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Abstract: This paper focuses on the size-dependent free vibration and buckling behaviors of the
axially functionally graded (AFG) graphene platelets (GPLs) reinforced nanocomposite microbeams
subjected to axially varying loads (AVLs). With various axial grading patterns, the GPL nano-
reinforcements are distributed throughout the polymer matrix against microbeam length, and the
improved Halpin–Tsai micromechanics model and the rule of mixture are adopted to evaluate the
effective material properties. Eigenvalue equations of the microbeams governing the static stability
and vibration are derived based on the modified couple stress Euler–Bernoulli beam theory via the
state-space method, and are analytically solved with the discrete equilong segment model. The effects
of axial distribution patterns, weight fraction, and geometric parameters of GPLs, as well as different
types of AVLs, on the size-dependent buckling load and natural frequency are scrutinized in detail.
The results show that the synchronized axial distributions of GPLs and AVLs could improve the
buckling resistance and natural frequency more powerfully.

Keywords: axially functionally graded GPL-reinforced microbeam; axially varying applied load;
buckling; vibration; modified couple stress theory

1. Introduction

Due to the excellent physical properties of graphene, graphene-based nano-reinforce-
ments are identified as a kind of promising candidate for the reinforcement phases of
polymer matrix nanocomposites [1]. An increasing number of scientists are working to
apply them to the design of micro/nanoscale devices, including nanosensors, nanoactu-
ators, nanotransducers, and biosensors [2–5]. Of all of the graphene-based nanofillers,
graphene nanoplates (GPLs), with their high specific surface area and high surface-to-mass
ratio, provide several special advantages to develop high performance advanced nanocom-
posites with a wide range of possible applications [6,7]. The mechanical performances
of nanocomposites can be substantially improved by dispersing a low content of GPLs.
The elastic modulus and tensile strength of the pure epoxy can be improved by 31% and
53%, respectively, through adding GPLs [8]. In addition, the benefits of GPLs are critically
dependent on the GPL distribution pattern within the matrix. Under the development
of functionally graded materials (FGMs), functionally graded GPL-reinforced nanocom-
posites (FG-GPLRCs) are created as an exclusive category of advanced non-homogeneous
nanocomposites [9,10]. Kitipornchai et al. [11] carried out an analysis of the elastic buckling
and free vibration of FG-GPLRC porous beams. Feng et al. [9] studied the nonlinear bending
of non-uniformly distributed GPL-reinforced polymer nanocomposite beams. Wu et al. [12]
performed the dynamic stability analysis of FG-GPLRC beams. Yang et al. [13] analyzed
the buckling/postbuckling of FG-GPLRC multilayer beams. In addition, the static and
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dynamic characteristics of FG-GPLRC plate- [14,15], shell- [16,17], and arche-like [18,19]
structures were examined carefully.

Upon reviewing the aforementioned research, there has been a significant focus on
incorporating GPL content grading in the structural thickness direction. However, axi-
ally functionally graded (AFG) beams are extensively used in a variety of engineering
fields, e.g., the automotive industry, helicopter rotor blades, MEMS, and turbine blades.
The AFG-GPLRCs will allow a novel tailored fit to control the mechanical responses of
nanocomposite structures, such as the buckling resistance and dynamic behaviors over a
pre-specified level. It can be anticipated that the combination of both axial and thickness
directions for beam-like structures will yield the best functional grading. Hein and Feklis-
tova [20] showed the results of a free vibration of the AFGM beam using the method of
Haar wavelets. Rokni et al. [21] focused on the optimal multi-walled carbon nanotubes
(MWCNTs) distribution within a polymer composite microbeam to maximize its dynamic
behaviors while using a fixed amount of MWCNTs. Their findings revealed that a non-
uniform axial dispersion of MWCNTs resulted in higher natural frequencies compared
to that of a uniform distribution pattern. This suggests that carefully controlling the dis-
persion pattern of MWCNTs can significantly enhance the performance of microbeams in
terms of their vibrational characteristics. El-Ashmawy and Xu [22] demonstrated that the
axially graded CNTs led to notable improvements in mechanical properties such as stiffness,
strength, and durability. Rezaiee-Pajand et al. [23] introduced the Hencky bar-chain model
to investigate the buckling behavior of AFG-composite beams, considering the axially
graded distribution of carbon nanotubes. It should be noted that, the analyses for AFG
beams have become more complicated because of the governing equation with variable
coefficients, and great efforts have been made to try to solve the four-order differential
equations as mentioned above. Liang et al. [24] established linear and nonlinear isogeo-
metric finite element models of an AFG-GPLRC curved beam within the framework of the
third-order shear deformation beam theory and von-Karman’s nonlinear geometric relation.
Recently, Liu et al. [25] developed the state-space method to examine the impact of an
axially varying dispersion of GPLs on the stability and dynamic behaviors of AFG-GPLRC
beams subjected to edge (compressive) loads.

Thin beams have indeed found significant applications in micro-electro-mechanical
systems (MEMS), such as those in vibration shock sensors, biosensors, etc. In those applica-
tions, the beam mostly falls within the size of microns and sub-microns, and it is common
to observe a size-dependent behavior in the deformation [26]. Nateghi et al. [27] revealed
that the size dependency of FG microbeams is much higher than that of macro-beams.
Wang et al. [28] employed the modified couple stress theory (MCST) and the von Karman
nonlinearity for the vibration analysis of microbeams. Allahkarami and Tohidi [29] applied
MCST into checking the geometrically nonlinear vibration of multilayer FG-GPLRC mi-
crobeam. Yin et al. [30] put forward an analytical solution and employed an isogeometric
approach for a comprehensive investigation of the buckling analysis of size-dependent mi-
crobeams. Nguyen et al. [31] developed a Chebyshev–Ritz solution to investigate bending,
vibration, and buckling responses of porous microbeams. Soltani et al. [32] investigated
the comprehensive study of the vibration control of multi-layer sandwich composite piezo-
electric microbeams.

