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Abstract: Titanium alloys have high specific strength and corrosion resistance, which have promising
applications in industry. However, the machinability of titanium alloys is limited due to their crystal
lattice and physical properties. Thus, in recent years, the superplastic forming of titanium alloys has
been intensively developing, in particular, forming at low temperatures and/or high strain rates. In
this work, a tensile test of low-cost Ti-2Fe-0.1B alloys was carried out at a temperature of 550~750 ◦C
and a strain rate of 1 × 10−3 s−1~1 × 10−2 s−1. The results showed that the alloy exhibited good
superplasticity even at a high strain rate (1 × 10−2 s−1) and a low deformation temperature of
550 ◦C; the elongation of the alloy in this state reached 137.5%. The high strain rate sensitivity
coefficient m (0.3) and the maximum elongation (452%) were obtained at a strain rate of 1 × 10−3 s−1

and a temperature of 750 ◦C. Characteristics of the microstructure showed that during superplastic
deformation, the recrystallization and grain boundary sliding of the alloy phases were accelerated,
which could be ascribed to the effect of the element Fe. At the same time, the TiB phase located
around the primary elongated α grains could also induce dynamic recrystallization and dynamic
globularization during deformation.

Keywords: titanium alloy; superplastic deformation; globularization; dynamic recrystallization

1. Introduction

Titanium and titanium alloys are widely used in aerospace, marine, biomedical, and
other fields due to their high specific strength, high-temperature resistance, and corrosion
resistance [1–3]. However, the high deformation resistance and poor machinability of
titanium alloys make it difficult to form products using the conventional method, especially
products with complex shapes [4]. Thus, superplastic forming (SPF), with the characteristics
of low flow stress and uniform plastic deformation at high temperatures, becomes an
effective method for manufacturing parts with complex geometric shapes from difficult-to-
cut metals [5,6], which could achieve precision shaping and increase material utilization
rate [7].

It is well known that superplasticity mainly depends on the grain size, as well as the
fraction and distribution of α and β phases [8–10]. Because the superplastic deformation
mechanism of titanium alloys is mainly grain boundary slip, the finer the grain of titanium
alloy, the higher the elongation of the superplastic deformation ability of the alloy [11],
so the method for improving superplasticity is mostly related to grain refinement. Se-
vere plastic deformation is a common method for grain refinement, which could lead to
excellent superplasticity of titanium alloys. For instance, high elongations in Ti-6Al-4V
alloys subjected to high-pressure torsion were observed during tensile tests at relatively
low temperatures, 650 ◦C and 725 ◦C, even at high strain rates of 10−2/s and 10−1/s [12].
However, the microstructure with nanocrystalline grains is always unstable and is prone to
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coarsening at high temperatures [13]. Furthermore, its application in industrial production
has been a challenge, given the cost of processing and small-scale production. On the
other hand, it is acceptable that the addition of specific alloying elements can not only
refine the grain size of alloys but also hinder the migration of grain boundaries and then
restrain the growth of crystallization grains during superplastic deformation, thereby
maintaining the mechanical properties of the alloy after superplastic forming [14,15].
For instance, A.D. Kotov et al. [15] studied the superplasticity of the Ti-4Al-1V-1Fe-1Ni-
0.1B-xMo alloy at 625 ◦C. The results showed that increasing the Mo content from 1% to
5% increased the m value from 0.38 to 0.50; the flow stress was reduced from 150 MPa to
75 MPa, which is reduced by two times; and the elongation to failure increased from
200% to 700%. The addition of the appropriate β-phase stabilizing element Fe to the tita-
nium alloy can promote the development of diffusion-related deformation mechanisms
and effectively reduce the superplastic deformation temperature [16]. Some researchers
have found that when the Ti-6Al-4V alloy is added with 2% Fe element, the superplasticity
and mechanical properties of the alloy are improved. Fe alloying reduces the super-
plastic temperature by 100 ◦C and increases the yield strength by 100 MPa [17,18]. A.D.
Kotov et al. [19] studied the effects of different Fe contents (0–2 wt.%) on the microstructure,
superplasticity, and mechanical properties of Ti-Al-Mo-V alloys. The results showed that
the increase in Fe content promotes recrystallization, fragmentation, and grain boundary
slip (GBS) of the phase during superplastic deformation. The alloy with the addition of
0.5% Fe has good superplasticity and mechanical properties at room temperature. On the
other hand, it has been reported that the addition of a small amount of B to various pure
titanium and titanium alloys can significantly refine the microstructure of the alloy [20,21],
which can improve the mechanical properties, toughness, and superplasticity of titanium
alloys [22,23]. Qiu et al. [23] found that the TiB phase in the structure of the titanium alloy
induces discontinuous dynamic recrystallization via particle-induced nucleation and grain
refinement, thereby improving the superplasticity of the alloy. V.A. Kumar et al. [24] found
that the addition of the 0.06% B element to the Ti-5Al-5V-5Mo-1Cr-1Fe alloy could refine
the grain size, thereby reducing the flow stress of superplastic deformation and improve
the elongation to failure of the alloy at high temperature deformation.

