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Abstract: In this study, a new structure is proposed based on the body-centered cubic (BCC) lattice
structure by adding a cubic truss in the center of the BCC structure and denoting it TLC (truss–lattice–
cube). The different dimensions of the central cube can notably affect the mechanical properties
of the lattice structure. With a fixed length (15 mm) of a unit cell, the optimal size for the central
cube is determined to be 5 mm. Quasi-static compressive tests are performed on specimens made
of polylactic acid (PLA) using additive manufacturing technology. The deformation characteristics
of the new structure are analyzed in detail by experiments and numerical simulations. Compared
to the BCC structure, the mechanical properties of the TLC structure were significantly improved.
The initial flow stress of the TLC increased by 122% at a strain of 0.1; the specific strength enhanced
by 293% at a strain of 0.5; and the specific energy absorption improved by 312% at a strain of 0.6.
Printing defects in the lattice structure may remarkably damage its mechanical properties. In this
work, incorporation of microcracks into the finite element model allows the simulation to capture the
influence of printing defects and significantly improve the predictive accuracy of the simulation.

Keywords: lattice structure; energy absorption; additive manufacturing; printing defects; finite
element model

1. Introduction

Lattice structures with excellent specific stiffness, specific strength, and energy absorp-
tion capability are widely used in the aerospace, transportation, and biomedical industries
for load bearing, impact mitigation, and energy absorption [1–6]. With the development of
additive manufacturing technology, lattice structures with multi-scale and complex cell
topology can be fabricated, facilitating designs for special requirements and expanding
property modulation within design [7,8]. The cell topologies of lattice structures in na-
ture are usually irregular and the shape of their single cells is random. Therefore, the
performance of these structures in load bearing and energy absorption is unsatisfactory. To
improve the mechanical properties of lattice structures, many efforts have been made to
design structures with periodic and regular cell topologies [9–12].

Recently, studies on improving the mechanical properties of BCC lattice structures
have increased in number. These include structures composed of different density gradient
topologies [13–19], hybrid lattice structures composed of different cell topologies [20–22],
structures formed by struts with varying cross-sections [23–28], structures with arc-shaped
struts [29,30], and node-strengthened structures [28,31–33]. Chen et al. [23] replaced the
struts of a BCC structure with shells. The new structure relieved the stress concentration
at the nodes and exhibited high specific energy absorption. For structures with a relative
density of ~10%, the relative elastic modulus increased by 2.4 times, and the relative com-
pressive strength increased by 5.4 times compared to a BCC lattice structure. Yang et al. [13]
studied BCC structures with different densities and topologies. The study showed that
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gradient-type BCC structures had stable connections, high modularity and strength at small
strains, and layer-by-layer strengthening characteristics at large strains. Bai et al. [29] pro-
posed a curved strut structure with BCC struts in the shape of a circular arc or ellipse. This
structure changed the stress distribution of the original structure and effectively relieved
the stress concentration at the nodes. Ma et al. [34] proposed a mechanical design strategy,
and they applied this method to study BCC lattice structures with an optimized node
radius. Sun et al. [35] designed a lattice structure (Y structure) with a negative Poisson’s
ratio based on the bionic principle, inspired by grapefruit peel. Meanwhile, the Y structure
was mixed with the BCC structure in three ways to simplify the overall lattice structure.
Zhao et al. [24] designed BCC structures composed of hollow struts and investigated the
mechanical properties with different internal hollow parameters under periodic boundary
conditions. When the internal hollow size increased, the elastic modulus of the hollow
strut BCC lattice structure increased significantly, and its deformation modes gradually
changed from bending-dominated to stretch-dominated. According to Maxwell’s crite-
rion [36], the struts of the lattice structure are usually divided into bending-dominated
and stretch-dominated deformations. The bending-dominated structures have a relatively
higher specific energy absorption, while the stretch-dominated structures exhibit a higher
yield strength because they are directly subjected to tension or compression. Therefore,
stretch-dominated lattice structures are mainly used for load bearing in structural appli-
cations. In this study, a new lattice structure is proposed by adding a central cube to the
BCC structure.

Because of the limitations of additive manufacturing, 3D-printed lattice structures
usually include defects such as cracks and micro-porosity in struts [37–42]. Furthermore,
printed struts with different tilt angles in the structure can exhibit different mechanical
properties [43]. Both of these factors can negatively affect the mechanical performance of
the structure. When establishing finite element (FE) models of lattice structures for studying
their mechanical properties, the influence of fabrication defects cannot be neglected. Bill
et al. [42] pointed out that current computational models for lattice structures based on
the FE method often use idealized CAD geometry. The printing defects that commonly
occur during additive manufacturing are usually neglected. Such computational models
are oversimplified. To overcome this limitation, they incorporated geometric defects (i.e.,
variation in cross-sectional geometry along the strut length or the ‘waviness’ of the strut)
into the struts, and this improved the model’s predictive accuracy. Sun et al. [43] tested the
tensile mechanical properties of struts printed in 0◦ and 45◦ and assigned these different
material properties to struts with varied inclination directions in the lattice structure.
The FE model with angle-dependent material properties showed significantly improved
predictive accuracy compared to the model with uniform material properties. Alghamdi
et al. [44] presented a method to quantify the geometry of as-manufactured lattice structures
from microscope images, which showed noticeable deviation from an idealized lattice
structure. Based on this approach, the generated FE model could give a good prediction of
simulation. Considering the complex topology of lattice structures, a simplification method
for modeling lattice structures is discussed in [45]. Amirpour et al. [46] studied the influence
of material overlapping (i.e., one type of printing defect) at the nodes on the mechanical
properties of polymeric lattice structures. The result showed that the effect of material
overlapping was significant for lattices with large-aspect-ratio unit cells. Cao et al. [47]
investigated the mechanical response of lattice structures with random geometric defects
(i.e., strut porosity, strut thickness variation, and strut corrugation) induced during the
additive manufacturing process. The morphology and distribution of 3D printing-induced
defects were captured using X-ray computed tomography (XCT) and introduced into the
FE model. Better agreement was observed between the predicted results of the FE model
and the experimental results.

