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Abstract

:

This paper focuses on the size-dependent free vibration and buckling behaviors of the axially functionally graded (AFG) graphene platelets (GPLs) reinforced nanocomposite microbeams subjected to axially varying loads (AVLs). With various axial grading patterns, the GPL nano-reinforcements are distributed throughout the polymer matrix against microbeam length, and the improved Halpin–Tsai micromechanics model and the rule of mixture are adopted to evaluate the effective material properties. Eigenvalue equations of the microbeams governing the static stability and vibration are derived based on the modified couple stress Euler–Bernoulli beam theory via the state-space method, and are analytically solved with the discrete equilong segment model. The effects of axial distribution patterns, weight fraction, and geometric parameters of GPLs, as well as different types of AVLs, on the size-dependent buckling load and natural frequency are scrutinized in detail. The results show that the synchronized axial distributions of GPLs and AVLs could improve the buckling resistance and natural frequency more powerfully.
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1. Introduction


Due to the excellent physical properties of graphene, graphene-based nano-reinforcements are identified as a kind of promising candidate for the reinforcement phases of polymer matrix nanocomposites [1]. An increasing number of scientists are working to apply them to the design of micro/nanoscale devices, including nanosensors, nanoactuators, nanotransducers, and biosensors [2,3,4,5]. Of all of the graphene-based nanofillers, graphene nanoplates (GPLs), with their high specific surface area and high surface-to-mass ratio, provide several special advantages to develop high performance advanced nanocomposites with a wide range of possible applications [6,7]. The mechanical performances of nanocomposites can be substantially improved by dispersing a low content of GPLs. The elastic modulus and tensile strength of the pure epoxy can be improved by 31% and 53%, respectively, through adding GPLs [8]. In addition, the benefits of GPLs are critically dependent on the GPL distribution pattern within the matrix. Under the development of functionally graded materials (FGMs), functionally graded GPL-reinforced nanocomposites (FG-GPLRCs) are created as an exclusive category of advanced non-homogeneous nanocomposites [9,10]. Kitipornchai et al. [11] carried out an analysis of the elastic buckling and free vibration of FG-GPLRC porous beams. Feng et al. [9] studied the nonlinear bending of non-uniformly distributed GPL-reinforced polymer nanocomposite beams. Wu et al. [12] performed the dynamic stability analysis of FG-GPLRC beams. Yang et al. [13] analyzed the buckling/postbuckling of FG-GPLRC multilayer beams. In addition, the static and dynamic characteristics of FG-GPLRC plate- [14,15], shell- [16,17], and arche-like [18,19] structures were examined carefully.



Upon reviewing the aforementioned research, there has been a significant focus on incorporating GPL content grading in the structural thickness direction. However, axially functionally graded (AFG) beams are extensively used in a variety of engineering fields, e.g., the automotive industry, helicopter rotor blades, MEMS, and turbine blades. The AFG-GPLRCs will allow a novel tailored fit to control the mechanical responses of nanocomposite structures, such as the buckling resistance and dynamic behaviors over a pre-specified level. It can be anticipated that the combination of both axial and thickness directions for beam-like structures will yield the best functional grading. Hein and Feklistova [20] showed the results of a free vibration of the AFGM beam using the method of Haar wavelets. Rokni et al. [21] focused on the optimal multi-walled carbon nanotubes (MWCNTs) distribution within a polymer composite microbeam to maximize its dynamic behaviors while using a fixed amount of MWCNTs. Their findings revealed that a non-uniform axial dispersion of MWCNTs resulted in higher natural frequencies compared to that of a uniform distribution pattern. This suggests that carefully controlling the dispersion pattern of MWCNTs can significantly enhance the performance of microbeams in terms of their vibrational characteristics. El-Ashmawy and Xu [22] demonstrated that the axially graded CNTs led to notable improvements in mechanical properties such as stiffness, strength, and durability. Rezaiee-Pajand et al. [23] introduced the Hencky bar-chain model to investigate the buckling behavior of AFG-composite beams, considering the axially graded distribution of carbon nanotubes. It should be noted that, the analyses for AFG beams have become more complicated because of the governing equation with variable coefficients, and great efforts have been made to try to solve the four-order differential equations as mentioned above. Liang et al. [24] established linear and nonlinear isogeometric finite element models of an AFG-GPLRC curved beam within the framework of the third-order shear deformation beam theory and von-Karman’s nonlinear geometric relation. Recently, Liu et al. [25] developed the state-space method to examine the impact of an axially varying dispersion of GPLs on the stability and dynamic behaviors of AFG-GPLRC beams subjected to edge (compressive) loads.



Thin beams have indeed found significant applications in micro-electro-mechanical systems (MEMS), such as those in vibration shock sensors, biosensors, etc. In those applications, the beam mostly falls within the size of microns and sub-microns, and it is common to observe a size-dependent behavior in the deformation [26]. Nateghi et al. [27] revealed that the size dependency of FG microbeams is much higher than that of macro-beams. Wang et al. [28] employed the modified couple stress theory (MCST) and the von Karman nonlinearity for the vibration analysis of microbeams. Allahkarami and Tohidi [29] applied MCST into checking the geometrically nonlinear vibration of multilayer FG-GPLRC microbeam. Yin et al. [30] put forward an analytical solution and employed an isogeometric approach for a comprehensive investigation of the buckling analysis of size-dependent microbeams. Nguyen et al. [31] developed a Chebyshev–Ritz solution to investigate bending, vibration, and buckling responses of porous microbeams. Soltani et al. [32] investigated the comprehensive study of the vibration control of multi-layer sandwich composite piezoelectric microbeams.



Indeed, most of the buckling studies on beams often consider the presence of end compressive loads. However, in real-world scenarios, beams often experience axially varying compressive loads along the beam length. This variation in compressive load can be due to factors such as distributed loads, bending moments, or other external forces acting on the beam. Karamanli and Aydogdu [33] focused on studying the elastic buckling behavior of beams made of isotropic materials, laminated composites, and sandwich structures subjected to various axially varying in-plane loads. Eltaher et al. [34] used a differential quadrature method (DQM) to examine the static stability and mode-shapes of axially varying in-plane loaded composite laminated beams. Masjedi and Weaver [35] derived an analytical solution for three-dimensional static deflection of composite beams that experience non-uniformly distributed axial loads. Howaon and Williams [36] presented a dynamic stiffness matrix analysis on the vibration of a beam-column with axially loaded Timoshenko members. Naguleswaran [37] examined the transverse vibration of beams under linearly varying axial force. Bargozini et al. [38] studied the critical buckling load for a sandwich composite beam reinforced with carbon nanorods in the bottom and top layers under variable axial forces based on the sinusoidal shear deformation theory.