Our group designed and developed a low-cost Ti-2Fe-0.1B alloy, which has good
mechanical properties, corrosion resistance, and thermal stability [25,26], considering that
the alloying elements Fe and B could benefit from the superplasticity of the alloy based on
the above mentioned. Therefore, it is interesting to study the high-temperature deformation
behavior of the Ti-2Fe-0.1B alloy and explore the mechanism of superplasticity.

2. Experimental Methods
2.1. Material

The actual chemical composition of the titanium alloy Ti-2Fe-0.1B used in this work is
given in Table 1. The Fe element is determined by the Avio-200 ICP-OES/ICP-AES analyzer
produced by PerkinElmer Company (Shelton, CT, USA), the ICP-AES analyzer, and the
C, O, N, and H elements are determined by the gas analyzer. The Ti-2Fe-0.1B alloy was
melted twice in Vacuum Arc Remelting (VAR) melting furnace produced by XinLanHai
Automation Technology Co., Ltd. (Shanghai, China) to form an ingot with a diameter of
about 420 mm and then forged via the billet opening. The temperature of the first forging
ranges from 1020 ◦C to 1050 ◦C, the diameter of the specimen is reduced to about 300 mm,
the forging is completed in the temperature range of 900 ◦C to 950 ◦C, the diameter of the
specimen is reduced to 125 mm, and then, via the grinding process, the diameter of the
specimen becomes 120 mm. Then, the alloy is rolled from Φ120 mm to the final Φ20 mm
bar using a 20-stand continuous rolling process with alternating passes of horizontal and
vertical mills under a condition of 836 ◦C.
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Table 1. Chemical composition of Ti-2Fe-0.1B alloy (wt.%).

Fe B C O N H Ti

1.89 0.08 0.014 0.062 0.004 0.0012 Balance

2.2. High-Temperature Tensile Test

Tensile specimens with a gauge section of 30 mm × 4 mm × 2.5 mm were cut from
hot rolled bars along the rolling direction (RD). High-temperature tensile experiments
were carried out using an AG-100kNG universal testing machine produced by Shimadzu
Company (Kyoto, Japan) at initial strain rates of 1 × 10−3/s, 5 × 10−3/s, and 1 × 10−2/s
and temperatures of 550 ◦C, 650 ◦C, and 750 ◦C. Before the experiment, the antioxidant
Ti-1 was applied to all test surfaces to minimize or avoid oxidation at high temperatures.
During the experiment, the tensile specimens were first heated to the desired temperature
and held for 5 min to ensure a fairly uniform temperature distribution throughout the
specimen, and then tensile experiments were conducted at a constant strain rate. Three
replicate experiments were performed for each state of the specimen. Figure 1 shows the
schematic diagram of the experimental samples.
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Figure 1. Schematic diagram of experimental samples (mm).