Using XCT to study the influence of printed defects on the mechanical properties of
lattice structures is an efficient and direct method currently available to us [48–53]. However,
it cannot precisely capture defects in lattice specimens prepared from polymeric materials.
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In response to the problem of fabrication defects affecting the mechanical properties of
polymer lattice structures, this study proposes the incorporation of microcracks observed
in the printed specimens into the FE model, along with a material damage model.

This work proposes a new lattice structure by adding a cubic truss in the center of
the BCC structure and aims to improve mechanical properties through a combination of
vertical struts (stretch-dominated) and inclined struts (bending-dominated) in a single cell.
The optimal size of the central cubic truss is investigated at first. The mechanical properties
of the 4 × 4 × 4 lattice structure are studied in detail with an optimally sized central cubic
truss. Furthermore, the influence of printing defects on the mechanical properties of the
lattice structure is explored numerically by proposing a FE model with incorporation of
microcracks at the nodes of the structure.

2. Experiments

In this section, a new lattice structure is proposed by adding a cube to BCC structure.
The method of fabrication and geometrical parameters of specimens are given. Mean-
while, the experimental procedures and relevant properties are introduced, including
energy absorption, bending strength of struts, and deflection of the vertical struts of the
central truss.

2.1. Design of Lattice Structures

The body-centered cubic (BCC) structure is a typical lattice structure dominated by
bending [31], as shown in Figure 1a, which consists of eight struts up and down with
equal length and diameter. The BCC lattice structure exhibits an excellent post-yield stress
plateau under compressive loading, which enables the structure to possess a high energy
absorption efficiency. However, the low bearing capacity of struts in the BCC structure
leads to a low stress level, which limits its energy absorption capacity and specific strength.
In order to design a new lattice structure possessing a stable stress level similar to the BCC
lattice structure and a higher energy absorption capacity, the center node of the BCC lattice
is replaced by a cubic truss, as shown in Figure 1b. Four vertical struts are added to the
new structure for directly resisting axial compression. The aim of this is to increase the
yield strength and flow stress level of the new structure. Meanwhile, the energy absorption
capacity can be improved. The proposed structure is denoted TLC (truss–lattice–cube), as
shown in Figure 1c. The dimension of a single cell is 15 mm and the diameter of all struts
is 2 mm. It is evident that different lengths of the central cubic truss in the TLC lattice
structure will exhibit different mechanical properties. The optimal size of the cubic truss
is analyzed by experimental tests and numerical simulations, the details of which will be
discussed in Section 4.1.
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Table 1 shows the key parameters of the BCC and TLC structures. The relative density
in Table 1 is the ratio of the lattice volume (obtained from Solidworks (2018) (Dassault
Systemes, MA, USA)) to the apparent volume of the lattice structure. Here, the apparent
volume refers to the sum of the solid volume and the closed pore volume of the lattice
structure. Apparent density is the ratio of the actual mass (obtained from electronic balance,
HZK-JA210S (Fuzhou Huazhi, Fuzhou, China)) of the lattice structure to the apparent
volume. The theoretical mass of the lattice structures is obtained using Cura 4.8.0 software
(along with UltimakerS5 (Ultimaker Holding B.V., Geldermalsen, The Netherlands)).

Table 1. Geometrical parameters of the PolyMaxTM (Polymaker, Changshu, China) PLA lattice structures.

Structure Volume Theoretical Mass Actual Mass Relative Density Apparent
Density

BCC 18.37 cm3 21.70 g 21.55 g 0.0850 0.0998
TLC 22.11 cm3 26.09 g 26.11 g 0.1024 0.1209

2.2. Additive Manufacturing of Lattice Structures

The 4 × 4 × 4 BCC and TLC lattice structures are built using Solidworks (2018). After
that, the lattice models are saved in stereolithography (STL) format and transferred to the
Cura software that comes with the UltimakerS5 3D printer for slicing the lattice models.
The specimens of BCC and TLC structures printed by the UltimakerS5 3D printer are
shown in Figure 2. The printing material for the lattice structures is PolyMaxTM PLA
with a diameter of 2.85 mm. The UltimakerS5 3D printer has dual printheads: the AA
printhead and the BB printhead. In order to print lattice structures with better precision,
the BB nozzle is employed to fill the structure with 2.85 mm diameter PolyMax polyvinyl
(Polymaker, Changshu, China) alcohol (PVA) water-soluble material. The PVA is used
as the substrate in the suspended part of the structure. During the printing of lattice
specimens, the temperature of the glass plate is set to 60 ◦C, the printing layer height is set
to 0.1 mm, and the printing temperature is 220 ◦C. Considering the fabrication quality of
the specimens as well as the fabrication time, the nozzle moving speed is set to 55 mm/s,
and the pumping distance is 10 mm. The external size of all 4 × 4 × 4 specimens is 60 mm
and the diameter of struts is 2 mm.
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2.3. Mechanical Tests

Quasi-static compression tests of the 4 × 4 × 4 lattice structures are performed on an
electronic universal tensile and compression testing machine (WDS-100 (Jinan Xinshijin
Testing Machine Co., Ltd., Jinan, China.)). To ensure the accuracy of the lattice structures
tests, a mirror aluminum alloy plate with a length × width of 200 × 200 mm and a
thickness of 5 mm is placed above and below the lattice specimen to reduce the tangential
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friction. The deformation behavior of each lattice specimen is recorded with a high-
resolution digital camera. Backlight plates are placed on the left and right sides of the
testing machine to improve the quality of images, as shown in Figure 3. During the test, the
upper plate is moved downward to compress the specimen, while the lower plate is fixed.
The experimental test continues until the specimen begins to densify (the strain is about
0.75~0.8). The speed of the upper plate is set at 3.6 mm/min, corresponding to a strain rate
of 0.001 s−1.