As indicated by the literature review, there has been a significant amount of research dedicated to FG-GPLRC structures. However, based on the available literature, it appears that the static and dynamic behaviors of AFG-GPLRC microbeams subjected to axially varying loads have not been extensively studied or clearly addressed. For axially graded microbeams, similar problems become more complicated because of the governing equation with variable coefficients, which is quite difficult to solve analytically or numerically. So far, few solutions are found for arbitrary gradient change due to the difficulty of the mathematical treatment of the problem, save certain special gradients. The objective of the present paper is to discuss the buckling and vibration characteristics of axially functionally graded (AFG) graphene platelets reinforced (GPLRC) nanocomposite microbeams subjected to different types of axially varying loads (AVLs). The GPL nano-reinforcements are dispersed into an epoxy matrix throughout the beam length in the uniform and non-uniform patterns, while the non-uniform distributions of GPLs yield the axially functionally graded nanocomposites. In the meantime, the linear and nonlinear forms of AVLs are taken into consideration. By combining the improved Halpin–Tsai model and the rule of mixtures, the effective material properties of AFG-GPLRCs are calculated. The governing equations are derived on the assumptions of the Euler–Bernoulli beam theory, and the MSCT is adopted to capture the scale effect of microbeams. The state-space method is developed to derive the governing equation of the eigenvalue problems, and a first-order differential equation in matrix form is obtained. To solve the governing equation with variable coefficients, the length-direction discrete model composed of equilong segmentations is employed. The characteristic equations are finally established for various boundary conditions by using the continuous conditions of the fictitious interfaces of the discrete model, and are solved numerically. To examine the synergetic influences of the axial grading of GPLs and AVLs on the size-dependence buckling and dynamic characteristics, numerical studies are carried out in terms of the small scale, distribution patterns, and geometric parameters of GPLs, and various types of AVLs.




2. Theoretical Formulation


2.1. Modeling of AFG-GPLRCs


An AFG-GPLRC microbeam (thickness h, length l, and width b) subjected to axially varying load F(x) is presented in Figure 1. The origin of the orthogonal coordinate system xoy is placed at the left-end cross-sectional center of the microbeam. The AFG-GPLRC microbeam is made from a matrix of polymer, and GPL nano-reinforcements are dispersed throughout the beam length direction in uniform or non-uniform manners with identical amounts. The axial distribution patterns of GPLs herein are shown in Figure 2.



The volume fraction    V  GPL     of GPLs for different distribution patterns, which varies along the beam length, can be addressed as [25]


       UD :       V  GPL    x  =  V  GPL  ∗         AFG - X :       V  GPL    x  =  V  GPL  ∗  4     x −  l / 2     / l         AFG - O :       V  GPL    x  =  V  GPL  ∗    2 − 4     x −  l / 2     / l           AFG - V :       V  GPL    x  =  V  GPL  ∗    1 + 2     x −  l / 2     / l         



(1)




where    V  GPL  ∗    is the average GPL volume fraction, and can be evaluated from the weight fraction WGPL as


   V  GPL  ∗  =    W  GPL      W  GPL   +      ρ  GPL    /   ρ M        1 −  W  GPL        



(2)




in which    W  GPL     is the total GPL weight fraction, and    ρ  GPL     and    ρ M    denote, respectively, the mass densities of GPLs and the matrix. It can be observed that the GPL volume fraction remains constant along the length direction in the UD pattern. For AFG-X, both of the ends are rich in GPL content, while the middle section has a lower GPL volume fraction. However, the GPL content in AFG-O is opposite to AFG-X. The GPL content of AFG-V represents a monotonous increase from the left end to the right end of the microbeam.



Herein, the multi-scaled model approximates the elastic modulus of GPLRCs, which is calculated based on the improved Halpin–Tsai micromechanics model [14], as follows:


  E =  3 8    1 +  ξ l   η l   V  GPL     1 −  η l   V  GPL     ×  E M  +  5 8    1 +  ξ w   η w   V  GPL     1 −  η w   V  GPL     ×  E M   



(3)




where    E  GPL     and    E M    denote, respectively, the elastic moduli of GPLs and polymer matrix. The parameters    ξ l    and    ξ w    read as


     η l  =        E  GPL    /   E M      − 1        E  GPL    /   E M      +  ξ l    ,      η w  =        E  GPL    /   E M      − 1        E  GPL    /   E M      +  ξ w         ξ l  = 2    l  GPL      h  GPL     ,      ξ w  = 2    w  GPL      h  GPL        



(4)




where    l  GPL    ,    w  GPL     and    h  GPL     are the length, width, and thickness of GPLs, respectively.



Furthermore, the equivalent mass density  ρ  and Poisson’s ratio  ν  of GPLRCs are determined by using the mixture rule as in [14]


    ρ =  ρ  GPL    V  GPL   +  ρ M    1 −  V  GPL         ν =  ν  GPL    V  GPL   +  ν M    1 −  V  GPL        



(5)




in which    ν  GPL     and    ν M    are the Poisson’s ratios of GPLs and polymer matrix, respectively.




2.2. Axially Varying Load


In the present study, various types of load profiles along the beam length are considered and can be represented by a function as


  F  x  =  F 0  g  x  =  F 0     α 0  +  α 1   x l  +  α 2     x 2     l 2       



(6)




where    F 0    denotes the average value of the applied load, and the different values of    α  i = 0 , 1 , 2     are given in Table 1. It is noted that the integrals of F(x) along the length of the microbeam are equal for all types of axially varying load cases.



Figure 3 shows the distribution of the different types of AVLs throughout the length of the microbeam. As can be observed, FC is the constant-load case; FL monotonically increases from the left to the right end; FP varies in form of parabolic variation; and FS varies as a parabolic form.




2.3. Governing Equations


The equilibrium of differential elements in the microbeam subject to the axial load F is shown in Figure 4, and the following relationships must be valid


    ∂ Q   ∂ x   = ρ A    ∂ 2  w   ∂  t 2     



(7)






    ∂ M   ∂ x   = F  x    ∂ w   ∂ x   − Q  x   



(8)




where Q(x) is the shear force; w(x) is deflection; and M(x) is named as the equivalent moment combining the bending and couple moments, and is written as [25]


  M =  M x  +  M  x y   =   E I +  ζ 2  G A      ∂ 2  w   ∂  x 2    =  E ¯  I    ∂ 2  w   ∂  x 2     



(9)




in which A is the cross-sectional area, I is the inertia moment, Mx(x) is the bending moment, and Mxy(x) is the couple moment induced by couple stresses. Herein    E ¯  = E +    ζ 2  G A  I  = E + 12 G    ζ 2     h 2      is the size-dependent equivalent Young’s modulus of the microbeam, and can be decided both by the material length scale and geometric parameters of the microbeam.



The microbeam cross-sectional slope can be introduced as


  φ =   ∂ w   ∂ x    



(10)







Then, Equations (8) and (9) are to be rewritten as


    ∂ M   ∂ x   = F  x  φ  x  − Q  x   



(11)






    ∂ φ   ∂ x   =  M   E ¯  I    



(12)







Equations (7) and (10)–(12) can be rewritten as a matrix form


    d  T   x    d x   =  B   x   T   x   



(13)




where the so-called state vector is    T   x  =         w  x      φ  x      M  x      Q  x         T   , and the system matrix B(x) leads to


   B   x  =      0   1   0   0     0   0     1  E  x  I      0     0    F  x     0    − 1       ρ  x  A    ∂ 2    ∂  t 2       0   0   0       



(14)







Furthermore, the following parameters in dimensionless form are introduced


  ξ =  x l  ,      w ¯   ξ  =   w  x   h  ,      M ¯   ξ  =   M  x  l    E 0  I   ,      Q ¯   ξ  =   Q  x   l 2     E 0  I   ,     Ω = ω  l 2       ρ 0  A    E 0  I     ,       F ¯  0  =    F 0   l 2     E 0  I    



(15)







For the problem of vibration, the state vector is


   T    ξ , t   =   T ¯    ξ   e  i ω t    



(16)




and Equation (13) turns out to be


    d   T ¯    ξ    d ξ   =   B ¯    ξ    T ¯    ξ   



(17)




where     T ¯    ξ  =          w ¯   ξ      φ  ξ       M ¯   ξ       Q ¯   ξ         T   , and the updated system matrix B(x) is


    B ¯    ξ  =      0     l h     0   0     0   0       E 0     E ¯   ξ       0     0      F ¯  0  g  ξ     0    − 1       −  h l    ρ  ξ     ρ 0     Ω 2     0   0   0       



(18)




in which, respectively,    E 0    and    ρ 0    are the referenced values, and   g  ξ  =  α 0  +  α 1  ξ +  α 2   ξ 2    represents the distribution of AVLs throughout the microbeam length.