2.3. Microstructural Characterization

Electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), and
transmission electron microscopy (TEM) were used to characterize the microstructure of
the alloys as well as the fracture morphology of the tensile specimens. The samples for
EBSD and SEM-EDS observation were cut in the center zone of the bar with the rolling direc-
tion, as shown in Figure 1. The X-ray diffraction pattern of the Ti-2Fe-0.1 B alloy illustrates
that the Ti-2Fe-0.1B alloy is an α + β two-phase titanium alloy [27]. Samples for EBSD were
prepared by electropolishing in 5% perchloric acid and 95% ethanol solution for 120 s at an
operating voltage of 40 V. EBSD was carried out using a field emission scanning electron
microscope (SEM, JSM-6700F, JEOL, Tokyo, Japan) equipped with an Oxford Instruments
EBSD detector and operated at an accelerating voltage of 20 KV. The EBSD scanning step
size of all samples was 0.2 µm, and the scanning area was 1600 µm2. The data files of the
EBSD scans were processed using Channel5.0 data analysis software. The dimensions of
the specimens used for SEM microstructure observation were 6 mm × 6 mm × 4 mm. The
fracture morphology of the alloys was observed using a JSM-6510 SEM (Tokyo, Japan),
and EDS tests were also performed to determine the elemental distribution of the alloys.
For TEM studies, the samples were mechanically ground to a thickness of about 100 µm
and then jet polished using a Tenupol-5 electrolytic double jet produced by Struers Com-
pany (Ballerup, Denmark) in a solution containing 6% perchloric acid, 34% butanol, and
60% methanol, with an accelerating voltage of 25 V and a temperature of −30 ◦C. Finally,
TEM tests were performed on a JEOL JEM-2100 transmission electron microscope with an
accelerating voltage of 200 kV.
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3. Results and Discussion
3.1. Initial Microstructure

The microstructure and element composition of the Ti-2Fe-0.1B alloy were observed
and analyzed using SEM-EDS. SEM-EDS mapping of the Ti-2Fe-0.1B alloy and the corre-
sponding energy spectrum analysis are shown in Figure 2. It can be seen that the shape of
the β phase is short and rod-like in the Ti-2Fe-0.1B alloy, which is distributed uniformly
in α phase substrate. The fraction of the α and β phases was calculated and reached
94.2% and 5.8%, respectively. As a strong eutectoid β stabilizing element for titanium alloy,
the Fe element was mainly distributed in the β phase. The content of Fe element by energy
spectrum analysis is 1.62%, which is similar to the ICP-AES result. On the other hand, as
is well known, the B element does not dissolve neither in the α phase nor in the β phase,
which exists in the form of the TiB phase for the titanium alloy. It is obvious that the TiB
phase was completely refined in the process of hot forging and continuous hot rolling,
which distributes homogeneously in the microstructure.
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Figure 2. SEM-EDS mapping images of the Ti-2Fe-0.1B alloy. (a) phase composition, (b) energy
spectrum analysis.

The inverse pole figure (IPF) and grain size distribution of the Ti-2Fe-0.1B alloy
measured by EBSD are shown in Figure 3. Different colors of the IPF plots indicate
different orientations of individual grains. Red, green, and blue colors indicate that the
test surface of the specimen is parallel to the basal plane {0001}, column plane {1120}, and
conical plane {1010}, respectively; the remaining colors are transition planes, which also
indicate the transitions between orientation differences [28]. The more similar the colors
shown in the IPF diagrams, the smaller the orientation difference between individual
grains. On the contrary, the orientation difference is larger. It can be seen that the overall
microstructure distribution of the Ti-2Fe-0.1B alloy is mainly dominated by the basal plane,
and the orientation difference is large. The phase composition of the α and β phase was
calculated and reached 95.1% and 4.9%, respectively, which is well corresponding to the
SEM results. At the same time, the average grain size is 1.72 µm, which contains a large
number of ultrafine grains with a grain size of less than 1 µm and micrometer grains with a
grain size of close to 10 µm. It must be noted that the step size of the EBSD test is too small
to accurately recognize the grain size below 0.5 µm, traditional hot working was processed
in the present work, and the fraction of the grain size in the range of 0–0.5 µm is rare and
could be ignored.
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3.2. Superplastic Deformation