Indeed, most of the buckling studies on beams often consider the presence of end
compressive loads. However, in real-world scenarios, beams often experience axially
varying compressive loads along the beam length. This variation in compressive load can
be due to factors such as distributed loads, bending moments, or other external forces
acting on the beam. Karamanli and Aydogdu [33] focused on studying the elastic buckling
behavior of beams made of isotropic materials, laminated composites, and sandwich
structures subjected to various axially varying in-plane loads. Eltaher et al. [34] used a
differential quadrature method (DQM) to examine the static stability and mode-shapes
of axially varying in-plane loaded composite laminated beams. Masjedi and Weaver [35]
derived an analytical solution for three-dimensional static deflection of composite beams
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that experience non-uniformly distributed axial loads. Howaon and Williams [36] presented
a dynamic stiffness matrix analysis on the vibration of a beam-column with axially loaded
Timoshenko members. Naguleswaran [37] examined the transverse vibration of beams
under linearly varying axial force. Bargozini et al. [38] studied the critical buckling load for
a sandwich composite beam reinforced with carbon nanorods in the bottom and top layers
under variable axial forces based on the sinusoidal shear deformation theory.

As indicated by the literature review, there has been a significant amount of research
dedicated to FG-GPLRC structures. However, based on the available literature, it appears
that the static and dynamic behaviors of AFG-GPLRC microbeams subjected to axially
varying loads have not been extensively studied or clearly addressed. For axially graded
microbeams, similar problems become more complicated because of the governing equation
with variable coefficients, which is quite difficult to solve analytically or numerically. So
far, few solutions are found for arbitrary gradient change due to the difficulty of the
mathematical treatment of the problem, save certain special gradients. The objective of the
present paper is to discuss the buckling and vibration characteristics of axially functionally
graded (AFG) graphene platelets reinforced (GPLRC) nanocomposite microbeams subjected
to different types of axially varying loads (AVLs). The GPL nano-reinforcements are
dispersed into an epoxy matrix throughout the beam length in the uniform and non-uniform
patterns, while the non-uniform distributions of GPLs yield the axially functionally graded
nanocomposites. In the meantime, the linear and nonlinear forms of AVLs are taken into
consideration. By combining the improved Halpin–Tsai model and the rule of mixtures, the
effective material properties of AFG-GPLRCs are calculated. The governing equations are
derived on the assumptions of the Euler–Bernoulli beam theory, and the MSCT is adopted
to capture the scale effect of microbeams. The state-space method is developed to derive
the governing equation of the eigenvalue problems, and a first-order differential equation
in matrix form is obtained. To solve the governing equation with variable coefficients, the
length-direction discrete model composed of equilong segmentations is employed. The
characteristic equations are finally established for various boundary conditions by using
the continuous conditions of the fictitious interfaces of the discrete model, and are solved
numerically. To examine the synergetic influences of the axial grading of GPLs and AVLs
on the size-dependence buckling and dynamic characteristics, numerical studies are carried
out in terms of the small scale, distribution patterns, and geometric parameters of GPLs,
and various types of AVLs.

2. Theoretical Formulation
2.1. Modeling of AFG-GPLRCs

An AFG-GPLRC microbeam (thickness h, length l, and width b) subjected to axially
varying load F(x) is presented in Figure 1. The origin of the orthogonal coordinate system
xoy is placed at the left-end cross-sectional center of the microbeam. The AFG-GPLRC
microbeam is made from a matrix of polymer, and GPL nano-reinforcements are dispersed
throughout the beam length direction in uniform or non-uniform manners with identical
amounts. The axial distribution patterns of GPLs herein are shown in Figure 2.
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Figure 1. AFG-GPLRC microbeams under axially varying loads.
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The volume fraction VGPL of GPLs for different distribution patterns, which varies
along the beam length, can be addressed as [25]

UD : VGPL(x) = V∗
GPL

AFG − X : VGPL(x) = V∗
GPL4|x − l/2|/l

AFG − O : VGPL(x) = V∗
GPL(2 − 4|x − l/2|/l)

AFG − V : VGPL(x) = V∗
GPL(1 + 2(x − l/2)/l)

(1)

where V∗
GPL is the average GPL volume fraction, and can be evaluated from the weight

fraction WGPL as

V∗
GPL =

WGPL

WGPL + (ρGPL/ρM)(1 − WGPL)
(2)

in which WGPL is the total GPL weight fraction, and ρGPL and ρM denote, respectively, the
mass densities of GPLs and the matrix. It can be observed that the GPL volume fraction
remains constant along the length direction in the UD pattern. For AFG-X, both of the
ends are rich in GPL content, while the middle section has a lower GPL volume fraction.
However, the GPL content in AFG-O is opposite to AFG-X. The GPL content of AFG-V
represents a monotonous increase from the left end to the right end of the microbeam.

Herein, the multi-scaled model approximates the elastic modulus of GPLRCs, which
is calculated based on the improved Halpin–Tsai micromechanics model [14], as follows:

E =
3
8

1 + ξlηlVGPL

1 − ηlVGPL
× EM +

5
8

1 + ξwηwVGPL

1 − ηwVGPL
× EM (3)

where EGPL and EM denote, respectively, the elastic moduli of GPLs and polymer matrix.
The parameters ξl and ξw read as

ηl =
(EGPL/EM)−1
(EGPL/EM)+ξl

, ηw = (EGPL/EM)−1
(EGPL/EM)+ξw

ξl = 2 lGPL
hGPL

, ξw = 2 wGPL
hGPL

(4)

where lGPL, wGPL and hGPL are the length, width, and thickness of GPLs, respectively.
Furthermore, the equivalent mass density ρ and Poisson’s ratio ν of GPLRCs are

determined by using the mixture rule as in [14]

ρ = ρGPLVGPL + ρM(1 − VGPL)

ν = νGPLVGPL + νM(1 − VGPL)
(5)

in which νGPL and νM are the Poisson’s ratios of GPLs and polymer matrix, respectively.
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2.2. Axially Varying Load

In the present study, various types of load profiles along the beam length are consid-
ered and can be represented by a function as

F(x) = F0g(x) = F0

(
α0 + α1

x
l
+ α2

x2

l2

)
(6)

where F0 denotes the average value of the applied load, and the different values of αi=0,1,2
are given in Table 1. It is noted that the integrals of F(x) along the length of the microbeam
are equal for all types of axially varying load cases.