3. Solution Procedure


The governing Equation (17) is a variable-coefficient ordinary differential equation, and is quite difficult to solve analytically. To facilitate the numerical calculations, the microbeam is split into a series of identical length segments    l e  =  l / N    along its length direction with a large enough value of N, as shown in Figure 5. The material properties of each sufficiently short segment are thought of as constant, resulting in matrix    B ¯    independent of ξ.



For the jth segment, the governing equation, Equation (17), is


    d    T ¯   j   ξ    d ξ   =    B ¯   j     ξ   j m         T ¯   j   ξ   



(19)




where    ξ j 0  =     j − 1    / N    and    ξ j 1  =  j / N    represent contiguous coordinates of the segment, and    ξ   j m    =      ξ j 0  +  ξ j 1     / 2  ,       j = 1 , 2 , ⋯ , N    . The solution for Equation (19) is


     T ¯   j   ξ  = exp     ξ −  ξ j 0       B ¯   j       T ¯   j     ξ j 0    ,        ξ j 0  ≤ ξ ≤  ξ j 1     



(20)







Setting   ξ =    ξ j 1    leads to


     T ¯   j     ξ j 1    = exp        B ¯   j   / N       T ¯   j     ξ j 0     



(21)







The continuity conditions of adjacent segments yield


    T ¯    1  =  R  T ¯    0   



(22)




in which     T ¯    0  =    T ¯   1     ξ 1 0      and     T ¯    1  =    T ¯   N     ξ N 1      are the state vectors of the microbeam’s two ends, respectively, and    R  =   ∏  j = N  1   exp        B ¯   j   / N        denotes the microbeam transfer matrix.



Three typical end boundary conditions of the microbeams, namely simply supported (S), clamped (C), and free (F) ends, are herein considered as



   w ¯  = 0 ,      M ¯  = 0  , simply supported end;



   w ¯  = 0 ,     φ = 0  , clamped end;



   M ¯  = 0 ,      Q ¯  = 0  , free end.



For the SS microbeam, Equation (22) gives


       0      φ  1       0       Q ¯   1        =        R  11        R  12        R  13        R  14          R  21        R  22        R  23        R  24          R  31        R  32        R  33        R  34          R  41        R  42        R  43        R  44              0      φ  0       0       Q ¯   0         



(23)




in which    R  i j     is the element of the global transfer matrix R. The non-zero solution for the first and third equations in Equation (23) requires


         R  12        R  14          R  32        R  34         = 0  



(24)




which is the characteristic equation of SS microbeams.



Similarly, the corresponding characteristic equation for the CC microbeam is


         R  13        R  14          R  23        R  24         = 0  



(25)







The characteristic equation for the CF microbeam gives


         R  33        R  34          R  43        R  44         = 0  



(26)







The CS microbeam yields


         R  13        R  14          R  33        R  34         = 0  



(27)







Equations (24)–(27) show two eigenvalue problems which lead to the calculation of vibration frequencies and buckling loads for the AFG-PLRC microbeams, and can be solved with numerical methods.




4. Numerical Results


In this section, the present formulations are applied herein to examine the stability and vibration characteristics of AFG-GPLRC microbeams. Firstly, numerical examples are carried out to validate the accuracy and convergence of the present method. Then the buckling load and vibration frequency of AFG-GPLRC microbeams with AVLs are studied. In the calculations, the parameters in Table 2 are used.



Unless otherwise indicated, the geometrical parameters of GPL nano-reinforcements are fixed as:    l  GPL   = 2.5    μ m   ,    w  GPL   = 1.5    μ m   , and    h  GPL   = 1.5   nm  , respectively. The slenderness ratio   λ =  l / h    of the microbeam is set to be   λ = 20  , and the GPL weight fraction is preferred as WGPL = 1%. The number N of segments is taken as 200 to maintain sufficient convergence.



Equations (24)–(27) are transcendental equations about the nondimensional vibration frequency Ω, and the critical buckling loads can be calculated by setting Ω = 0 for the corresponding boundary conditions. In the present study, the bisection method with the aid of Matlab R2022a is conducted to find the roots of the transcendental equation.



4.1. Validation


Furthermore, to validate the present model, a unit-length beam consisting of AFGMs without considering size effects, i.e.,   ζ = 0  , are examined. The Young’s modulus E of the AFGM beam [37] takes the form of   E  x  =  E 0    1 + x    , while the mass density ρ is chosen as   ρ  x  =  ρ 0    1 + x +  x 2     . Table 3 lists the parameters for the frequency   μ = ω  l 2       ρ 0  A  /   E 0  I       of the AFGM beams, and compares these to the existing results from the literature. It shows good agreement between our results and the available previous results.



The validations of the free vibration and buckling load calculations of a linearly axial-loaded isotropic beam were also conducted. The vibration frequency and buckling parameters predicted by the proposed model match well, as shown in Table 4 and Table 5, in which the parameters in the tables can be found in Ref. [36].




4.2. Buckling Analysis of AFG-GPLRC Microbeams


The influence of the material length scale, axial distribution pattern of GPLs, types of axially varying load, and boundary condition on the critical buckling load     F ¯   cr   =    F  cr    l 2   /   E 0  I     of AFG-GPLRC microbeams are presented in Table 6, Table 7, Table 8 and Table 9. For comparison, the results of pure epoxy microbeams are also given. It is discovered that the buckling resistance of the nanocomposite microbeams could be greatly increased by a low percentage of GPL nanofillers. With a dispersion of 1% weight fraction of GPLs in AFG-O SS microbeams, it is over five times higher than the buckling load of a pure-epoxy case. This is because the presence of GPL nanofillers enhances the effective material properties, resulting in increased flexural beam stiffness. Additionally, the axially graded pattern of GPLs significantly influences the buckling resistance. The table results show that GPL nanofillers have a significant enhancing impact on various types of axial load distributions. Among the studied GPL distributions, the AFG-V pattern for CC beams reaches a higher buckling load for the symmetric parabolic load, in which the axial distributions of GPLs and the applied load are nearly coincident along beam length. Among all of the axially varying loads, the AFG-O SS microbeams exhibit the highest buckling resistance, except for in the parabolic case. For the same GPL patterns, the buckling load increases as    F P  <  F L  <  F C  <  F S   . It is as a result of this that, for the symmetric parabolic axial load, the load magnitude is located at the min-span of the microbeam, and the GPL content is also higher at the same position for the AFG-O pattern. This increased stiffness helps to resist buckling under the higher load magnitude at the mid-span of the microbeam, resulting in improved buckling resistance for the AFG-O pattern in this specific case. However, the CC and CF microbeams with the pattern UD under the axial constant load    F C    yield the highest buckling load. The effects of the material length scale parameter on the buckling loads of the AFG-GPLRC microbeams are also listed in Table 9, Table 10, Table 11 and Table 12. As can be observed, the critical buckling loads by the MCST are significantly different with the classical ones (ζ/h = 0), and the buckling resistance of the microbeam with size effects increases as the material length scale parameter takes higher values for all of the studied cases. As expected, the CC boundary conditions yield the highest buckling load for a given GPL pattern and axially applied load. It can be concluded that the synergetic influence of the nature of the axial gradation of GPLs, axially applied load, and material length scale, as well as the boundary condition, on the buckling resistance of the AFG-GPLRC microbeam are intricate. Generally, the synchronized axial distributions of GPLs and applied load throughout the beam length could improve the buckling resistance more powerfully.