The stress–strain fitting curves of the titanium alloy Ti-2Fe-0.1B at different tempera-
tures and strain rates are shown in Figure 4a–c. All flow curves show similar development,
which can be divided into three stages: the elastic deformation stage, strain hardening
stage, and flow softening stage. At the initial stage of deformation, the rheological stress
increases rapidly as the strain reaches peak stress due to the high work-hardening rate.
In the flow-softening stage, the softening rate induced by the dynamic recrystallization
(DRX) or dynamic recovery (DRV) mechanism is higher than the hardening rate. When
the strain rate is higher or the deformation temperature is lower, the rheological stress
decreases significantly with increasing strain. However, when the strain rate is slower
or the deformation temperature is higher, the rheological stress decreases slowly with
increasing strain and then tends to stabilize.
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Figure 4. (a–c) The stress–strain curves and the locally enlarged stress–strain curves of the Ti-2Fe-0.1B
alloy under different deformation conditions were obtained. (d–f) Yield strength, tensile strength,
and elongation.

During superplastic deformation, the rheological stress peak is very sensitive to the
deformation parameters. Figure 4d–f show the dynamics of the tensile strength of the
material with deformation parameters. Combined with the analysis of Table 2, it is found
that the tensile strength decreases with increasing deformation temperature and decreasing
strain rate. This is mainly due to the enhancement of thermal activation at high deformation
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temperatures, the increase in the average kinetic energy of the atoms, and the decrease
in the critical shear stress for the occurrence of slip in crystals, which results in a lower
impediment to dislocation motion and crystal surface slip. In addition, the cross-slip and
climb of dislocations are intensified, resulting in an increase in the recovery rate, which
reduces the tensile strength, while high deformation rates lead to work-hardening and
strain-rate hardening, which makes the stresses higher [29,30].

Table 2. Yield strength, tensile strength, and elongation of Ti-2Fe-0.1B alloy under different deforma-
tion conditions.

Strain Rate/s−1 Rp0.2/MPa Rm/MPa Elongation/%

550 ◦C
1 × 10−3/s 138.7 ± 10.3 169.0 ± 9.6 196.5 ± 12.6
5 × 10−3/s 163.3 ± 11.7 209.3 ± 11.4 220.3 ± 4.5
1 × 10−2/s 176.0 ± 6.6 209.0 ± 8.5 135.8 ± 5.2

650 ◦C
1 × 10−3/s 62.3 ± 6.8 73.7 ± 10.0 206.3 ± 7.7
5 × 10−3/s 85.3 ± 8.4 101.0 ± 3.6 289.8 ± 9.5
1 × 10−2/s 97.0 ± 7.2 111.3 ± 8.1 250.0 ± 10.0

750 ◦C
1 × 10−3/s 29.0 ± 3.6 35.7 ± 4.2 462.3 ± 9.3
5 × 10−3/s 39.7 ± 5.0 44.3 ± 4.5 381.5 ± 3.0
1 × 10−2/s 56.7 ± 4.9 59.0 ± 3.6 242.5 ± 8.3