Table 1. Load coefficients of AVLs.

Type of AVL Symbol
Load Coefficients

α0 α1 α2

Constant load FC 1 0 0
Linear load FL 0 2 0

Parabolical load FP 0 0 3
Symmetric parabolic load FS 0 6 −6

Figure 3 shows the distribution of the different types of AVLs throughout the length
of the microbeam. As can be observed, FC is the constant-load case; FL monotonically
increases from the left to the right end; FP varies in form of parabolic variation; and FS
varies as a parabolic form.
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2.3. Governing Equations

The equilibrium of differential elements in the microbeam subject to the axial load F is
shown in Figure 4, and the following relationships must be valid

∂Q
∂x

= ρA
∂2w
∂t2 (7)
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∂M
∂x

= F(x)
∂w
∂x

− Q(x) (8)

where Q(x) is the shear force; w(x) is deflection; and M(x) is named as the equivalent
moment combining the bending and couple moments, and is written as [25]

M = Mx + Mxy =
(

EI + ζ2GA
)∂2w

∂x2 = EI
∂2w
∂x2 (9)

in which A is the cross-sectional area, I is the inertia moment, Mx(x) is the bending moment,

and Mxy(x) is the couple moment induced by couple stresses. Herein E = E + ζ2GA
I =

E + 12G ζ2

h2 is the size-dependent equivalent Young’s modulus of the microbeam, and can
be decided both by the material length scale and geometric parameters of the microbeam.
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The microbeam cross-sectional slope can be introduced as

φ =
∂w
∂x

(10)

Then, Equations (8) and (9) are to be rewritten as

∂M
∂x

= F(x)φ(x)− Q(x) (11)

∂φ

∂x
=

M
EI

(12)

Equations (7) and (10)–(12) can be rewritten as a matrix form

dT(x)
dx

= B(x)T(x) (13)

where the so-called state vector is T(x) =
[
w(x) φ(x) M(x) Q(x)

]T, and the system
matrix B(x) leads to

B(x) =


0 1 0 0
0 0 1

E(x)I 0
0 F(x) 0 −1

ρ(x)A ∂2

∂t2 0 0 0

 (14)

Furthermore, the following parameters in dimensionless form are introduced

ξ =
x
l

, w(ξ) =
w(x)

h
, M(ξ) =

M(x)l
E0 I

, Q(ξ) =
Q(x)l2

E0 I
, Ω = ωl2

√
ρ0 A
E0 I

, F0 =
F0l2

E0 I
(15)
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For the problem of vibration, the state vector is

T(ξ, t) = T(ξ)eiωt (16)

and Equation (13) turns out to be

dT(ξ)
dξ

= B(ξ)T(ξ) (17)

where T(ξ) =
[
w(ξ) φ(ξ) M(ξ) Q(ξ)

]T, and the updated system matrix B(x) is

B(ξ) =



0
l
h

0 0

0 0
E0

E(ξ)
0

0 F0g(ξ) 0 −1

−h
l

ρ(ξ)

ρ0
Ω2 0 0 0


(18)

in which, respectively, E0 and ρ0 are the referenced values, and g(ξ) = α0 + α1ξ + α2ξ2

represents the distribution of AVLs throughout the microbeam length.

3. Solution Procedure

The governing Equation (17) is a variable-coefficient ordinary differential equation,
and is quite difficult to solve analytically. To facilitate the numerical calculations, the
microbeam is split into a series of identical length segments le = l/N along its length
direction with a large enough value of N, as shown in Figure 5. The material properties of
each sufficiently short segment are thought of as constant, resulting in matrix B independent
of ξ.
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For the jth segment, the governing equation, Equation (17), is

dTj(ξ)

dξ
= Bj

(
ξ jm

)
Tj(ξ) (19)

where ξ0
j = (j − 1)/N and ξ1

j = j/N represent contiguous coordinates of the segment, and

ξ jm =
(

ξ0
j + ξ1

j

)
/2, (j = 1, 2, · · · , N). The solution for Equation (19) is

Tj(ξ) = exp
[(

ξ − ξ0
j

)
Bj

]
Tj

(
ξ0

j

)
,
(

ξ0
j ≤ ξ ≤ ξ1

j

)
(20)

Setting ξ = ξ1
j leads to

Tj

(
ξ1

j

)
= exp

(
Bj/N

)
Tj

(
ξ0

j

)
(21)
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The continuity conditions of adjacent segments yield

T(1) = RT(0) (22)

in which T(0) = T1
(
ξ0

1
)

and T(1) = TN
(
ξ1

N
)

are the state vectors of the microbeam’s two
ends, respectively, and R = ∏1

j=N exp
(
Bj/N

)
denotes the microbeam transfer matrix.

Three typical end boundary conditions of the microbeams, namely simply supported
(S), clamped (C), and free (F) ends, are herein considered as

w = 0, M = 0, simply supported end;
w = 0, φ = 0, clamped end;
M = 0, Q = 0, free end.
For the SS microbeam, Equation (22) gives

0
φ(1)

0
Q(1)

 =


R11 R12 R13 R14
R21 R22 R23 R24
R31 R32 R33 R34
R41 R42 R43 R44




0
φ(0)

0
Q(0)

 (23)

in which Rij is the element of the global transfer matrix R. The non-zero solution for the
first and third equations in Equation (23) requires∣∣∣∣R12 R14

R32 R34

∣∣∣∣ = 0 (24)

which is the characteristic equation of SS microbeams.
Similarly, the corresponding characteristic equation for the CC microbeam is∣∣∣∣R13 R14

R23 R24

∣∣∣∣ = 0 (25)

The characteristic equation for the CF microbeam gives∣∣∣∣R33 R34
R43 R44

∣∣∣∣ = 0 (26)

The CS microbeam yields ∣∣∣∣R13 R14
R33 R34

∣∣∣∣ = 0 (27)

Equations (24)–(27) show two eigenvalue problems which lead to the calculation of
vibration frequencies and buckling loads for the AFG-PLRC microbeams, and can be solved
with numerical methods.