To further examine the size effect of AFG-GPLRC microbeams, the critical buckling loads with respect to material length scale parameter to thickness ratio    ζ / h    for CC microbeams are presented in Figure 6. It is observed again that the material length scale enhances the buckling load, i.e., the intrinsic size dependence of the microbeam increases the bending stiffness, leading to increased values of critical buckling load, which confirms the stiffening effect of the length scale parameter.



Figure 7 plots the change in the critical buckling load of the AFG-O CC beam with respect to GPL geometry parameters, considering the change in the length-to-thickness ratio      l  GPL    /   h  GPL       and aspect ratio      w  GPL    /   l  GPL       of GPLs, as well as in the material length scale parameter    ζ / h   . The length of GPLs is held constant (   l  GPL   = 2.5    μ m   ) in the figure. The buckling load firstly increases quickly as      l  GPL    /   h  GPL       increases, and then increases slowly for higher      l  GPL    /   h  GPL       ratios. It is concluded that nanofillers consisting of a smaller number of monolayer graphene sheets are expected to provide superior enhancing effects. In the meantime, it is seen that the increase in the width of GPLs leads to a rise in the value of the critical buckling load, which indicates that an increase in the area of the GPLs leads to a higher bending stiffness of the GPL-reinforced microbeams. Figure 7 shows again the hardening effect of a micro-scaled beam due to the intrinsic material length.



The influence of the nature of axially varying loads, axially graded dispersion of GPL nanofillers, and material intrinsic length scale on the fundamental buckling mode of the AFG-GPLRC CC microbeam are presented in Figure 8, Figure 9 and Figure 10. From the figures, the buckling mode shapes of the microbeam under an axially applied load is asymmetric along the microbeam length in spite of symmetric boundary condition, symmetric GPL dispersion pattern and symmetric axially applied load. This can be interpreted due to the accumulation of the axially applied load. Meantime, it can be found that the distribution of axial load has a critical impact on the shape of buckling mode. For a given axially varying load, the buckling mode varies sensitively with axial distribution pattern of GPLs, as seen in Figure 9. The GPL nano-reinforcements dispersed into epoxy matrix can observably improve the bending stiffness, and hence decreases the transverse deflection of AFG-GPLRC microbeams. For the given axially applied load, the AFG-X pattern holds the lowest peak value in the buckling mode. From Figure 10, it demonstrates that the transverse deflection of AFG-GPLRC microbeams decreases with the increase in the material length scale parameter. This means that the microbeam having a larger stiffness when considering size effect has a less transverse displacement.




4.3. Free Vibration of AFG-GPLRC Microbeams


To investigate the vibration behaviors of AFG-GPLRC microbeams, Table 10 lists the dimensionless fundamental frequency parameter  Ω  involved in axial GPL distribution patterns, boundary conditions, and the material length scale parameter to thickness ratios. It is seen from the table that the microbeam frequency rises significantly by adding GPL nano-reinforcements regardless of the GPL distribution pattern. As can be expected, the dispersion of GPLs leads to an increase in the microbeam bending stiffness. Similar tendencies found in the buckling study also apply to the reinforcing effects of GPL nanofillers on microbeam vibration performances, which rely on the boundary condition. It is important to note that the frequency increment is determined by both the boundary condition and the GPL distribution pattern. In other words, these two factors work together to influence the increase in frequency. This observation highlights the interplay between the microbeam boundary conditions and the GPL distribution pattern, both of which contribute to the changes in vibration frequencies. For instance, the AFG-O pattern exhibits a more pronounced enhancement in the vibration frequency of SS microbeams. On the other hand, the UD pattern yields the highest frequencies for microbeams with other boundary conditions. This suggests that the choice of GPL distribution pattern can have a significant impact on the vibration frequencies of microbeams, with different patterns showing varying degrees of enhancement depending on the specific boundary conditions. The size-dependent fundamental frequencies of the microbeams are also listed in Table 13. It can be found that the frequencies increase monotonously as the material length scale parameter ζ increases. It is due to this that the increasing ζ yields a more powerful small-scale effect that makes the microbeams stiffer.





 





Table 10. Fundamental frequency  Ω  of the AFG-GPLRC microbeam without considering axial load.






Table 10. Fundamental frequency  Ω  of the AFG-GPLRC microbeam without considering axial load.





	
B.C.

	
ζ/h

	
Epoxy

	
UD

	
AFG-X

	
AFG-O

	
AFG-V






	
SS

	
0

	
9.8696

	
20.6166

	
15.2374

	
22.6759

	
19.6099




	
0.1

	
10.0881

	
21.0737

	
15.5750

	
23.1788

	
20.0446




	
0.5

	
14.3683

	
30.0243

	
22.1860

	
33.0263

	
28.5569




	
1.0

	
23.0991

	
48.2773

	
35.6698

	
53.1070

	
45.9167




	
CC

	
0

	
22.3733

	
46.7355

	
45.9273

	
38.9470

	
42.3031




	
0.1

	
22.8687

	
47.7716

	
46.9459

	
39.8104

	
43.2410




	
0.5

	
32.5714

	
68.0616

	
66.8905

	
56.7173

	
61.6064




	
1.0

	
52.3631

	
109.4392

	
107.5613

	
91.1966

	
99.0593




	
CF

	
0

	
3.5160

	
7.3446

	
7.2080

	
5.6277

	
8.7530




	
0.1

	
3.5939

	
7.5074

	
7.3678

	
5.7524

	
8.9472




	
0.5

	
5.1187

	
10.6960

	
10.4969

	
8.1942

	
12.7495




	
1.0

	
8.2290

	
17.1986

	
16.8782

	
13.1745

	
20.5026




	
CS

	
0

	
15.4182

	
32.2070

	
29.5869

	
29.9310

	
27.6900




	
0.1

	
15.7596

	
32.9211

	
30.2429

	
30.5946

	
28.3038




	
0.5

	
22.4461

	
46.9036

	
43.0883

	
43.5895

	
40.3227




	
1.0

	
36.0852

	
75.4183

	
69.2839

	
70.0900

	
64.8343









To further illustrate the impacts of the GPL enhancement effect and micro-size effect, Figure 11 depicts the fundamental frequency parameter  Ω  of the AFG-GPLRC CC microbeams against the material length scale parameter. As can be observed, as the parameter ζ increases, the fundamental frequency consistently and monotonously increases. Compared with pure epoxy, the fundamental frequency of the AFG-GPLRC microbeam exhibits a sharper increase, which indicates that the GPL incremental effect on the fundamental frequency is strengthened by size effects. However, the incremental effect depends on the GPL distribution pattern. For the CC microbeams, the UD pattern produces the highest fundamental frequency, followed by AFG-X, AFG-V, and AFG-O patterns. It should, again, be pointed out that the enhancement of GPL nanofillers is determined by both the GPL distribution patterns and boundary conditions.