To further analyze the effect of temperature and strain rate on the elongation of the
alloy, a contour map illustrating the elongation distribution is presented in Figure 5a.
Combined with Figure 4d–f, it can be seen that a higher deformation temperature and
lower strain rate led to greater elongation of the alloy. The minimum elongation achieved
was 137.5% at a temperature of 550 ◦C and a high strain rate (1 × 10−2/s). Under other
deformation conditions, the maximum elongation exceeded 200%, particularly at 750 ◦C
and a strain rate of 1 × 10−3/s, which attained an impressive maximum elongation of
452%. Figure 5b shows the elongation of the Ti-2Fe-0.1B alloy at 750 ◦C at different strain
rates. The sample exhibits an obvious necking phenomenon at a strain rate of 1 × 10−2/s.
However, at strain rates of 5 × 10−3/s and 1 × 10−3/s, the sample demonstrates relatively
uniform deformation characteristics with minimal necking phenomenon.
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Figure 5. (a) Effect of temperature and strain rate on elongation to failure; (b) specimens after
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A comprehensive analysis shows that with an increasing strain rate, the tensile strength
of the alloy increases, and the total elongation decreases. Rheological analysis shows that
at the same strain rate, the following best forming properties are achieved in the range
of 650–750 ◦C: low stress, limited hardening, high overall elongation, and no obvious
flow softening.

Superplastic deformation of metallic materials is a thermally activated process [31–33]. To
study the mechanism of material deformation, it is necessary to calculate the values of its
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deformation activation energy Q and strain rate sensitivity factor m. The strain rate sensitiv-
ity index (m) is a critical parameter for characterizing the resistance of superplastic-forming
materials to tensile necking. A higher value of m indicates that the material is less suscepti-
ble to tensile necking and non-uniform strain, thereby enhancing its formability [34]. When
m ≥ 0.3, the material is generally considered to be a superplastic material [16,35,36], and
the larger the value of m, the greater the contribution of GBS to superplastic deformation.
It is usually defined as the derivative of the true stress–strain rate in the thermostatic true
strain double logarithmic plot, denoted as m = ∂ln σ

∂ln
·
ε
|T,ε. The lnσ-ln

·
ε curves at different

deformation temperatures at a strain of 0.03 are shown in Figure 6a. It can be seen that the
m value is greater than 0.2 when the deformation temperature is 650 ◦C and 750 ◦C, and
when the deformation temperature is 750 ◦C, the m value of the alloy is 0.3, which indicates
that the material has an excellent superplasticity at 750 ◦C, which is also consistent with
the result of material elongation. It can also be concluded that the deformation mechanism
of the material is GBS, accompanied by the movement of dislocations [37,38].

Materials 2024, 17, 1282 7 of 13 
 

 

Superplastic deformation of metallic materials is a thermally activated process [31–
33]. To study the mechanism of material deformation, it is necessary to calculate the values 
of its deformation activation energy Q and strain rate sensitivity factor m. The strain rate 
sensitivity index (m) is a critical parameter for characterizing the resistance of superplas-
tic-forming materials to tensile necking. A higher value of m indicates that the material is 
less susceptible to tensile necking and non-uniform strain, thereby enhancing its forma-
bility [34]. When m ≥ 0.3, the material is generally considered to be a superplastic material 
[16,35,36], and the larger the value of m, the greater the contribution of GBS to superplastic 
deformation. It is usually defined as the derivative of the true stress–strain rate in the ther-
mostatic true strain double logarithmic plot, denoted as m = డ ୪୬ఙడ ୪୬ ఌሶ ∣T,ε. The lnσ-ln𝜀ሶ curves 
at different deformation temperatures at a strain of 0.03 are shown in Figure 6a. It can be 
seen that the m value is greater than 0.2 when the deformation temperature is 650 °C and 
750 °C, and when the deformation temperature is 750 °C, the m value of the alloy is 0.3, 
which indicates that the material has an excellent superplasticity at 750 °C, which is also 
consistent with the result of material elongation. It can also be concluded that the defor-
mation mechanism of the material is GBS, accompanied by the movement of dislocations 
[37,38]. 

 
Figure 6. (a) Relationship of lnσ-ln𝜀ሶ at different temperatures; (b) relationship of ln σ-(1/T) at dif-
ferent strains. 