Materials 2024, 17, x FOR PEER REVIEW 5 of 27 
 

 

2.3. Mechanical Tests 
Quasi-static compression tests of the 4 × 4 × 4 lattice structures are performed on an 

electronic universal tensile and compression testing machine (WDS-100 (Jinan Xinshijin 
Testing Machine Co., Ltd., Jinan, China.)). To ensure the accuracy of the lattice structures 
tests, a mirror aluminum alloy plate with a length × width of 200 × 200 mm and a thickness 
of 5 mm is placed above and below the lattice specimen to reduce the tangential friction. 
The deformation behavior of each lattice specimen is recorded with a high-resolution dig-
ital camera. Backlight plates are placed on the left and right sides of the testing machine 
to improve the quality of images, as shown in Figure 3. During the test, the upper plate is 
moved downward to compress the specimen, while the lower plate is fixed. The experi-
mental test continues until the specimen begins to densify (the strain is about 0.75~0.8). 
The speed of the upper plate is set at 3.6 mm/min, corresponding to a strain rate of 0.001 
s−1. 

 
Figure 3. Experimental setup for quasi-static compression tests of lattice structures (the downward 
blue arrow indicates the direction of compression). 

To study the optimal size of the central cubic truss in the TLC, single cell and 2 × 2 × 
2 lattice specimens are employed for experimental tests. When specimens are compressed 
to densification, the loading force does not exceed 4 kN. In order to avoid the large error 
caused by the universal testing machine (WDS-100) with loading force up to 100 kN, a 5 
kN universal tensile and compression testing machine (ZQ-990LA (Dongguan Zhi Taking 
Precision Instrument Co., Dongguan, China)) is used to test the single cell and 2 × 2 × 2 
lattice specimens. The compression direction of all specimens in this paper is consistent 
with the 3D printing direction. Three specimens are tested for each structure.  

2.4. Preliminary Analysis 
2.4.1. Energy Absorption and Specific Strength 

One of the main objectives of present study is to design a new cell topology based on 
the traditional BCC lattice structure to enhance mechanical properties. The mechanical 
properties are evaluated based on the energy absorbed (EA) per unit volume, the specific 
energy absorption (SEA), the energy absorption efficiency (EAE), and the specific strength 
of the lattice structures. 

Figure 3. Experimental setup for quasi-static compression tests of lattice structures (the downward
blue arrow indicates the direction of compression).

To study the optimal size of the central cubic truss in the TLC, single cell and
2 × 2 × 2 lattice specimens are employed for experimental tests. When specimens are
compressed to densification, the loading force does not exceed 4 kN. In order to avoid the
large error caused by the universal testing machine (WDS-100) with loading force up to
100 kN, a 5 kN universal tensile and compression testing machine (ZQ-990LA (Dongguan
Zhi Taking Precision Instrument Co., Dongguan, China)) is used to test the single cell and
2 × 2 × 2 lattice specimens. The compression direction of all specimens in this paper is
consistent with the 3D printing direction. Three specimens are tested for each structure.

2.4. Preliminary Analysis
2.4.1. Energy Absorption and Specific Strength

One of the main objectives of present study is to design a new cell topology based on
the traditional BCC lattice structure to enhance mechanical properties. The mechanical
properties are evaluated based on the energy absorbed (EA) per unit volume, the specific
energy absorption (SEA), the energy absorption efficiency (EAE), and the specific strength
of the lattice structures.

The EA per unit volume of a lattice structure can be obtained by calculating the area
enclosed by the stress–strain curve and its corresponding given strain [54–56]:

EA =
∫ ε

0
σ(ε)dε (1)

where ε represents the engineering strain and σ(ε) represents the corresponding engineering
stress. Since the BCC and TLC structures have different relative densities, in addition to the
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EA, the SEA is also considered. SEA refers to the energy absorption per unit mass of the
lattice structure [54–56]:

SEA =

∫ ε
0 σ(ε)dε

ρ
(2)

where ρ represents the density of the lattice structure. The structure with higher SEA has a
better energy absorption capacity. The EAE can be calculated as follows [49]:

EAE =

∫ ε
0 σ(ε)dε

σ(ε)
(3)

This parameter is used to quantify the stability of the post-yield response of the energy
absorption. The load-bearing capacity of the lattice structure is evaluated by the specific
strength, which refers to the ratio of the corresponding compressive strength under different
strains to the apparent density of the lattice structure [57]:

SpecificStrength =
σ(ε)

ρA
(4)

ρA =
M
VA

(5)

where σ(ε) represents the compressive stress, ρA represents the apparent density of the
lattice structure [57], M is the mass and VA is the apparent volume of the lattice structure,
which is the solid volume plus the pore volume. It is obvious that the structures with higher
specific strength exhibit better load-bearing capacity.

2.4.2. Bending Strength of Struts

The bending strength is the maximum stress that the struts in the lattice structure can
withstand when they are under bending loads. It reflects the ability of the material to resist
bending and is used to measure the bending performance of the material.