Figure 12 studies the fundamental frequency variation versus the size and geometry of GPLs for the UD CC microbeams against different material length scale parameters. A constant GPL length lGPL = 2.5 μm is kept during analysis. As shown in Figure 12, the frequency first increases very fast, and then slowly increases for larger lGPL/hGPL. It can be noted here that the GPL nano-reinforcements contain fewer graphene layers for a larger value of lGPL/hGPL, and hence improve the microbeam frequencies more effectively. It is also seen that the microbeams reinforced by GPLs with larger wGPL/lGPL produce larger frequencies. This means that the larger surface area of GPL nano-reinforcements provided a more superior reinforcement effect.



Table 11, Table 12, Table 13 and Table 14 reveal the influence of axial variations in the GPL distribution pattern and applied load on the fundamental frequency  Ω  of the AFG-GPLRC microbeam, respectively. It is noted the material length scale effect is not considered in these tables, i.e.,      ζ / h  = 0    , and     F ¯   cr  E    denotes the buckling load of a pure epoxy microbeam. To maintain consistency with the previous discussion, the positive values of     F ¯  0    denote compressive loads and the negative ones represent tensional loads. From the tables, the dimensionless natural frequency descends with an increase in axial compression force. On the other hand, it rises with an enlarging of the axial tension force. These trends highlight the influence of axially applied loads on the vibration of microbeams and provide insights into the relationship between axially applied loads and natural frequencies. However, the synergetic dependences of the fundamental frequency on the GPL distribution pattern, axially applied load, and boundary condition are quite complex. It has been observed that the AFG-O pattern consistently yields the highest frequency for all given axially applied loads. In contrast, the UD microbeam gives the largest value of frequency for CC and CS boundary conditions, while AFG-V is the most effective in enhancing the vibration frequency of CF microbeams. For a given GPL distribution pattern and average value of applied load     F ¯  0   , the type of axially applied load can also critically influence the vibration performance. For instance, the AFG-O SS microbeams under a symmetric parabolic load    F S    hold the highest natural frequency regardless of compressive or tensional load. However, the AFG-V CF microbeam under a parabolical load    F P    and constant load    F P    yields the highest ones for tensional and compressive loads, respectively.



 





Table 11. Dimensionless fundamental frequency  Ω  for the AFG-GPLRC SS microbeam (    F ¯   cr  E  = 7.7171  ).






Table 11. Dimensionless fundamental frequency  Ω  for the AFG-GPLRC SS microbeam (    F ¯   cr  E  = 7.7171  ).





	
AVLs

	
     F ¯  0    

	
Epoxy

	
UD

	
AFG-X

	
AFG-O

	
AFG-V






	
FC

	
  − 0.8   F ¯   c r  E   

	
12.5834

	
22.0467

	
17.1536

	
23.9985

	
21.1403




	
  − 0.2   F ¯   cr  E   

	
10.6133

	
20.9832

	
15.7385

	
23.0137

	
20.0037




	
  0.2   F ¯   cr  E   

	
9.0651

	
20.2433

	
14.7192

	
22.3329

	
19.2078




	
  0.8   F ¯   cr  E   

	
6.0396

	
19.0796

	
13.0410

	
21.2706

	
17.9466




	
FL

	
  − 0.8   F ¯   cr  E   

	
12.5092

	
22.0361

	
17.1426

	
23.9839

	
21.3487




	
  − 0.2   F ¯   cr  E   

	
10.6073

	
20.9825

	
15.7377

	
23.0127

	
20.0633




	
  0.2   F ¯   cr  E   

	
9.0577

	
20.2425

	
14.7184

	
22.3319

	
19.1422




	
  0.8   F ¯   cr  E   

	
5.8383

	
19.0666

	
13.0257

	
21.2529

	
17.6418




	
FP

	
  − 0.8   F ¯   cr  E   

	
12.7911

	
22.2372

	
17.3180

	
24.2204

	
21.6802




	
  − 0.2   F ¯   cr  E   

	
10.7110

	
21.0382

	
15.7883

	
23.0784

	
20.1579




	
  0.2   F ¯   cr  E   

	
8.9153

	
20.1827

	
14.6620

	
22.2612

	
19.0381




	
  0.8   F ¯   cr  E   

	
4.6089

	
18.7977

	
12.7545

	
20.9349

	
17.1521




	
FS

	
  − 0.8   F ¯   cr  E   

	
11.7775

	
21.6072

	
16.7620

	
23.4757

	
20.6275




	
  − 0.2   F ¯   cr  E   

	
10.3850

	
20.8693

	
15.6343

	
22.8789

	
19.8699




	
  0.2   F ¯   cr  E   

	
9.3214

	
20.3603

	
14.8286

	
22.4706

	
19.3458




	
  0.8   F ¯   cr  E   

	
7.4025

	
19.5682

	
13.5194

	
21.8411

	
18.5274











 





Table 12. Dimensionless fundamental frequency  Ω  for the AFG-GPLRC CC microbeam (    F ¯   cr  E  = 35.8365  ).






Table 12. Dimensionless fundamental frequency  Ω  for the AFG-GPLRC CC microbeam (    F ¯   cr  E  = 35.8365  ).





	
AVLs

	
     F ¯  0    

	
Epoxy

	
UD

	
AFG-X

	
AFG-O

	
AFG-V






	
FC

	
  − 0.8   F ¯   cr  E   

	
29.1182

	
50.3587

	
50.1791

	
42.7745

	
46.3175




	
  − 0.2   F ¯   cr  E   

	
24.2563

	
47.6698

	
47.0344

	
39.9395

	
43.3458




	
  0.2   F ¯   cr  E   

	
20.2974

	
45.7801

	
44.7869

	
37.9276

	
41.2308




	
  0.8   F ¯   cr  E   

	
11.8556

	
42.7733

	
41.1347

	
34.6842

	
37.8099




	
FL

	
  − 0.8   F ¯   cr  E   

	
28.9486

	
50.3328

	
50.1586

	
42.7218

	
46.9863




	
  − 0.2   F ¯   cr  E   

	
24.2417

	
47.6680

	
47.0330

	
39.9358

	
43.5401




	
  0.2   F ¯   cr  E   

	
20.2780

	
45.7782

	
44.7854

	
37.9236

	
41.0141




	
  0.8   F ¯   cr  E   

	
11.1889

	
42.7396

	
41.1075

	
34.6091

	
36.7696




	
FP

	
  − 0.8   F ¯   cr  E   

	
28.7431

	
50.2761

	
49.8635

	
42.9003

	
47.3501




	
  − 0.2   F ¯   cr  E   

	
24.2113

	
47.6575

	
46.9548

	
39.9955

	
43.6537




	
  0.2   F ¯   cr  E   

	
20.2810

	
45.7857

	
44.8671

	
37.8511

	
40.8807




	
  0.8   F ¯   cr  E   

	
10.6588

	
42.7482

	
41.4612

	
34.2189

	
36.0722




	
FS

	
  − 0.8   F ¯   cr  E   

	
28.9878

	
50.6885

	
50.6827

	
42.2585

	
46.1296




	
  − 0.2   F ¯   cr  E   

	
24.2701

	
47.6850

	
47.1846

	
39.8086

	
43.3033




	
  0.2   F ¯   cr  E   

	
20.2281

	
45.7590

	
44.6167

	
38.0601

	
41.2699




	
  0.8   F ¯   cr  E   

	
10.6099

	
42.6462

	
40.3016

	
35.2266

	
37.9410











 





Table 13. Dimensionless fundamental frequency  Ω  for the AFG-GPLRC CF microbeam (    F ¯   cr  E  = 1.4886  ).