In the process of metal forming and deformation, the transition of atoms requires a 
certain amount of energy. The value of deformation activation energy Q can, to a certain 
extent, reflect the degree of difficulty of deformation of the material and also reflect the 
degree of difficulty of dislocation activation, recovery, and recrystallization in the process 
of hot deformation of the material. The relationship between the deformation activation 
energy Q and the rheological stress and deformation parameters during superplastic de-
formation is generally described using the Arrhenius equation [39,40]: 𝜀ሶ ൌ 𝐴 ∙ 𝜎௡𝑒𝑥𝑝 ൬െ 𝑄𝑅𝑇൰ (1)

where 𝜀,ሶ  A, σ, n, Q, R, and T represent the strain rate (s−1), material constant, flow stress 
(MPa), stress index (n = 1/m), activation energy (kJ/mol), gas constant (8.314 kJ mol−1 K−1), 
and absolute temperature (K), respectively. For a fixed strain rate ε̇, the strain activation 
energy can be expressed by the following equation: 𝑄 ൌ 𝑅 ∙ 𝜕 ln 𝜀ሶ𝜕 ln𝜎 ∙ 𝜕 ln𝜎𝜕 ቀ1𝑇ቁ ൌ 𝑅 ∙ 1𝑚 ∙ 𝜕 ln𝜎𝜕 ቀ1𝑇ቁ (2)

Figure 6b shows a plot of the lnσ-(1/T) relationship (at a fixed strain of 0.03), and the 
activation energy of superplastic deformation at different strain rates was calculated ac-
cording to Equation (2). Table 2 shows the strain rate sensitivity factor and deformation 

Figure 6. (a) Relationship of lnσ-ln
·
ε at different temperatures; (b) relationship of ln σ-(1/T) at

different strains.

In the process of metal forming and deformation, the transition of atoms requires a
certain amount of energy. The value of deformation activation energy Q can, to a certain
extent, reflect the degree of difficulty of deformation of the material and also reflect the
degree of difficulty of dislocation activation, recovery, and recrystallization in the process
of hot deformation of the material. The relationship between the deformation activation
energy Q and the rheological stress and deformation parameters during superplastic
deformation is generally described using the Arrhenius equation [39,40]:

·
ε = A·σnexp

(
− Q

RT

)
(1)

where
·
ε, A, σ, n, Q, R, and T represent the strain rate (s−1), material constant, flow stress

(MPa), stress index (n = 1/m), activation energy (kJ/mol), gas constant (8.314 kJ mol−1 K−1),
and absolute temperature (K), respectively. For a fixed strain rate

·
ε, the strain activation

energy can be expressed by the following equation:

Q = R· ∂ln
·
ε

∂ln σ
· ∂ln σ

∂
(

1
T

) = R· 1
m
· ∂ln σ

∂
(

1
T

) (2)

Figure 6b shows a plot of the lnσ-(1/T) relationship (at a fixed strain of 0.03), and
the activation energy of superplastic deformation at different strain rates was calculated
according to Equation (2). Table 2 shows the strain rate sensitivity factor and deformation
activation energy Q of the alloy under different deformation conditions. It is generally
believed that when the value Q of the deformation activation energy of the material
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approaches the self-diffusion activation energy, the DRV mechanism should be controlled
by the dominant dislocation motion during the deformation process. Meanwhile, when
the Q value is much larger than the self-diffusion activation energy, it indicates that the
softening of rheological stresses during the deformation process is caused by dynamic
recrystallization [41]. From Table 3, it can be seen that the deformation activation energies
of this alloy at temperatures of 550 ◦C and 650 ◦C significantly exceed the self-diffusion
activation energies of α-titanium (169 kJ/mol) and β-titanium (153 kJ/mol) [42], which
implies that dynamic recrystallization is the dominant softening mechanism of alloys
with increasing strain in the deformation temperature range of 550–650 ◦C. The minimum
activation energy is 188.26 kJ/mol at 750 ◦C and 1 × 10−3/s, which approaches the self-
diffusion activation energy of α-Ti and β-Ti. This indicates that the deformation mechanism
of the alloy under this deformation condition is mainly controlled by the dislocation motion.