4. Numerical Results

In this section, the present formulations are applied herein to examine the stability
and vibration characteristics of AFG-GPLRC microbeams. Firstly, numerical examples are
carried out to validate the accuracy and convergence of the present method. Then the
buckling load and vibration frequency of AFG-GPLRC microbeams with AVLs are studied.
In the calculations, the parameters in Table 2 are used.

Table 2. Material properties of the GPLs and epoxy [8].

Material Properties GPLs Epoxy

Young’s modulus (GPa) 1010 3.0
Mass density (kg m−3) 1060 1200

Poisson’s ratio 0.186 0.34
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Unless otherwise indicated, the geometrical parameters of GPL nano-reinforcements
are fixed as: lGPL = 2.5 µm, wGPL = 1.5 µm, and hGPL = 1.5 nm, respectively. The
slenderness ratio λ = l/h of the microbeam is set to be λ = 20, and the GPL weight
fraction is preferred as WGPL = 1%. The number N of segments is taken as 200 to maintain
sufficient convergence.

Equations (24)–(27) are transcendental equations about the nondimensional vibration
frequency Ω, and the critical buckling loads can be calculated by setting Ω = 0 for the
corresponding boundary conditions. In the present study, the bisection method with the
aid of Matlab R2022a is conducted to find the roots of the transcendental equation.

4.1. Validation

Furthermore, to validate the present model, a unit-length beam consisting of AFGMs
without considering size effects, i.e., ζ = 0, are examined. The Young’s modulus E of the
AFGM beam [37] takes the form of E(x) = E0(1 + x), while the mass density ρ is chosen as
ρ(x) = ρ0

(
1 + x + x2). Table 3 lists the parameters for the frequency µ = ωl2

√
ρ0 A/E0 I of

the AFGM beams, and compares these to the existing results from the literature. It shows
good agreement between our results and the available previous results.

Table 3. Natural frequencies of AFGM beams with unit length.

Frequency
Parameters

CC CF SS

Ref. [37] Present Ref. [37] Present Ref. [37] Present

µ1 20.4721 20.4721 2.4256 2.4256 9.0286 9.0286
µ2 56.5482 56.5482 18.6041 18.6041 36.3715 36.3715
µ3 110.9396 110.9396 55.1791 55.1791 81.7289 81.7289
µ4 183.4447 183.4447 109.5748 109.5748 145.1907 145.1907

The validations of the free vibration and buckling load calculations of a linearly
axial-loaded isotropic beam were also conducted. The vibration frequency and buckling
parameters predicted by the proposed model match well, as shown in Tables 4 and 5, in
which the parameters in the tables can be found in Ref. [36].

Table 4. The fundamental frequency parameter α4 = ρAω2l4/EI for τ(0) = 10.

Parameters γ
CC CF SS

Ref. [36] Present Ref. [36] Present Ref. [36] Present

100 5.8768 5.8768 3.5876 3.5876 5.0032 5.0032
4 5.0437 5.0437 2.7660 2.7660 3.8322 3.8322
−3 4.9587 4.9587 2.5956 2.5956 3.6689 3.6689

Table 5. The critical buckling parameter γc for various τ(0).

BC
τ(0)=10 τ(0)=4 τ(0)=0

Ref. [36] Present Ref. [36] Present Ref. [36] Present

CC 92.3767 92.3767 81.7753 81.7753 74.6286 74.6286
CF 16.9986 16.9986 8.9816 8.9816 3.4766 3.4766
SS 35.5755 35.5755 25.5475 25.5475 18.5687 18.5687

4.2. Buckling Analysis of AFG-GPLRC Microbeams

The influence of the material length scale, axial distribution pattern of GPLs, types of
axially varying load, and boundary condition on the critical buckling load Fcr = Fcrl2/E0 I
of AFG-GPLRC microbeams are presented in Tables 6–9. For comparison, the results of
pure epoxy microbeams are also given. It is discovered that the buckling resistance of
the nanocomposite microbeams could be greatly increased by a low percentage of GPL
nanofillers. With a dispersion of 1% weight fraction of GPLs in AFG-O SS microbeams, it
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is over five times higher than the buckling load of a pure-epoxy case. This is because the
presence of GPL nanofillers enhances the effective material properties, resulting in increased
flexural beam stiffness. Additionally, the axially graded pattern of GPLs significantly
influences the buckling resistance. The table results show that GPL nanofillers have a
significant enhancing impact on various types of axial load distributions. Among the
studied GPL distributions, the AFG-V pattern for CC beams reaches a higher buckling load
for the symmetric parabolic load, in which the axial distributions of GPLs and the applied
load are nearly coincident along beam length. Among all of the axially varying loads, the
AFG-O SS microbeams exhibit the highest buckling resistance, except for in the parabolic
case. For the same GPL patterns, the buckling load increases as FP < FL < FC < FS. It is as
a result of this that, for the symmetric parabolic axial load, the load magnitude is located at
the min-span of the microbeam, and the GPL content is also higher at the same position for
the AFG-O pattern. This increased stiffness helps to resist buckling under the higher load
magnitude at the mid-span of the microbeam, resulting in improved buckling resistance
for the AFG-O pattern in this specific case. However, the CC and CF microbeams with the
pattern UD under the axial constant load FC yield the highest buckling load. The effects of
the material length scale parameter on the buckling loads of the AFG-GPLRC microbeams
are also listed in Tables 9–12. As can be observed, the critical buckling loads by the MCST
are significantly different with the classical ones (ζ/h = 0), and the buckling resistance
of the microbeam with size effects increases as the material length scale parameter takes
higher values for all of the studied cases. As expected, the CC boundary conditions yield
the highest buckling load for a given GPL pattern and axially applied load. It can be
concluded that the synergetic influence of the nature of the axial gradation of GPLs, axially
applied load, and material length scale, as well as the boundary condition, on the buckling
resistance of the AFG-GPLRC microbeam are intricate. Generally, the synchronized axial
distributions of GPLs and applied load throughout the beam length could improve the
buckling resistance more powerfully.

Table 6. Dimensionless buckling load for the AFG-GPLRC SS microbeam (WGPL = 1%).