σmax =
Mmax

W
(6)

Mmax =
FL
2

(7)

W =
πd3

32
(8)

where Mmax represents the maximum bending moment of the strut, W represents the
bending section factor of the strut, F represents the external force applied, and L represents
the lever arm. As all struts of the lattice structure in this study have the same diameter, the
flexural section factor is fixed, i.e., W = 0.785.

2.4.3. Deflection of Vertical Central Struts

When symmetry of applied force on single cells is broken due to damage or fracture at
any location of the lattice structure, lateral deflection of vertical struts will happen, and this
will reduce the load-carrying capacity of the structure. In this study, the deflection ymax is
used as a variable to evaluate the optimal size of the central cubic truss of the TLC lattice
structure. When the lattice structure bears the same load, the larger the deflection, the more
likely its vertical struts are to be eccentric, resulting in more frequent damage to the lattice
structure. The deflection formula is shown as follows:

ymax = −
FxL3

2
3EI

(9)
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I =
πd4

64
(10)

where Fx represents the lateral force applied to the vertical struts, L2 represents the length
of the cubic truss at the center of the TLC structure, EI represents the bending rigidity, and I
represents the second moment of area. Since the diameter of struts and the elastic modulus
of the material are the same, the factor affecting strut deflection is only related to the length
of the central cubic truss, L2. Hence, the selection of the length L2, the size of the central
cubic truss, is crucial to its mechanical properties.

3. Finite Element Modeling

In this section, the printing material properties are obtained by testing dog-bone
specimens. A detailed description of the finite element model and numerical simulation,
including boundary conditions, element types, loading and meshing, is given.

3.1. Material Properties

When the lattice structure is subjected to compression, stresses in different struts are
either tensile or compressive. For polymer materials used in this study, the stress resulting
in tensile failure is much smaller than the stress resulting in compressive failure. Therefore,
as a simplified approach, tensile properties of the printing material are adopted as the
material parameters used in FE modeling [14,54,55]. ASTM D638 [58] Type I dog-bone
specimens are fabricated using the same manufacturing parameters as the lattice structure
to test the mechanical properties of PolyMaxTM PLA materials [54]. In Figure 4a, the
dimensions of the ASTM D638 Type I dog-bone specimens are given. Figure 4b shows the
3D image of the dog-bone specimen for printing. The tensile properties of three dog-bone
specimens are tested at 3.41 mm/min using the universal testing machine (ZQ-990LA). The
true stress–strain curve is shown in Figure 5. The elastic and plastic material parameters
are given in Tables 2 and 3, respectively.
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Table 2. The elastic material parameters of PolyMaxTM PLA.

Elastic Modulus (GPa) Poisson’s Ratio Density (kg/m3) Yield Strength (MPa)

1.85 0.35 1200 42

Table 3. The plastic material parameters of PolyMaxTM PLA.

Plastic strain 0 0.0045 0.012 0.021 0.034 0.132 0.2 0.3

Plastic stress (MPa) 40 36 32 29 26 28 30 34

3.2. Finite Element Model

The FE model of a 4 × 4 × 4 lattice structure is established for uniaxial compression in
ABAQUS 6.14. Figure 6 shows the FE model of the TLC lattice structure. There are three
parts in the numerical model: the loading plate, the lattice structure, and the support plate.
The loading and support plates adopt a three-dimensional discrete rigid shell plane. All the
lattice models use C3D4 tetrahedral solid elements and the mesh size is set to 0.65 mm. The
support plate fixes all degrees of freedom, and the loading plate only retains the degrees
of freedom in the “y” direction. The loading plate is set to a downward displacement
of 48 mm with a speed of 3.6 mm/min, which is consistent with the experimental strain
rate of 0.001 s−1. In the simulation, the large deformation of lattice structure induces
complex self-contact between structural struts. The contact between the loading plate
and the lattice structure adopts “general contact”. The friction formula for the tangential
behavior is “penalty”, and the friction coefficient is set to be 0.2 [59]. For FE simulations
of complex structures, especially for nonlinear compression with large deformations, it
is usually calculated using ABAQUS/Explicit [60,61]. Compared to ABAQUS/Standard,
explicit solvers allow for reductions in computational resources and time and also avoid
convergence problems that may be encountered with implicit solvers. To further reduce
the computational time of the simulation, the mass scaling function of ABAQUS is used.
Keeping the ratio of kinetic energy to internal energy below 5% and ensuring that the
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artificially introduced inertial effects are minimized, the simulation can be considered
quasi-static compression [60,61]. Based on many attempts, the time period is set to 0.01 on
the premise of ensuring the accuracy of the simulation results.
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Figure 6. Finite element model with boundary conditions and the red square defining a single cell of
TLC structure meshed with C3D4 tetrahedral elements.

4. Results and Discussion

In this section, the optimal size of the central cubic truss of the TLC lattice structure is
investigated.

The mechanical properties and deformation modes of the TLC and BCC lattice struc-
ture are discussed in detail. The influence of manufacturing defects (i.e., microcracks) on
the mechanical properties of the lattice structure is studied in detail.

4.1. The Optimal Size of the Central Cubic Truss in the TLC Structure

Figure 7 shows the deformation characteristics of single cells for the BCC and TLC
lattice structures at engineering strains of 0, 0.3, 0.6, and 0.8. For the BCC lattice structure,
the eight struts are deformed mainly by bending. With the increase in strain, deformation
of bending proceeds until the strain reaches 0.8, at which point the upper strut comes into
contact with the lower strut. Thereafter, the structure starts to densify. In contrast, the
deformation of the TLC lattice structure includes two stages: bending for eight inclined
struts and compression for the vertical struts of the central cube.