Table 3. Values of strain rate sensitivity factor m and thermal activation energy Q under different
deformation conditions.

Deformation Conditions
m Q (kJ/mol)

Strain Rate (s−1) Temperature (◦C)

1 × 10−3–1 × 10−2
550 0.09 835.94
650 0.21 286.91
750 0.3 188.26

Average value 0.2 437.04

3.3. Microstructure Evolution

Figure 7 shows the TEM image of the Ti-2Fe-0.1B alloy cut from the near fracture plane
after deformation at a temperature of 750 ◦C and a strain rate of 1 × 10−3/s. It has been
shown that maintaining a certain amount of intracrystalline dislocations during superplastic
deformation is conducive to superplastic deformation because this part of the dislocation
motion can provide a certain amount of strain [43]. A large number of dislocation tangles
can be observed at the grain boundaries and inside the grains in Figure 7a–f, which indicates
that the grain boundary sliding during superplastic deformation is coordinated by the
dislocation climbing and sliding around the grain boundaries. Moreover, isometric and
parallel dislocation arrays (shown by the yellow arrows) and dislocation walls (indicated
by the pink lines) are found in Figure 7b,c, indicating that the dislocation movement inside
the grain is very active, and the deformation mechanism of α grains is mainly controlled
by the dislocation planar sliding mechanism [44,45]. At the same time, it also shows that
strong DRV occurs in the grains [46].

As shown in Figure 7a–c, there are high-density dislocations inside the grain and at
the grain boundaries, which promotes dynamic globularization and DRX of the material
during superplastic deformation. At the junction of α and β, dislocations are entangled
and piled up, which promotes the transformation of the low-angle grain boundary (LAGB)
into the high-angle grain boundary (HAGB) and the formation of recrystallized grains
(Figure 7c,d), while the formation of recrystallized grains contributes to the grain boundary
sliding and grain rotation [37]. In addition, the DRX grains can reduce the flow stress and
significantly improve the plasticity during high-temperature deformation [47].

It is well known that the B element does not dissolve neither in the α phase nor in
the β phase, which only exists in the titanium alloy in the form of the TiB phase. On the
other hand, it is acceptable that the existence of the TiB phase could hinder the disloca-
tion sliding and then lead to the dislocation accumulation. Accompanied by dislocation
proliferation around the TiB phase, as well as high-temperature deformation, the nucle-
ation of DRX occurred, and the formation of new grains started, which could adapt to
superplastic deformations during high temperatures [48,49]. Besides that, as studied by
Maria N. Postnikova [50], the 0.01–0.1% B decreased the flow stress values at the initial
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stage of superplastic deformation and provided a stable flow due to the facilitation of
recrystallization and globularization effects.

Materials 2024, 17, 1282 9 of 13 
 

 

Postnikova [50], the 0.01–0.1% B decreased the flow stress values at the initial stage of 
superplastic deformation and provided a stable flow due to the facilitation of recrystalli-
zation and globularization effects. 

 
Figure 7. TEM microstructure of the Ti-2Fe-0.1B alloy after superplastic deformation at 750 °C and 
1 × 10−3/s: (a,b) dislocation tangles and dislocation arrays; (c,d) dislocation wall and DRX grains; (e) 
dislocation distribution; (f) TiB phase and SAED pattern of TiB phase; (g–j) microstructure evolution 
of the alloy during superplastic deformation. 