AVLs ζ/h Epoxy UD AFG-X AFG-O AFG-V

Constant load FC

0 9.8696 43.0091 23.0554 51.3215 37.8012
0.1 10.3115 44.9373 24.0883 53.6231 39.4956
0.5 20.9177 91.2162 48.8766 108.8626 80.1601
1.0 54.0619 235.8375 126.3402 281.4859 207.2369

Linear load FL

0 9.2792 40.4364 22.4870 45.8145 42.8317
0.1 9.6947 42.2493 23.4944 47.8689 44.7522
0.5 19.6664 85.7598 47.6722 97.1749 90.8432
1.0 50.8280 221.7303 123.2279 251.2561 234.8778

Parabolical load FP

0 7.7171 33.6290 19.9703 36.0404 37.0528
0.1 8.0626 35.1368 20.8650 37.6563 38.7143
0.5 16.3557 71.3225 42.3381 76.4395 78.5899
1.0 42.2713 184.4028 109.4418 197.6367 203.2014

Symmetric parabolic
load FS

0 13.7960 60.1193 28.2999 81.4720 55.4054
0.1 14.4138 62.8147 29.5675 85.1269 57.8890
0.5 29.2393 127.5046 59.9912 172.8437 117.4960
1.0 75.5692 329.6605 155.0654 446.9585 303.7676

To further examine the size effect of AFG-GPLRC microbeams, the critical buckling
loads with respect to material length scale parameter to thickness ratio ζ/h for CC mi-
crobeams are presented in Figure 6. It is observed again that the material length scale
enhances the buckling load, i.e., the intrinsic size dependence of the microbeam increases
the bending stiffness, leading to increased values of critical buckling load, which confirms
the stiffening effect of the length scale parameter.
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Table 7. Dimensionless buckling load for the AFG-GPLRC CC microbeam (WGPL = 1%).

AVLs ζ/h Epoxy UD AFG-X AFG-O AFG-V

Constant load FC

0 39.4784 172.0362 133.1470 137.4249 138.2338
0.1 41.2461 179.7494 139.1161 143.5862 144.4303
0.5 83.6707 364.8647 282.3745 291.4568 293.1452
1.0 216.2475 943.3501 730.0568 753.5524 757.8794

Linear load FL

0 37.2950 162.5216 133.8917 125.1426 166.1325
0.1 38.9650 169.8082 139.8946 130.7527 173.5825
0.5 79.0432 344.6855 283.9660 265.3952 352.3804
1.0 204.2877 891.1772 734.1890 686.1528 911.1240

Parabolical load FP

0 35.8365 156.1656 142.0906 109.5415 174.7855
0.1 37.4411 163.1672 148.4619 114.4516 182.6248
0.5 75.9519 331.2053 301.3735 232.2927 370.7690
1.0 196.2983 856.3242 779.2222 600.5460 958.7194

Symmetric parabolic
load FS

0 36.0861 157.2534 112.1374 147.2780 135.1531
0.1 37.7019 164.3038 117.1642 153.8827 141.2120
0.5 76.4810 333.5124 237.8083 312.3938 286.6266
1.0 197.6657 862.2896 614.8210 807.7408 741.0472

Table 8. Dimensionless buckling load for the AFG-GPLRC CF microbeam (WGPL = 1%).

AVLs ζ/h Epoxy UD AFG-X AFG-O AFG-V

Constant load FC

0 2.4674 10.7523 7.6922 7.9135 5.7632
0.1 2.5779 11.2343 8.0369 8.2682 6.0213
0.5 5.2294 22.8040 16.3097 16.7793 12.2177
1.0 13.5155 58.9594 42.1623 43.3765 31.5813

Linear load FL

0 1.7357 7.5636 5.2802 6.0921 4.4571
0.1 1.8134 7.9028 5.5168 6.3651 4.6568
0.5 3.6786 16.0414 11.1955 12.9181 9.4494
1.0 9.5074 41.4747 28.9414 33.3963 24.4262

Parabolical load FP

0 1.4886 6.4868 4.4517 5.4225 4.0354
0.1 1.5552 6.7776 4.6512 5.6655 4.2162
0.5 3.1549 13.7576 9.4387 11.4986 8.5556
1.0 8.1538 35.5700 24.3998 29.7269 22.1163

Symmetric parabolic
load FS

0 2.4416 10.6396 8.1135 7.5923 5.4371
0.1 2.5509 11.1166 8.4771 7.9325 5.6806
0.5 5.1746 22.5651 17.2037 16.0979 11.5261
1.0 13.3739 58.3417 44.4741 41.6148 29.7934

Table 9. Dimensionless buckling load for the AFG-GPLRC CS microbeam (WGPL = 1%).

AVLs ζ/h Epoxy UD AFG-X AFG-O AFG-V

Constant load FC

0 20.1907 87.9857 69.2723 80.5295 72.1372
0.1 21.0948 91.9305 72.3777 84.1401 75.3708
0.5 42.7923 186.6053 146.9061 170.7942 152.9766
1.0 110.5970 482.4642 379.8072 441.5885 395.4948

Linear load FL

0 14.9841 65.2967 54.7540 57.8374 62.8773
0.1 15.6550 68.2243 57.2086 60.4303 65.6965
0.5 31.7574 138.4851 116.1183 122.6585 133.3583
1.0 82.0772 358.0504 300.2110 317.1216 344.8012

Parabolical load FP

0 12.2065 53.1928 47.3576 44.9621 53.5784
0.1 12.7531 55.5777 49.4807 46.9775 55.9809
0.5 25.8706 112.8145 100.4359 95.3490 113.6412
1.0 66.8627 291.6795 259.6709 246.5096 293.8294

Symmetric parabolic
load FS

0 23.7027 103.2901 70.3261 109.9998 84.1200
0.1 24.7640 107.9210 73.4782 114.9332 87.8907
0.5 50.2356 219.0637 149.1294 233.3343 178.3864
1.0 129.8344 566.3846 385.5393 603.3380 461.1856
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Figure 6. Size effect on the critical buckling load for AFG-GPLRC CC microbeams under AVLs.