When the inclined strut is subjected to a vertical load and the diameter of the strut is
fixed, the length (L) of the strut determines its flexural strength, as indicated by
Equations (6) and (7) in Figure 8. It is evident that the shorter the strut, the greater the
bending strength. For lattice structures in this study, the bending strength of inclined struts
directly affects the yield strength. The shorter inclined struts in the TLC structure endow it
with higher yield strength.
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Figure 8. Schematic diagram of force analysis of inclined struts in (a) the BCC lattice structure and
(b) the TLC lattice structure.

With respect to the buckling of columns, the vertical struts of the central truss belong
to short columns, and Euler’s formula is not applicable. Figure 9 is a schematic diagram of
the deflection of the central cubic strut due to lateral force. When the TLC structure is under
compression, premature damage or fracturing may happen in some struts due to printing
defects. Therefore, the symmetry of applied force on single cells may be broken and the
vertical struts of the central truss will be subjected to a resolved lateral force alongside
the axial loading. Lateral deflection would then be unavoidable and the whole structure
would be prone to instability. As shown in Figure 9 with Equations (9) and (10), when
the diameter of the strut is the same, the longer the length L2 of the veritical strut, the
more easily deflection will occur, which leads to the destruction of the lattice structure at
lower strains.
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Figure 9. Deflection of the vertical strut in the center of the TLC lattice structure due to lateral force
(assuming that the lower end of the vertical strut is fixed).

Figure 10 shows the schematic diagram of the cell topology of the TLC lattice structure,
where L2 represents the length of the cubic truss and L1 the size of the single cell. L1 has
a fixed value of 15 mm for all structures. The optimal length of L2 is investigated in this
study. L2 takes values of 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, and 7.5 mm, respectively, as
shown in Table 4. The TLC structures with six values of central cubic trusses are analyzed
by experimental tests and numerical simulations in the following.
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Figure 10. Schematic diagram of the cell topology of the TLC lattice structure.

Table 4. Length of the central cubic struts.

L2/L1 3/15 a 4/15 b 5/15 c 6/15 d 7/15 e 7.5/15 f

L1 15 mm 15 mm 15 mm 15 mm 15 mm 15 mm
L2 3 mm 4 mm 5 mm 6 mm 7 mm 7.5 mm

Figure 11 shows the engineering stress–strain curves obtained from compression tests
for single cells. The red points marked on the curves indicate the highest stresses of the
structure during compression and before densification. Among these curves, the stresses of
the TLC-e and TLC-f begin to decrease at a strain of ~0.4. Figure 12 shows the deformation
characteristics of the TLC-e and TLC-f structures at their highest stresses. It is consistent
with above analysis: the longer the vertical strut (L2) is, the earlier deflection happens.
Furthermore, this deflection results in earlier destruction of the single cell. Therefore,
TLC-e and TLC-f are not the best choices for the central truss. In contrast, L2 of TLC-a
is the shortest and the deflection of the vertical struts is more difficult. However, the
increased length of the inclined struts will cause decreased yield strength. As shown in
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Figure 11, the stress–strain curve of TLC-a almost coincides with that of the BCC structure,
and its mechanical properties are not obviously improved compared to the BCC structure.
Similarly, the stress level of the TLC-b structure is not significantly elevated compared to
the BCC structure. Therefore, both TLC-a and TLC-b should not be regarded as the optimal
sizes for the TLC structure.
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Figure 13 shows the SEA curves of TLC and BCC single cells with respect to strains.
Among the six sizes, TLC-c (i.e., the red curve) has the best energy absorption capacity.
However, before the strain reaches 0.5, the performance of the TLC-d structure is equal to
or even better than that of TLC-c. The simulation results in Figure 14 clearly illustrate the
higher flow stress level of TLC-d compared to that of TLC-c. Therefore, observing only the
behavior of single cells, it is difficult to determine which of the two values is the optimal
size for the central cubic truss in the TLC structure.
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In order to explore the mechanical properties of TLC-c and TLC-d in-depth,
2 × 2 × 2 specimens of TLC-c and TLC-d are fabricated for experimental tests, and the
results are shown in Figure 15. The blue dashed line in Figure 15a indicates the strain
corresponding to the highest stress in TLC-d. It shows that before a strain of 0.53, the stress
level of TLC-d is a little higher than that of TLC-c. Figure 15b shows the energy absorption
efficiency (EAE) curves of 2 × 2 × 2 TLC-c and TLC-d structures. The maximum EAE
values of the TLC-c and TLC-d structures are 35% and 26%, respectively. TLC-c exhibits
a 1.35 times higher EAE than TLC-d. Between strains from 0.24 to 0.55, the EAE of TLC-c
is obviously superior to that of TLC-d. Figure 15c,d show the deformation characteristics
of TLC-c and TLC-d at a strain of 0.53, respectively. It is apparent that the vertical struts
in TLC-d have been significantly laterally deflected, and the whole structure is unstable.
In contrast, the vertical struts in TLC-c can still resist the axial load properly. That is
to say, although the flow stress of TLC-d is a little higher than that of TLC-c, the TLC-c
structure exhibits more stability than TLC-d. Particularly for large-scale lattice structures
or under dynamic loading, the high stability of the structure can generate a high energy
absorption capacity. Therefore, considering three factors together—i.e., the SEA, stability of
the structure, and the flow stress level—TLC-c exhibits the best performance. That is to say,
the optimal length of the central cubic truss L2 is determined to be 5 mm. Therefore, the
size of the central truss is fixed at 5 mm in the following study.
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Figure 15. (a) Engineering stress–strain curves of the 2 × 2 × 2 TLC-c and TLC-d obtained from
experimental tests; (b) energy absorption efficiency curves (the green dashed lines represent the
highest energy absorption); (c,d) deformation characteristics of TLC-c and TLC-d at a strain of
0.53, respectively.