To more clearly demonstrate the evolution of the microstructure and the mechanism 
of superplastic deformation of the Ti-2Fe-0.1B alloy, Figure 7g–j show the microstructure 
evolution during the superplastic deformation of the Ti-2Fe-0.1B alloy. Initially, the mi-
crostructure of the as-received alloy is composed of high-density dislocations caused by 
hot rolling, which were mainly distributed inside the α grains, α/β grain boundaries, and 
around the TiB phase (Figure 7g). As a result of the tensile test, with increasing strain and 
deformation temperatures, the occurrence of DRV causes the formation of sub-grains and 
the development of a structure as more dislocations accumulate at the sub-grain 

Figure 7. TEM microstructure of the Ti-2Fe-0.1B alloy after superplastic deformation at 750 ◦C and
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To more clearly demonstrate the evolution of the microstructure and the mechanism
of superplastic deformation of the Ti-2Fe-0.1B alloy, Figure 7g–j show the microstructure
evolution during the superplastic deformation of the Ti-2Fe-0.1B alloy. Initially, the mi-
crostructure of the as-received alloy is composed of high-density dislocations caused by
hot rolling, which were mainly distributed inside the α grains, α/β grain boundaries, and
around the TiB phase (Figure 7g). As a result of the tensile test, with increasing strain and
deformation temperatures, the occurrence of DRV causes the formation of sub-grains and
the development of a structure as more dislocations accumulate at the sub-grain boundaries.
This causes the transformation of LAGB to HAGB and the generation of DRX grains. The
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fraction of the β-phase increased as a result of the occurrence of DRX and phase transitions,
as well as an increase in the sizes of primary α and β grains due to the static growth and a
reduction in dislocations due to static recovery (Figure 7h). Sub-grains around TiB formed
new grains due to the DRX. At the same time, a large number of dislocations slip and
aggregate in the α grains to form sub-grains, which recrystallize and form new α grains
with an increase in strain. Adjacent grain boundaries switch along the shear plane; in
addition, GBS also promotes spheroidization while rotating along the grains (Figure 7i).
Finally, the DRX grains grow with increasing deformation time (Figure 7j). Additionally,
the Fe element also promotes recrystallization, spheroidization, and grain boundary sliding
of the phase during superplastic deformation [19,51].

3.4. Fracture Morphology

Figure 8 shows the fracture morphology of the Ti-2Fe-0.1B alloy after superplastic
deformation. It can be seen from the figure that before the tensile fracture, the sample
has a large plastic deformation, and the fracture morphology of the specimen under
different deformation conditions contains fracture dimples with a distribution of cavities.
In Figure 8a,b, the dimples are large and densely distributed, and there are small grains
in the cavity. It seems that the cavity first nucleates on these small particles and then
aggregates, grows, and joins under the combined action of GBS and plastic deformation
so that a number of cracks are formed on the surface of the specimen. The cracks connect
to each other; then, this leads to the fracture of the sample. In Figure 8c,d, there are
dimples with plastic fracture characteristics and a large number of tear ridges, which are
typical ductile fracture characteristics. The dimples contained in the micromorphology are
elongated due to the shear stress of the specimen before fracture.
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In this paper, the superplastic deformation mechanism and the microstructure evolu-
tion of the Ti-2Fe-0.1B alloy are investigated. The following conclusions can be made:

(1) The average grain size of the Ti-2Fe-0.1B alloy reached 1.72 µm due to the effect of Fe
and B elements, which gave the alloy good superplasticity even at a high strain rate
(1 × 10−2 s−1) and a low deformation temperature of 550 ◦C. The elongation of the
alloy reached 137.5% under this deformation condition. The high strain rate sensitivity
coefficient m (0.3) and the maximum elongation (452%) were obtained at a strain rate
of 1 × 10−3 s−1 and a temperature of 750 ◦C.

(2) The TiB phase provides nucleation sites for DRX and induces significant DRX and
dynamic globularization during superplastic deformation. The main mechanism of
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superplastic deformation of the Ti-2Fe-0.1B alloy is grain boundary sliding under the
coordination of dislocation motion, accompanied by DRX.

By analyzing the fracture morphology, it is found that the fracture of the alloy contains
dimples of plastic fracture under high temperature and low strain rate tensile deformation.
The aggregation, growth, and connection of cavities cause cracks to appear on the surface
of the sample, which leads to its destruction.
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