Table 13. Dimensionless fundamental frequency  Ω  for the AFG-GPLRC CF microbeam (    F ¯   cr  E  = 1.4886  ).





	
AVLs

	
     F ¯  0    

	
Epoxy

	
UD

	
AFG-X

	
AFG-O

	
AFG-V






	
FC

	
  − 0.8   F ¯   cr  E   

	
4.2112

	
7.7101

	
7.6807

	
6.0174

	
9.0995




	
  − 0.2   F ¯   cr  E   

	
3.7061

	
7.4381

	
7.3301

	
5.7280

	
8.8415




	
  0.2   F ¯   cr  E   

	
3.3117

	
7.2495

	
7.0829

	
5.5253

	
8.6631




	
  0.8   F ¯   cr  E   

	
2.5763

	
6.9541

	
6.6888

	
5.2038

	
8.3850




	
FL

	
  − 0.8   F ¯   cr  E   

	
4.3737

	
7.8196

	
7.8649

	
6.0920

	
9.2236




	
  − 0.2   F ¯   cr  E   

	
3.7627

	
7.4680

	
7.3812

	
5.7490

	
8.8752




	
  0.2   F ¯   cr  E   

	
3.2383

	
7.2178

	
7.0278

	
5.5026

	
8.6274




	
  0.8   F ¯   cr  E   

	
2.0713

	
6.8150

	
6.4395

	
5.1006

	
8.2284




	
FP

	
  − 0.8   F ¯   cr  E   

	
4.4156

	
7.8617

	
7.9465

	
6.1139

	
9.2781




	
  − 0.2   F ¯   cr  E   

	
3.7842

	
7.4803

	
7.4055

	
5.7560

	
8.8913




	
  0.2   F ¯   cr  E   

	
3.2035

	
7.2040

	
7.0004

	
5.4942

	
8.6095




	
  0.8   F ¯   cr  E   

	
1.7028

	
6.7496

	
6.3059

	
5.0579

	
8.1436




	
FS

	
  − 0.8   F ¯   cr  E   

	
4.2511

	
7.7287

	
7.6887

	
6.0421

	
9.1046




	
  − 0.2   F ¯   cr  E   

	
3.7158

	
7.4427

	
7.3318

	
5.7344

	
8.8425




	
  0.2   F ¯   cr  E   

	
3.3023

	
7.2449

	
7.0815

	
5.5188

	
8.6624




	
  0.8   F ¯   cr  E   

	
2.5404

	
6.9360

	
6.6848

	
5.1770

	
8.3837











 





Table 14. Dimensionless fundamental frequency  Ω  for the AFG-GPLRC CS microbeam (    F ¯   cr  E  = 12.2065  ).






Table 14. Dimensionless fundamental frequency  Ω  for the AFG-GPLRC CS microbeam (    F ¯   cr  E  = 12.2065  ).





	
AVLs

	
     F ¯  0    

	
Epoxy

	
UD

	
AFG-X

	
AFG-O

	
AFG-V






	
FC

	
  − 0.8   F ¯   cr  E   

	
18.6890

	
33.9065

	
31.5551

	
31.6508

	
33.7410




	
  − 0.2   F ¯   cr    

	
16.3024

	
32.6408

	
30.0920

	
30.3707

	
32.3107




	
  0.2   F ¯   cr    

	
14.4760

	
31.7669

	
29.0723

	
29.4842

	
31.3144




	
  0.8   F ¯   cr    

	
11.1458

	
30.4055

	
27.4662

	
28.0985

	
29.7461




	
FL

	
  − 0.8   F ¯   cr  E   

	
19.3101

	
34.3092

	
31.9563

	
32.0265

	
34.4657




	
  − 0.2   F ¯   cr    

	
16.5106

	
32.7496

	
30.2006

	
30.4751

	
32.5097




	
  0.2   F ¯   cr    

	
14.2120

	
31.6520

	
28.9573

	
29.3719

	
31.1015




	
  0.8   F ¯   cr    

	
9.4039

	
29.9047

	
26.9615

	
27.5933

	
28.7957




	
FP

	
  − 0.8   F ¯   cr  E   

	
19.7778

	
34.6448

	
32.2076

	
32.4312

	
35.0244




	
  − 0.2   F ¯   cr    

	
16.6835

	
32.8427

	
30.2712

	
30.5901

	
32.6702




	
  0.2   F ¯   cr    

	
13.9726

	
31.5517

	
28.8806

	
29.2458

	
30.9239




	
  0.8   F ¯   cr    

	
7.3098

	
29.4526

	
26.6104

	
27.0079

	
27.9525




	
FS

	
  − 0.8   F ¯   cr  E   

	
18.0867

	
33.5910

	
31.4111

	
31.1437

	
33.2416




	
  − 0.2   F ¯   cr    

	
16.1384

	
32.5600

	
30.0565

	
30.2398

	
32.1809




	
  0.2   F ¯   cr    

	
14.6534

	
31.8492

	
29.1075

	
29.6181

	
31.4480




	
  0.8   F ¯   cr    

	
11.9970

	
30.7445

	
27.6048

	
28.6542

	
30.3061











Figure 13 reveals the relationship between an axially applied load   F ¯   and the fundamental frequency  Ω  of AFG-GPLRC microbeams. For the sake of brevity, only the simply supported AFG-O microbeam is analyzed under different types of axially variable loads and/or material length scale parameters. It is seen that the fundamental frequency decreases sharply with the promotion of the compressive load (   F ¯  > 0  ). The fundamental frequency tends to approach zero when the axial load applied reaches the buckling load    F ¯  =   F ¯   cr    . In contrast, the frequency raises with tension loading (   F ¯  < 0  ). Therefore, the compressive axial load decreases the beam stiffness, while the tensional load imposes an opposite influence. From the figure, it is again certified that the intrinsic size effect could dramatically promote the stiffness of the size-dependent microbeams, which, in turn, increases the vibration frequency and critical buckling load.



Figure 14, Figure 15 and Figure 16 illustrate the changes in the shape of the fundamental vibration mode with respect to the axial GPL distribution, axially applied load, and material length scale parameters, respectively. Due to the comparability, only the CC microbeam is considered. It should be noticed that the axially graded distribution of GPL nanofillers plays a critical role in deciding the deflection of the AFG-GPLRC microbeams. The dispersion of GPLs increases the stiffness of the microbeam powerfully, and hence reduces the deformation. From Figure 12, it is seen that the deflection is symmetric except in the case of AFG-V, where the axial load is without consideration. However, Figure 13 shows that the vibration modes of microbeams with AVLs are asymmetric, even with a symmetric GPL distribution and boundary condition. This is because of the accumulation of axially applied loads like the buckling mode. Figure 14 demonstrates again that the size effect could promote the bending stiffness of the microbeams and decrease the peak of the vibration mode shape.