4.2. Experimental Results for 4 × 4 × 4 Structures

The mechanical properties and energy absorption of lattice structures in this study are
discussed based on the results of quasi-static compression tests. The engineering stress–
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strain curves of 4 × 4 × 4 lattice structures are shown in Figure 16a. From the figure, it can
be found that the deformation in the BCC and TLC lattice structures generally occurs in
three stages. The first stage is elastic deformation; the stress rises elastically with strain
until it reaches the yield strength. After this point, the struts undergoing bending start
to yield plastically. The curve enters the second stage, and there is a plateau with a small
fluctuation in stress. With the increase in strain, the curves of stress enter the third stage;
the flow stress of structures continues to increase. For example, when the strain of the TLC
lattice structure reaches 0.4, after exhausting bending deformation in eight tilted struts in
a cell, axial deformation begins to dominate, which is mainly contributed by the vertical
struts of the central cube. Thereafter, the stress will increase significantly. However, when
the strain reaches about 0.6, the stress of the TLC structure decreases abruptly. The reasons
for this will be discussed later in this section. The deformation characteristics of TLC
structures at strains for initial yielding and the highest stress before densification are shown
in Figure 16b. The red squares mark the points at which struts break during compression.
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As shown in Figure 16a, the flow stresses of the TLC structure are much higher than
those of the BCC structure. For instance, the initial flow stress of the TLC structure is
increased by 122% compared to that of the BCC structure at a strain of 0.1. The stress
of the TLC at a strain of 0.4 is increased by 191%. When the strain increases from 0.5
to ~0.6, the stress of the TLC structure rises to its highest point, 1.45 MPa, while the
corresponding stress of the BCC is only 0.1 MPa. The vertical struts of the central cube resist
the axial loads, and the energy absorption capacity of this structure is improved accordingly.
The shaded part under the engineering stress–strain curve is the energy absorbed by the
TLC lattice structure. The value is much higher than that absorbed by the BCC lattice
structure, which indicates that the energy absorption capacity of the TLC lattice structure is
significantly improved.

Figure 17 shows specific strength values corresponding to the BCC and TLC at strains
of 0.1, 0.3, 0.5, and 0.6, respectively. The BCC structure shows lower specific strength
compared to the TLC structure, and its values exhibit minimal changes with strain. The
proposed TLC lattice structure shows much better specific strength, indicating an improved
load-bearing capacity. For instance, at a strain of 0.5, the specific strength of the TLC is
increased by 293% compared to that of the BCC structure.
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Figure 17. Specific strength of the BCC and TLC lattice structures at different strains.

Figure 18 shows EA and SEA of the BCC and TLC lattice structures. The performance
of the TLC is much better than the BCC structure. At strains of 0.5 and 0.6, the EA of the
TLC is enhanced by 96% and 181%, respectively, and the SEA is enhanced by 136% and
312%, respectively, compared to that of the BCC structure.
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A salient point is worth further discussion: as shown in Figure 19a, the curves for the
TLC structure exhibit crests at strains just before the final densification of the structure. In
contrast, for the BCC structure, such a crest in the stress–strain curve cannot be observed.
Figure 19b shows the corresponding images of the TLC specimens at strains near the crest
and the trough. Image I denotes the crest and Image II the trough. It is obvious that in
Image I, the vertical struts of four layers up and down the central cube are almost in a
straight line, as indicated by the dashed red lines. They work together like one vertical
column to resist compressive loads. When compression proceeds, the vertical struts of four
layers cannot stay in a straight line anymore, as shown by the dashed red lines in Image II.
Lateral deflection or damage may happen to these vertical struts. Thereafter, destruction
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of the whole structures continues. Therefore, the crests and the trough near densification
in the TLC structure are found to be the results of the deformation of vertical struts in the
central cubic truss.
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Figure 19. (a) The stress–strain curve of the 4 × 4 × 4 TLC structure; (b) images of TLC specimens at
points I and II (the dashed red lines in the images indicate the status of the central vertical struts).

4.3. Finite Element Modeling for Lattice Structures with Defects

While 3D printing technology makes the fabrication of complex structures possible,
defects induced by printing are inevitable. Figure 20 shows 2 × 2 × 2 specimens of the TLC
lattice structure printed using FDM technology. The red rectangles highlight the places
where printing defects are obvious. These images clearly show two typical categories of
defects during the printing of polymer lattice structures: pores and microcracks in the
struts or nodes/joints. Although these defects may be small, they can have a significant
negative impact on the mechanical properties of lattice structures; thus, they cannot be
ignored. Specifically, pores and microcracks in the inclined struts can clearly be observed
in Figure 20, and the weak connection between the two inclined struts can easily be found.
These printing defects could result in premature damage to or fracture of the struts, and
the mechanical performance of the whole structure will deteriorate significantly.
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Figure 21 shows the deformation characteristics of 2× 2× 2 TLC specimens at different
strains. In the initial phase of the compressive deformation—i.e., a strain of 0.1, it can be
found that the node highlighted by the red rectangle shows an obvious crack. Similar cracks
can be found in nodes at a strain of 0.2. When the strain reaches 0.3, serval nodes and struts
show clear fracturing, and the uniform deformation of the lattice structure can therefore
not be maintained anymore. As compression proceeds (i.e., at strains of 0.4, 0.5 and 0.6), a
collapse occurs the middle layer, which is supported by inclined struts; all inclined struts
break and lose their function.

Materials 2024, 17, x FOR PEER REVIEW 19 of 27 
 

 

 
Figure 21. Deformation characteristics of 2 × 2 × 2 TLC lattice structures in compressive tests. 