Figure 7 plots the change in the critical buckling load of the AFG-O CC beam with
respect to GPL geometry parameters, considering the change in the length-to-thickness
ratio lGPL/hGPL and aspect ratio wGPL/lGPL of GPLs, as well as in the material length scale
parameter ζ/h. The length of GPLs is held constant (lGPL = 2.5 µm) in the figure. The
buckling load firstly increases quickly as lGPL/hGPL increases, and then increases slowly
for higher lGPL/hGPL ratios. It is concluded that nanofillers consisting of a smaller number
of monolayer graphene sheets are expected to provide superior enhancing effects. In the
meantime, it is seen that the increase in the width of GPLs leads to a rise in the value of
the critical buckling load, which indicates that an increase in the area of the GPLs leads to
a higher bending stiffness of the GPL-reinforced microbeams. Figure 7 shows again the
hardening effect of a micro-scaled beam due to the intrinsic material length.

The influence of the nature of axially varying loads, axially graded dispersion of GPL
nanofillers, and material intrinsic length scale on the fundamental buckling mode of the
AFG-GPLRC CC microbeam are presented in Figures 8–10. From the figures, the buckling
mode shapes of the microbeam under an axially applied load is asymmetric along the
microbeam length in spite of symmetric boundary condition, symmetric GPL dispersion
pattern and symmetric axially applied load. This can be interpreted due to the accumulation
of the axially applied load. Meantime, it can be found that the distribution of axial load has a
critical impact on the shape of buckling mode. For a given axially varying load, the buckling
mode varies sensitively with axial distribution pattern of GPLs, as seen in Figure 9. The
GPL nano-reinforcements dispersed into epoxy matrix can observably improve the bending
stiffness, and hence decreases the transverse deflection of AFG-GPLRC microbeams. For
the given axially applied load, the AFG-X pattern holds the lowest peak value in the
buckling mode. From Figure 10, it demonstrates that the transverse deflection of AFG-
GPLRC microbeams decreases with the increase in the material length scale parameter.
This means that the microbeam having a larger stiffness when considering size effect has a
less transverse displacement.
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4.3. Free Vibration of AFG-GPLRC Microbeams

To investigate the vibration behaviors of AFG-GPLRC microbeams, Table 10 lists the
dimensionless fundamental frequency parameter Ω involved in axial GPL distribution
patterns, boundary conditions, and the material length scale parameter to thickness ratios.
It is seen from the table that the microbeam frequency rises significantly by adding GPL
nano-reinforcements regardless of the GPL distribution pattern. As can be expected, the
dispersion of GPLs leads to an increase in the microbeam bending stiffness. Similar tenden-
cies found in the buckling study also apply to the reinforcing effects of GPL nanofillers on
microbeam vibration performances, which rely on the boundary condition. It is important
to note that the frequency increment is determined by both the boundary condition and the
GPL distribution pattern. In other words, these two factors work together to influence the
increase in frequency. This observation highlights the interplay between the microbeam
boundary conditions and the GPL distribution pattern, both of which contribute to the
changes in vibration frequencies. For instance, the AFG-O pattern exhibits a more pro-
nounced enhancement in the vibration frequency of SS microbeams. On the other hand, the
UD pattern yields the highest frequencies for microbeams with other boundary conditions.
This suggests that the choice of GPL distribution pattern can have a significant impact on
the vibration frequencies of microbeams, with different patterns showing varying degrees
of enhancement depending on the specific boundary conditions. The size-dependent fun-
damental frequencies of the microbeams are also listed in Table 13. It can be found that the
frequencies increase monotonously as the material length scale parameter ζ increases. It is
due to this that the increasing ζ yields a more powerful small-scale effect that makes the
microbeams stiffer.

Table 10. Fundamental frequency Ω of the AFG-GPLRC microbeam without considering axial load.

B.C. ζ/h Epoxy UD AFG-X AFG-O AFG-V

SS

0 9.8696 20.6166 15.2374 22.6759 19.6099
0.1 10.0881 21.0737 15.5750 23.1788 20.0446
0.5 14.3683 30.0243 22.1860 33.0263 28.5569
1.0 23.0991 48.2773 35.6698 53.1070 45.9167

CC

0 22.3733 46.7355 45.9273 38.9470 42.3031
0.1 22.8687 47.7716 46.9459 39.8104 43.2410
0.5 32.5714 68.0616 66.8905 56.7173 61.6064
1.0 52.3631 109.4392 107.5613 91.1966 99.0593

CF

0 3.5160 7.3446 7.2080 5.6277 8.7530
0.1 3.5939 7.5074 7.3678 5.7524 8.9472
0.5 5.1187 10.6960 10.4969 8.1942 12.7495
1.0 8.2290 17.1986 16.8782 13.1745 20.5026

CS

0 15.4182 32.2070 29.5869 29.9310 27.6900
0.1 15.7596 32.9211 30.2429 30.5946 28.3038
0.5 22.4461 46.9036 43.0883 43.5895 40.3227
1.0 36.0852 75.4183 69.2839 70.0900 64.8343

To further illustrate the impacts of the GPL enhancement effect and micro-size effect,
Figure 11 depicts the fundamental frequency parameter Ω of the AFG-GPLRC CC mi-
crobeams against the material length scale parameter. As can be observed, as the parameter
ζ increases, the fundamental frequency consistently and monotonously increases. Com-
pared with pure epoxy, the fundamental frequency of the AFG-GPLRC microbeam exhibits
a sharper increase, which indicates that the GPL incremental effect on the fundamental
frequency is strengthened by size effects. However, the incremental effect depends on the
GPL distribution pattern. For the CC microbeams, the UD pattern produces the highest
fundamental frequency, followed by AFG-X, AFG-V, and AFG-O patterns. It should, again,
be pointed out that the enhancement of GPL nanofillers is determined by both the GPL
distribution patterns and boundary conditions.
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Figure 11. Size effects on the fundamental frequency Ω  of the AFG-GPLRC CC microbeam. 
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of GPLs for the UD CC microbeams against different material length scale parameters. A 
constant GPL length lGPL = 2.5 μm is kept during analysis. As shown in Figure 12, the 

Figure 11. Size effects on the fundamental frequency Ω of the AFG-GPLRC CC microbeam.