5. Conclusions


In the current work, a comprehensive theoretical analysis was developed to accurately predict the stability and free vibration performances of AFG-GPLRC microbeams under axially varying loads. The modified couple stress Euler–Bernoulli beam theory was utilized to derive the governing equation with the aid of the state-space method, and the discrete equilong segment model was adopted to solve the equation to evaluate the buckling loads and fundamental natural frequencies. The GPL nano-reinforcements dispersed into the polymer matrix material (epoxy) varied with weight fraction across the microbeam length, and the GPL-reinforced nanomaterial properties were calculated by employing the improved Halpin–Tsai micromechanics model and the rule of mixtures. Different types of AVLs were considered to check the buckling and vibration behaviors.



It is concluded:




	
The bending stiffness of the AFG-GPLRC microbeams can be powerfully promoted by the small-scale effect (the smaller, the stiffer). This small-scaled enhancement is due to the intrinsic size dependence of materials, and is more evident with a decrease in the size of the microbeams.



	
The addition of GPL nano-reinforcements shows promising results in improving the stability resistance and natural frequencies, and a few layers of single graphene sheets with larger surface areas can improve the beam stiffness more powerfully.



	
The axially graded effects of GPLs on the mechanical behaviors of AFG microbeams are decided by both the axial distribution pattern and boundary condition. For the CC and CS microbeams, the UD pattern achieves a much higher buckling resistance and fundamental frequency, while the AFG-V and AFG-O patterns are more suitable for the CF and SS microbeams, respectively.



	
The axial loading pattern also influences the buckling load and natural frequency of the microbeams significantly. The synergetic influence of AVLs on the buckling load and fundamental frequency, as well as modes, should be targeted in the design of microbeams.



	
Generally, the synchronized axial distributions of GPLs and applied load throughout the microbeam length could improve the buckling resistance and natural frequency more powerfully.
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Figure 1. AFG-GPLRC microbeams under axially varying loads. 
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Figure 2. Schematic views of axial distribution patterns of GPLs. 
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Figure 3. Distribution of the AVLs along the microbeam length. 
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Figure 4. Differential element of the microbeam. 
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Figure 5. Axially discrete model of AFG-GPLRC microbeams. 
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Figure 6. Size effect on the critical buckling load for AFG-GPLRC CC microbeams under AVLs. 
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Figure 7. Effect of GPL geometry parameter on the buckling load of CC AFG-O microbeams with respect to different material length scale parameters. 
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Figure 8. Buckling mode shapes of the AFG-GPLRC microbeam with respect to various axially varying loads. 
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Figure 9. Buckling mode shapes of the AFG-GPLRC microbeam with respect to various axial GPL distribution patterns. 
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Figure 10. Buckling mode shapes of the AFG-GPLRC microbeam with respect to various material length scale parameters. 
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Figure 11. Size effects on the fundamental frequency  Ω  of the AFG-GPLRC CC microbeam. 
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Figure 12. Effect of GPL geometry parameters on the fundamental frequency  Ω  of the CC microbeam. 
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Figure 13. Effects of axially applied load on the fundamental frequency of AFG-O SS microbeams: (a) influence of axially variable load and (b) influence of MLSP to thickness ratio. 
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Figure 14. Fundamental vibration mode shapes of the AFG-GPLRC microbeam with respect to various axial GPL distribution patterns. 
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Figure 15. Fundamental vibration mode shapes of the AFG-GPLRC microbeam with respect to axially varying loads. 
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Figure 16. Fundamental vibration mode shapes of the AFG-GPLRC microbeam with respect to material length scale parameters. 
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Table 1. Load coefficients of AVLs.






Table 1. Load coefficients of AVLs.





	
Type of AVL

	
Symbol

	
Load Coefficients




	
      α  0     

	
      α  1     

	
      α  2     






	
Constant load

	
FC

	
1

	
0

	
0




	
Linear load

	
FL

	
0

	
2

	
0




	
Parabolical load

	
FP

	
0

	
0

	
3




	
Symmetric parabolic load

	
FS

	
0

	
6

	
−6











 





Table 2. Material properties of the GPLs and epoxy [8].
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	Material Properties
	GPLs
	Epoxy





	Young’s modulus (GPa)
	1010
	3.0



	Mass density (kg m−3)
	1060
	1200



	Poisson’s ratio
	0.186
	0.34










 





Table 3. Natural frequencies of AFGM beams with unit length.
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Frequency Parameters

	
CC

	
CF

	
SS




	
Ref. [37]

	
Present

	
Ref. [37]

	
Present

	
Ref. [37]

	
Present






	
μ1

	
20.4721

	
20.4721

	
2.4256

	
2.4256

	
9.0286

	
9.0286




	
μ2

	
56.5482

	
56.5482

	
18.6041

	
18.6041

	
36.3715

	
36.3715




	
μ3

	
110.9396

	
110.9396

	
55.1791

	
55.1791

	
81.7289

	
81.7289




	
μ4

	
183.4447

	
183.4447

	
109.5748

	
109.5748

	
145.1907

	
145.1907











 





Table 4. The fundamental frequency parameter    α 4  =   ρ A  ω 2   l 4   /  E I     for   τ  0  = 10  .
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Parameters γ

	
CC

	
CF

	
SS




	
Ref. [36]

	
Present

	
Ref. [36]

	
Present

	
Ref. [36]

	
Present






	
100

	
5.8768

	
5.8768

	
3.5876

	
3.5876

	
5.0032

	
5.0032




	
4

	
5.0437

	
5.0437

	
2.7660

	
2.7660

	
3.8322

	
3.8322




	
−3

	
4.9587

	
4.9587

	
2.5956

	
2.5956

	
3.6689

	
3.6689











 





Table 5. The critical buckling parameter    γ c    for various   τ  0   .
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BC

	


     τ   0  = 10    









	


    τ  0  = 4    









	


    τ  0  = 0    












	
Ref. [36]

	
Present

	
Ref. [36]

	
Present

	
Ref. [36]

	
Present






	
CC

	
92.3767

	
92.3767

	
81.7753

	
81.7753

	
74.6286

	
74.6286




	
CF

	
16.9986

	
16.9986

	
8.9816

	
8.9816

	
3.4766

	
3.4766




	
SS

	
35.5755

	
35.5755

	
25.5475

	
25.5475

	
18.5687

	
18.5687











 





Table 6. Dimensionless buckling load for the AFG-GPLRC SS microbeam (WGPL = 1%).
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AVLs