Figure 22 shows the experimental and simulation results for both 4 × 4 × 4 BCC and 
TLC lattice structures. The solid lines are for experiments and the dashed lines for simu-
lations. Although the trend for both results is consistent, the flow stresses exhibit obvious 
discrepancy between them. The key point is that the FE model adopts an ideal lattice struc-
ture while 3D printing defects in experimental structures cannot be avoided. With close 
observation of the experimental specimens, microcracks in printed struts often lead to un-
even stress distribution and local damage when the specimens are subjected to compres-
sive loads. Such asymmetric structural stresses could result in unexpected lateral resolved 
forces, which may further cause the overall collapse and failure of the lattice specimens. 
However, in the numerical simulation, the model is usually simplified: the struts are de-
signed to ignore printed defects and the nodes of the lattice structure are assumed to be 
perfectly connected. With the increase in strain, the damage and fracture of the struts in 
the lattice specimens grow gradually for experiments; in contrast, the ideal structure in 
the numerical simulation can always maintain a continuous and uniform deformation. 
Therefore, it is necessary to consider the influence of printed defects during FE modeling 
for lattice structures to improve the accuracy of the numerical simulation. This work pro-
poses the incorporation of microcracks into the FE model for the TLC lattice structure. 
Due to high requirements in terms of computational resources after insertion of mi-
crocracks in the FE model, only 2 × 2 × 2 lattice structures are considered in the following 
simulations. 

Figure 21. Deformation characteristics of 2 × 2 × 2 TLC lattice structures in compressive tests.

Figure 22 shows the experimental and simulation results for both 4 × 4 × 4 BCC
and TLC lattice structures. The solid lines are for experiments and the dashed lines for
simulations. Although the trend for both results is consistent, the flow stresses exhibit
obvious discrepancy between them. The key point is that the FE model adopts an ideal
lattice structure while 3D printing defects in experimental structures cannot be avoided.
With close observation of the experimental specimens, microcracks in printed struts often
lead to uneven stress distribution and local damage when the specimens are subjected to
compressive loads. Such asymmetric structural stresses could result in unexpected lateral
resolved forces, which may further cause the overall collapse and failure of the lattice
specimens. However, in the numerical simulation, the model is usually simplified: the
struts are designed to ignore printed defects and the nodes of the lattice structure are
assumed to be perfectly connected. With the increase in strain, the damage and fracture of
the struts in the lattice specimens grow gradually for experiments; in contrast, the ideal
structure in the numerical simulation can always maintain a continuous and uniform
deformation. Therefore, it is necessary to consider the influence of printed defects during
FE modeling for lattice structures to improve the accuracy of the numerical simulation.
This work proposes the incorporation of microcracks into the FE model for the TLC lattice
structure. Due to high requirements in terms of computational resources after insertion



Materials 2024, 17, 1329 19 of 26

of microcracks in the FE model, only 2 × 2 × 2 lattice structures are considered in the
following simulations.
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Figure 22. Engineering stress–strain curves of experimental and simulation results for BCC and TLC
4 × 4 × 4 lattice structures.

4.3.1. Establishment of the Finite Element Model for Lattice Structures with Microcracks

It is worth noting that defects in lattice specimens printed by FDM technology are
random. The number and location of defects in each lattice specimen are uncertain, making
it challenging to establish a FE model with similar defects for a lattice specimen. Based
on experimental observation, two salient points can be concluded: (i) inclined struts in
lattice specimens often have more defects than vertical struts; (ii) nodes are the locations of
stress concentration, and defects at or near nodes can have a higher impact on mechanical
properties than defects at other places. Considering the feasibility of FE modeling, it is
proposed in this study that microcracks are explicitly inserted into the lattice structure at or
near nodes to capture the influence of printing defects on mechanical performance. In this
study, nodes in the TLC lattice structure are categorized into two types: (i) nodes between
inclined struts (referred to as Type I nodes), and (ii) nodes between inclined struts and
vertical struts (referred to as Type II nodes). The two types of nodes have different effects
on mechanical properties and will be discussed later. For Type I nodes, all printing defects
on inclined struts and/or on nodes are represented by an equivalent microcrack located at
the center of the Type I node (i.e., the struts are disconnected but in full contact), as shown
in Figure 23a. For Type II nodes, an equivalent microcrack will be inserted at one end of the
strut near the Type II node (i.e., cracks with 50% width of the strut and 0.02 mm thickness),
as shown in Figure 23b.

In order to study the influence of defects at different locations on the overall mechanical
properties of the structure, three FE models are established for TLC lattice structures: Model
A (the model with only microcracks at the Type I nodes), Model B (the model with only
microcracks at the Type II nodes), and Model C (the model with microcracks at both types
of nodes).

There are 19 Type I nodes and 64 Type II nodes in a 2 × 2 × 2 TLC specimen. Based
on experimental observation, Type I nodes usually exhibit weak connection. Therefore,
microcracks are inserted into all the Type I nodes, except the one at the center of the lattice
structure, as shown in Figure 23a. Since there are a large number of Type II nodes, all the
Type II nodes being weakened by printing defects is not realistic. As a primary estimation,
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32 nodes (i.e., half of all the Type II nodes) were randomly selected to add microcracks,
as shown in Figure 23b. Figure 23c shows the lattice structure with inserted microcracks
located at both Type I and II nodes, in which the number and location of microcracks are
consistent with the previous two structures.
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and (c) both Type I and II nodes.

In this study, the built-in ductile damage model in ABAQUS is employed for the
three models, and the localized failure is simulated through element deletion. The ma-
terial parameters are determined based on comparison with the experimental results of
2 × 2 × 2 lattice specimens. The fracture strain in in the ductile damage model is set to 0.12
and the fracture energy is set to 2. The other material parameters are set to be consistent
with those given in Section 3.