Figure 12 studies the fundamental frequency variation versus the size and geometry
of GPLs for the UD CC microbeams against different material length scale parameters. A
constant GPL length lGPL = 2.5 µm is kept during analysis. As shown in Figure 12, the
frequency first increases very fast, and then slowly increases for larger lGPL/hGPL. It can be
noted here that the GPL nano-reinforcements contain fewer graphene layers for a larger
value of lGPL/hGPL, and hence improve the microbeam frequencies more effectively. It is
also seen that the microbeams reinforced by GPLs with larger wGPL/lGPL produce larger
frequencies. This means that the larger surface area of GPL nano-reinforcements provided
a more superior reinforcement effect.
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Tables 11–14 reveal the influence of axial variations in the GPL distribution pattern and
applied load on the fundamental frequency Ω of the AFG-GPLRC microbeam, respectively.
It is noted the material length scale effect is not considered in these tables, i.e., (ζ/h = 0),
and FE

cr denotes the buckling load of a pure epoxy microbeam. To maintain consistency
with the previous discussion, the positive values of F0 denote compressive loads and
the negative ones represent tensional loads. From the tables, the dimensionless natural
frequency descends with an increase in axial compression force. On the other hand, it
rises with an enlarging of the axial tension force. These trends highlight the influence
of axially applied loads on the vibration of microbeams and provide insights into the
relationship between axially applied loads and natural frequencies. However, the synergetic
dependences of the fundamental frequency on the GPL distribution pattern, axially applied
load, and boundary condition are quite complex. It has been observed that the AFG-O
pattern consistently yields the highest frequency for all given axially applied loads. In
contrast, the UD microbeam gives the largest value of frequency for CC and CS boundary
conditions, while AFG-V is the most effective in enhancing the vibration frequency of CF
microbeams. For a given GPL distribution pattern and average value of applied load F0,
the type of axially applied load can also critically influence the vibration performance. For
instance, the AFG-O SS microbeams under a symmetric parabolic load FS hold the highest
natural frequency regardless of compressive or tensional load. However, the AFG-V CF
microbeam under a parabolical load FP and constant load FP yields the highest ones for
tensional and compressive loads, respectively.

Table 11. Dimensionless fundamental frequency Ω for the AFG-GPLRC SS microbeam (FE
cr = 7.7171).

AVLs ¯
F0

Epoxy UD AFG-X AFG-O AFG-V

FC

−0.8FE
cr 12.5834 22.0467 17.1536 23.9985 21.1403

−0.2FE
cr 10.6133 20.9832 15.7385 23.0137 20.0037

0.2FE
cr 9.0651 20.2433 14.7192 22.3329 19.2078

0.8FE
cr 6.0396 19.0796 13.0410 21.2706 17.9466

FL

−0.8FE
cr 12.5092 22.0361 17.1426 23.9839 21.3487

−0.2FE
cr 10.6073 20.9825 15.7377 23.0127 20.0633

0.2FE
cr 9.0577 20.2425 14.7184 22.3319 19.1422

0.8FE
cr 5.8383 19.0666 13.0257 21.2529 17.6418

FP

−0.8FE
cr 12.7911 22.2372 17.3180 24.2204 21.6802

−0.2FE
cr 10.7110 21.0382 15.7883 23.0784 20.1579

0.2FE
cr 8.9153 20.1827 14.6620 22.2612 19.0381

0.8FE
cr 4.6089 18.7977 12.7545 20.9349 17.1521

FS

−0.8FE
cr 11.7775 21.6072 16.7620 23.4757 20.6275

−0.2FE
cr 10.3850 20.8693 15.6343 22.8789 19.8699

0.2FE
cr 9.3214 20.3603 14.8286 22.4706 19.3458

0.8FE
cr 7.4025 19.5682 13.5194 21.8411 18.5274
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Table 12. Dimensionless fundamental frequency Ω for the AFG-GPLRC CC microbeam
(FE

cr = 35.8365).

AVLs ¯
F0

Epoxy UD AFG-X AFG-O AFG-V

FC

−0.8FE
cr 29.1182 50.3587 50.1791 42.7745 46.3175

−0.2FE
cr 24.2563 47.6698 47.0344 39.9395 43.3458

0.2FE
cr 20.2974 45.7801 44.7869 37.9276 41.2308

0.8FE
cr 11.8556 42.7733 41.1347 34.6842 37.8099

FL

−0.8FE
cr 28.9486 50.3328 50.1586 42.7218 46.9863

−0.2FE
cr 24.2417 47.6680 47.0330 39.9358 43.5401

0.2FE
cr 20.2780 45.7782 44.7854 37.9236 41.0141

0.8FE
cr 11.1889 42.7396 41.1075 34.6091 36.7696

FP

−0.8FE
cr 28.7431 50.2761 49.8635 42.9003 47.3501

−0.2FE
cr 24.2113 47.6575 46.9548 39.9955 43.6537

0.2FE
cr 20.2810 45.7857 44.8671 37.8511 40.8807

0.8FE
cr 10.6588 42.7482 41.4612 34.2189 36.0722

FS

−0.8FE
cr 28.9878 50.6885 50.6827 42.2585 46.1296

−0.2FE
cr 24.2701 47.6850 47.1846 39.8086 43.3033

0.2FE
cr 20.2281 45.7590 44.6167 38.0601 41.2699

0.8FE
cr 10.6099 42.6462 40.3016 35.2266 37.9410

Table 13. Dimensionless fundamental frequency Ω for the AFG-GPLRC CF microbeam (FE
cr = 1.4886).

