat emissions.
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3.5. Flame Retardancy

To evaluate the FR performance of the coated T/C samples, vertical combustion and
LOI tests were conducted. The corresponding results are presented in Figure 7. The pristine
T/C blend fabric exhibited rapid combustion, with complete burnout occurring within 12 s
of ignition. The occurrence of a “scaffolding effect” resulted in the formation of several
melted residues at the boundaries of the device. The LOI of the pristine T/C blend fabric
was low, measuring 17.1%, indicating a high fire hazard. Upon coating with 100 g/L PA-UR,
the T/C blend fabric experienced a weight gain of 7.3% and retained a char residue with a
textile structure (Figure 7b), despite complete combustion occurring.
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The weight gain and FR performance of the coated T/C samples demonstrated an
increasing trend with an increasing FR concentration (Figure 7a). The coated T/C blend
fabric with PA-UR concentrations above 150 g/L exhibited self-extinguishing properties,
with no after-flame or after-glow phenomena. Notably, the T/C-1 and T/C-2 samples,
which experienced weight gains of 12.3% and 17.9%, respectively, achieved lower char
lengths of 11.5 cm and 9.5 cm, meeting the B1 classification criteria. The T/C-1 and T/C-2
samples also exhibited high LOI values of 27.3% and 31.8%, respectively. However, the
pure PA-treated T/C blend fabric burned completely, indicating the low efficiency of the FR
effects on the T/C blend fabric. This confirmed that the coated T/C blend fabric possessed
good flame retardancy, benefitting from the synergistic FR action of the phosphorous and
nitrogen in the PA-UR [36].

Furthermore, it is important to note that the coated T/C sample T/C-2 exhibited
complete combustion after 15 launderings, suggesting an unsatisfactory washing durability
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compared to that reported in previous studies. As reported, sufficient cross-linking of
ammonium phosphate FR agents with cotton fibers adversely affects the tensile strength
of cotton fabrics [24]. In comparison, the current coated T/C blend fabric had a lesser
impacted tensile strength (Figure 8), likely because of the lower cellulose content and
inadequate cross-linking between the PA-UR and T/C samples.
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3.6. Char Residue Analyses

As mentioned previously, the uncoated T/C sample exhibited intense burning due to
the “scaffolding effect” of the polyester and cotton components. Consequently, the melted
residues exhibited a matte surface with several holes (Figure 9), possibly arising from the
nonuniform combustion of the cellulose and polyester. Interestingly, for the coated T/C
blend samples, fiber shapes were observed on the burned samples, albeit with significant
shrinkage. Additionally, the coated T/C blend samples exhibited intumescent char and
inflated bubbles, which may serve as protective barriers to hinder the exchange of heat,
fuel, and oxygen. This finding aligns with the self-extinguishing behavior observed in the
coated T/C blend fabric.
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Furthermore, EDS mapping revealed that P was finely dispersed on the char residues
of the coated T/C blend fabric. Moreover, the T/C char residues exhibited an increased
P content compared to the coated T/C samples. Specifically, the P contents of the T/C-1
and T/C-2 samples were 2.2% and 3.8%, respectively. However, the P contents of their
corresponding char residues increased to 5.1% and 7.3%, respectively. This suggested that
the P element primarily functioned during combustion and then remained in the condensed
phase. The PA-UR coating effectively reduced the flammability of the T/C blend fabric
through its condensed phase action.

4. Conclusions

This study developed an eco-friendly and effective FR coating, PA-UR, to enhance the
FR performance of T/C blend fabrics. The chemical structure of the PA-UR was confirmed
using 13C and 31P NMR and ATR/FT-IR analyses. Increasing the concentration of the FR
coating resulted in greater weight gain and improved the FR ability of the coated T/C
samples. The LOI values of the coated T/C samples exceeded 27.3%, and they exhibited
a self-extinguishing ability at a weight gain of 12.3%. These results demonstrated the
excellent FR efficiency of the PA-UR coating on the T/C blend fabric. Moreover, the
FR coating significantly inhibited the heat release ability of the fabric. The coated T/C
samples exhibited advanced thermal degradation at a lower temperature but greater
thermal resistance at subsequent decomposition stages. This can be attributed to the early
degradation of the PA-UR, which formed P-containing compounds that promoted the
dehydration and carbonization of the T/C blend samples. The FR mechanism of PA-UR
mainly involved a condensed FR mechanism, taking advantage of the synergistic effect of P
and N. The FR coating displayed a slight influence on the tensile strength of the T/C blend
fabric, indicating that PA-UR had a low degree of grafting onto a T/C blend fabric with low
cellulose contents. Unfortunately, this also resulted in the poor laundering durability of the
coated T/C samples. Further research is ongoing to enhance the laundering resistance of
PA-based FR approaches to T/C blend fabrics to expand their potential application fields.
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