4.3.2. Simulation Results

Figure 24a–c show the compressive simulation results for the three models: Model
A, B, and C, denoted by blue curves. The black curve represents the experimental result
and the red curve is the simulation result for a 2 × 2 × 2 ideal lattice structure. Several
interesting points can be noted from the results: (1) It is obvious that the trends of the three
blue curves in Figure 24a–c from the three models are consistent with our experimental
results (indicated by the black curve). The red dots highlight the transition points and
the maximum stress points on the curves. In contrast, the red curve for the ideal lattice
structure does not show a maximum stress, and its flow stress continues to increase as
compression proceeds. This is because the ideal structure does not consider the damage
of the material. (2) The influences of microcracks at Type I and Type II nodes on the
mechanical properties of the structures are different and can be easily observed from the
results for Model A and B in Figure 24. Compared to the ideal lattice structure, Figure 24a
shows that microcracks inserted at Type I nodes can significantly weaken the initial flow
stress. Specifically, at a strain of 0.1, the initial flow stress decreases significantly compared
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to that of the ideal structure, and it is only 43% higher than that of the experimental results;
meanwhile, the stress of the ideal structure is 121% larger than that of experiments (see
Table 5). In Figure 24b, microcracks inserted at Type II nodes cause the maximum flow
stress to decrease significantly compared to that of Model A, and the maximum flow stress
only 14% higher than that of the experimental result. However, its influence on the initial
flow stress is not as strong as that of the microcracks at Type I nodes. (3) The simulation
results from Model C in Figure 24c exhibit excellent agreement with the experimental
results, particularly compared with results from Models A and B (see Table 5). That is to say,
the FE model including both types of microcracks can generate much better predictions.
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Table 5. Comparison of flow stresses between experimental and simulation results (MPa).

Initial Flow Stress at a Strain of 0.1 Maximum Stress

Experiment 0.14 1.64
Ideal structure 0.31(121% ↑) 3.00 (83% ↑)

Model A 0.20 (43% ↑) 2.15 (31% ↑)
Model B 0.26 (86% ↑) 1.87 (14% ↑)
Model C 0.19 (36% ↑) 1.55 (6% ↓)
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Figure 25 shows the deformation characteristics of a 2× 2× 2 lattice structure for experi-
ments and FE simulations of Model C. The damage and fracturing of struts in experimental
specimens can easily be observed with an increase in strain. Such an evolution of damage
and fracture in the lattice structure is captured very well in the simulation of Model C, which
includes microcracks at both Type I and Type II nodes. At a strain of ~0.1, damage is usually
initiated at Type I nodes, where there are connection points of two inclined struts. When
the compressive strain increases to 0.2, cracks at Type I nodes can easily be observed, as
highlighted by the red rectangle in the figure, although the structure remains intact as a whole.
This indicates that the Type I nodes are the location at which premature damage can occur
easily, especially in the presence of printing defects. The simulations exhibit inhomogeneous
deformations similar to those in our experiments, and the internal structure appears tilted as
well. As the load increases, complete fracturing at Type I nodes as well as damage at Type
II nodes can be clearly observed in both experiments and simulations, as marked by the red
boxes in the image showing a strain of 0.3. This will lead to further damage of the whole
structure. With continued deformation, the middle layer of the lattice structure appears to
collapse. The inclined struts related to the middle layer are totally fractured at a strain of 0.4.
As the strain increases, the other inclined struts are fractured gradually, and vertical struts are
also heavily deformed when strain reaches 0.6.
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Based on the above simulation results, it is evident that presence of the printing
defects (i.e., microcracks in this study) significantly affects the mechanical properties of
the structure. Incorporation of microcracks into the lattice structure at both Type I and II
nodes, as proposed in this work, could help the FE simulation to capture the deformation
characteristics of lattice structures very well and significantly improve the predictive
accuracy of simulations.

5. Conclusions

Based on the BCC lattice structure, this study proposes a new structure, TLC, by adding
a central cubic truss into the BCC structure. The combination of vertical struts (stretch-
dominated) and inclined struts (bending-dominated) in a single cell is demonstrated to
significantly improve the mechanical properties of the TLC in terms of initial flow stress,
specific strength, and specific energy absorption.

The optimal size of the central cubic truss in the TLC is studied numerically and
experimentally. With a fixed unit cell size (15 mm) and strut diameter (2 mm), the optimal
size for the central cube is determined to be 5 mm, considering the factors of flow stress,
specific energy absorption, and the stability of the structure. A general finding is that shorter
inclined struts will generate a higher yield stress while corresponding longer vertical struts
will make the whole structure unstable at a lower strain.

The experimental results show that the mechanical properties can be significantly
improved by adding a central cubic truss of an optimal size into the BCC lattice structure.
For a 4 × 4 × 4 TLC structure, the initial flow stress of the TLC structure is increased by
122% at a strain of 0.1; the specific strength is enhanced by 293% at a strain of 0.5; and the
specific energy absorption is increased by 312% at a strain of 0.6, compared to that of the
BCC structure.

This study proposes the incorporation of microcracks into an FE model of a TLC lattice
structure, and the simulations capture the influence of printing defects on mechanical
properties very well. Microcracks at Type I nodes can notably decrease the initial flow
stress of the TLC, while microcracks at Type II nodes can lower the maximum stress of
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the structure to a remarkable degree. The FE model featuring microcracks at both Type
I and Type II nodes makes simulations with good predictive accuracy compared to the
experimental results. The simulations from this model exhibit excellent consistency with the
deformation characteristics of the TLC from experiments, including damage and fractures
in the structure at small strains.
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