	
ζ/h

	
Epoxy

	
UD

	
AFG-X

	
AFG-O

	
AFG-V






	
Constant load FC

	
0

	
9.8696

	
43.0091

	
23.0554

	
51.3215

	
37.8012




	
0.1

	
10.3115

	
44.9373

	
24.0883

	
53.6231

	
39.4956




	
0.5

	
20.9177

	
91.2162

	
48.8766

	
108.8626

	
80.1601




	
1.0

	
54.0619

	
235.8375

	
126.3402

	
281.4859

	
207.2369




	
Linear load FL

	
0

	
9.2792

	
40.4364

	
22.4870

	
45.8145

	
42.8317




	
0.1

	
9.6947

	
42.2493

	
23.4944

	
47.8689

	
44.7522




	
0.5

	
19.6664

	
85.7598

	
47.6722

	
97.1749

	
90.8432




	
1.0

	
50.8280

	
221.7303

	
123.2279

	
251.2561

	
234.8778




	
Parabolical load FP

	
0

	
7.7171

	
33.6290

	
19.9703

	
36.0404

	
37.0528




	
0.1

	
8.0626

	
35.1368

	
20.8650

	
37.6563

	
38.7143




	
0.5

	
16.3557

	
71.3225

	
42.3381

	
76.4395

	
78.5899




	
1.0

	
42.2713

	
184.4028

	
109.4418

	
197.6367

	
203.2014




	
Symmetric parabolic load FS

	
0

	
13.7960

	
60.1193

	
28.2999

	
81.4720

	
55.4054




	
0.1

	
14.4138

	
62.8147

	
29.5675

	
85.1269

	
57.8890




	
0.5

	
29.2393

	
127.5046

	
59.9912

	
172.8437

	
117.4960




	
1.0

	
75.5692

	
329.6605

	
155.0654

	
446.9585

	
303.7676











 





Table 7. Dimensionless buckling load for the AFG-GPLRC CC microbeam (WGPL = 1%).
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AVLs

	
ζ/h

	
Epoxy

	
UD

	
AFG-X

	
AFG-O

	
AFG-V






	
Constant load FC

	
0

	
39.4784

	
172.0362

	
133.1470

	
137.4249

	
138.2338




	
0.1

	
41.2461

	
179.7494

	
139.1161

	
143.5862

	
144.4303




	
0.5

	
83.6707

	
364.8647

	
282.3745

	
291.4568

	
293.1452




	
1.0

	
216.2475

	
943.3501

	
730.0568

	
753.5524

	
757.8794




	
Linear load FL

	
0

	
37.2950

	
162.5216

	
133.8917

	
125.1426

	
166.1325




	
0.1

	
38.9650

	
169.8082

	
139.8946

	
130.7527

	
173.5825




	
0.5

	
79.0432

	
344.6855

	
283.9660

	
265.3952

	
352.3804




	
1.0

	
204.2877

	
891.1772

	
734.1890

	
686.1528

	
911.1240




	
Parabolical load FP

	
0

	
35.8365

	
156.1656

	
142.0906

	
109.5415

	
174.7855




	
0.1

	
37.4411

	
163.1672

	
148.4619

	
114.4516

	
182.6248




	
0.5

	
75.9519

	
331.2053

	
301.3735

	
232.2927

	
370.7690




	
1.0

	
196.2983

	
856.3242

	
779.2222

	
600.5460

	
958.7194




	
Symmetric parabolic load FS

	
0

	
36.0861

	
157.2534

	
112.1374

	
147.2780

	
135.1531




	
0.1

	
37.7019

	
164.3038

	
117.1642

	
153.8827

	
141.2120




	
0.5

	
76.4810

	
333.5124

	
237.8083

	
312.3938

	
286.6266




	
1.0

	
197.6657

	
862.2896

	
614.8210

	
807.7408

	
741.0472











 





Table 8. Dimensionless buckling load for the AFG-GPLRC CF microbeam (WGPL = 1%).






Table 8. Dimensionless buckling load for the AFG-GPLRC CF microbeam (WGPL = 1%).





	
AVLs

	
ζ/h

	
Epoxy

	
UD

	
AFG-X

	
AFG-O

	
AFG-V






	
Constant load FC

	
0

	
2.4674

	
10.7523

	
7.6922

	
7.9135

	
5.7632




	
0.1

	
2.5779

	
11.2343

	
8.0369

	
8.2682

	
6.0213




	
0.5

	
5.2294

	
22.8040

	
16.3097

	
16.7793

	
12.2177




	
1.0

	
13.5155

	
58.9594

	
42.1623

	
43.3765

	
31.5813




	
Linear load FL

	
0

	
1.7357

	
7.5636

	
5.2802

	
6.0921

	
4.4571




	
0.1

	
1.8134

	
7.9028

	
5.5168

	
6.3651

	
4.6568




	
0.5

	
3.6786

	
16.0414

	
11.1955

	
12.9181

	
9.4494




	
1.0

	
9.5074

	
41.4747

	
28.9414

	
33.3963

	
24.4262




	
Parabolical load FP

	
0

	
1.4886

	
6.4868

	
4.4517

	
5.4225

	
4.0354




	
0.1

	
1.5552

	
6.7776

	
4.6512

	
5.6655

	
4.2162




	
0.5

	
3.1549

	
13.7576

	
9.4387

	
11.4986

	
8.5556




	
1.0

	
8.1538

	
35.5700

	
24.3998

	
29.7269

	
22.1163




	
Symmetric parabolic load FS

	
0

	
2.4416

	
10.6396

	
8.1135

	
7.5923

	
5.4371




	
0.1

	
2.5509

	
11.1166

	
8.4771

	
7.9325

	
5.6806




	
0.5

	
5.1746

	
22.5651

	
17.2037

	
16.0979

	
11.5261




	
1.0

	
13.3739

	
58.3417

	
44.4741

	
41.6148

	
29.7934











 





Table 9. Dimensionless buckling load for the AFG-GPLRC CS microbeam (WGPL = 1%).
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AVLs

	
ζ/h

	
Epoxy

	
UD

	
AFG-X

	
AFG-O

	
AFG-V






	
Constant load FC

	
0

	
20.1907

	
87.9857

	
69.2723

	
80.5295

	
72.1372




	
0.1

	
21.0948

	
91.9305

	
72.3777

	
84.1401

	
75.3708




	
0.5

	
42.7923

	
186.6053

	
146.9061

	
170.7942

	
152.9766




	
1.0

	
110.5970

	
482.4642

	
379.8072

	
441.5885

	
395.4948




	
Linear load FL

	
0

	
14.9841

	
65.2967

	
54.7540

	
57.8374

	
62.8773




	
0.1

	
15.6550

	
68.2243

	
57.2086

	
60.4303

	
65.6965




	
0.5

	
31.7574

	
138.4851

	
116.1183

	
122.6585

	
133.3583




	
1.0

	
82.0772

	
358.0504

	
300.2110

	
317.1216

	
344.8012




	
Parabolical load FP

	
0

	
12.2065

	
53.1928

	
47.3576

	
44.9621

	
53.5784




	
0.1

	
12.7531

	
55.5777

	
49.4807

	
46.9775

	
55.9809




	
0.5

	
25.8706

	
112.8145

	
100.4359

	
95.3490

	
113.6412




	
1.0

	
66.8627

	
291.6795

	
259.6709

	
246.5096

	
293.8294




	
Symmetric parabolic load FS

	
0

	
23.7027

	
103.2901

	
70.3261

	
109.9998

	
84.1200




	
0.1

	
24.7640

	
107.9210

	
73.4782

	
114.9332

	
87.8907




	
0.5

	
50.2356

	
219.0637

	
149.1294

	
233.3343

	
178.3864




	
1.0

	
129.8344

	
566.3846

	
385.5393

	
603.3380

	
461.1856
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