AVLs ¯
F0

Epoxy UD AFG-X AFG-O AFG-V

FC

−0.8FE
cr 4.2112 7.7101 7.6807 6.0174 9.0995

−0.2FE
cr 3.7061 7.4381 7.3301 5.7280 8.8415

0.2FE
cr 3.3117 7.2495 7.0829 5.5253 8.6631

0.8FE
cr 2.5763 6.9541 6.6888 5.2038 8.3850

FL

−0.8FE
cr 4.3737 7.8196 7.8649 6.0920 9.2236

−0.2FE
cr 3.7627 7.4680 7.3812 5.7490 8.8752

0.2FE
cr 3.2383 7.2178 7.0278 5.5026 8.6274

0.8FE
cr 2.0713 6.8150 6.4395 5.1006 8.2284

FP

−0.8FE
cr 4.4156 7.8617 7.9465 6.1139 9.2781

−0.2FE
cr 3.7842 7.4803 7.4055 5.7560 8.8913

0.2FE
cr 3.2035 7.2040 7.0004 5.4942 8.6095

0.8FE
cr 1.7028 6.7496 6.3059 5.0579 8.1436

FS

−0.8FE
cr 4.2511 7.7287 7.6887 6.0421 9.1046

−0.2FE
cr 3.7158 7.4427 7.3318 5.7344 8.8425

0.2FE
cr 3.3023 7.2449 7.0815 5.5188 8.6624

0.8FE
cr 2.5404 6.9360 6.6848 5.1770 8.3837
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Table 14. Dimensionless fundamental frequency Ω for the AFG-GPLRC CS microbeam
(FE

cr = 12.2065).

AVLs ¯
F0

Epoxy UD AFG-X AFG-O AFG-V

FC

−0.8FE
cr 18.6890 33.9065 31.5551 31.6508 33.7410

−0.2Fcr 16.3024 32.6408 30.0920 30.3707 32.3107
0.2Fcr 14.4760 31.7669 29.0723 29.4842 31.3144
0.8Fcr 11.1458 30.4055 27.4662 28.0985 29.7461

FL

−0.8FE
cr 19.3101 34.3092 31.9563 32.0265 34.4657

−0.2Fcr 16.5106 32.7496 30.2006 30.4751 32.5097
0.2Fcr 14.2120 31.6520 28.9573 29.3719 31.1015
0.8Fcr 9.4039 29.9047 26.9615 27.5933 28.7957

FP

−0.8FE
cr 19.7778 34.6448 32.2076 32.4312 35.0244

−0.2Fcr 16.6835 32.8427 30.2712 30.5901 32.6702
0.2Fcr 13.9726 31.5517 28.8806 29.2458 30.9239
0.8Fcr 7.3098 29.4526 26.6104 27.0079 27.9525

FS

−0.8FE
cr 18.0867 33.5910 31.4111 31.1437 33.2416

−0.2Fcr 16.1384 32.5600 30.0565 30.2398 32.1809
0.2Fcr 14.6534 31.8492 29.1075 29.6181 31.4480
0.8Fcr 11.9970 30.7445 27.6048 28.6542 30.3061

Figure 13 reveals the relationship between an axially applied load F and the funda-
mental frequency Ω of AFG-GPLRC microbeams. For the sake of brevity, only the simply
supported AFG-O microbeam is analyzed under different types of axially variable loads
and/or material length scale parameters. It is seen that the fundamental frequency de-
creases sharply with the promotion of the compressive load (F > 0). The fundamental
frequency tends to approach zero when the axial load applied reaches the buckling load
F = Fcr. In contrast, the frequency raises with tension loading (F < 0). Therefore, the
compressive axial load decreases the beam stiffness, while the tensional load imposes
an opposite influence. From the figure, it is again certified that the intrinsic size effect
could dramatically promote the stiffness of the size-dependent microbeams, which, in turn,
increases the vibration frequency and critical buckling load.

Figures 14–16 illustrate the changes in the shape of the fundamental vibration mode
with respect to the axial GPL distribution, axially applied load, and material length scale
parameters, respectively. Due to the comparability, only the CC microbeam is considered.
It should be noticed that the axially graded distribution of GPL nanofillers plays a critical
role in deciding the deflection of the AFG-GPLRC microbeams. The dispersion of GPLs
increases the stiffness of the microbeam powerfully, and hence reduces the deformation.
From Figure 12, it is seen that the deflection is symmetric except in the case of AFG-V,
where the axial load is without consideration. However, Figure 13 shows that the vibration
modes of microbeams with AVLs are asymmetric, even with a symmetric GPL distribution
and boundary condition. This is because of the accumulation of axially applied loads like
the buckling mode. Figure 14 demonstrates again that the size effect could promote the
bending stiffness of the microbeams and decrease the peak of the vibration mode shape.
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5. Conclusions

In the current work, a comprehensive theoretical analysis was developed to accurately
predict the stability and free vibration performances of AFG-GPLRC microbeams under
axially varying loads. The modified couple stress Euler–Bernoulli beam theory was utilized
to derive the governing equation with the aid of the state-space method, and the discrete
equilong segment model was adopted to solve the equation to evaluate the buckling
loads and fundamental natural frequencies. The GPL nano-reinforcements dispersed into
the polymer matrix material (epoxy) varied with weight fraction across the microbeam
length, and the GPL-reinforced nanomaterial properties were calculated by employing the
improved Halpin–Tsai micromechanics model and the rule of mixtures. Different types of
AVLs were considered to check the buckling and vibration behaviors.

It is concluded:

1. The bending stiffness of the AFG-GPLRC microbeams can be powerfully promoted
by the small-scale effect (the smaller, the stiffer). This small-scaled enhancement is
due to the intrinsic size dependence of materials, and is more evident with a decrease
in the size of the microbeams.

2. The addition of GPL nano-reinforcements shows promising results in improving the
stability resistance and natural frequencies, and a few layers of single graphene sheets
with larger surface areas can improve the beam stiffness more powerfully.

3. The axially graded effects of GPLs on the mechanical behaviors of AFG microbeams
are decided by both the axial distribution pattern and boundary condition. For the
CC and CS microbeams, the UD pattern achieves a much higher buckling resistance
and fundamental frequency, while the AFG-V and AFG-O patterns are more suitable
for the CF and SS microbeams, respectively.

4. The axial loading pattern also influences the buckling load and natural frequency
of the microbeams significantly. The synergetic influence of AVLs on the buckling
load and fundamental frequency, as well as modes, should be targeted in the design
of microbeams.
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5. Generally, the synchronized axial distributions of GPLs and applied load throughout
the microbeam length could improve the buckling resistance and natural frequency
more powerfully.
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