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Abstract: This study focuses on exploring the effects of niobium (Nb)-microalloying on the properties
of steel for ultra-high-strength bridge cables during hot-rolling processes. We employed a combination
of dual-pass compression tests, stress–strain curve analysis, and Electron Backscatter Diffraction
(EBSD) techniques to investigate the influence of Nb-microalloying on the static recrystallization
behavior and grain size of the steel. The key findings reveal that Nb-microalloying effectively inhibits
static recrystallization, particularly at higher temperatures, significantly reducing the volume fraction
of recrystallized grains, resulting in a finer grain size and enhanced deformation resistance. Secondly,
at a deformation temperature of 975 ◦C, Nb-containing steel exhibited finer grain sizes compared
to Nb-free steel when held for 10 to 50 s; however, the grain size growth accelerated when the hold
time exceeded 50 s, likely linked to the increased deformation resistance induced by Nb. Lastly, this
research proposes optimal hot-rolling process parameters for new bridge cable steel, recommending
specific finishing rolling temperatures and inter-pass times for both Nb-containing and Nb-free steels
during the roughing and finishing stages. This study suggests optimal hot-rolling parameters for
both Nb-containing and Nb-free steels, providing essential insights for improving hot-rolling and
microalloying processes in high-carbon steels for bridge cables.

Keywords: niobium-microalloying; bridge cables; hot-rolling process; recrystallization softening;
electron backscatter diffraction analysis

1. Introduction

In bridge engineering, the steel used for bridge cables is a specially designed high-
strength material, aimed at meeting the extreme requirements of the load-bearing elements
in modern suspension and cable-stayed bridges. The design of this steel encompasses
several key performance indicators, including but not limited to high tensile strength, good
toughness, and excellent fatigue resistance. These properties enable the bridge cable steel
to withstand immense tensile forces without fracturing, ensuring the safety and reliability
of the structure [1–3]. In bridge design, the use of higher-performance bridge cable steel
allows for a reduction in the structure’s self-weight, thereby enabling the possibility of
longer-span bridge designs [4].

With the increasing demands for material properties in engineering structures, es-
pecially bridges, microalloying technology has become a key method for optimizing the
macroscopic properties of steel through microscopic alloy design. Specifically, the addition
of Nb (niobium) as a microalloying element has been proven to significantly enhance the
mechanical properties of steel. Precise control of Nb not only plays a crucial role in the solid
solution strengthening and grain refinement effects of the alloy but also restricts the grain
growth through grain boundary pinning mechanisms, thereby maintaining a fine-grained
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structure in the steel during high-temperature rolling processes [5–9]. Furthermore, grain
refinement can improve the uniformity of the material during deformation, reducing the
risk of performance degradation caused by temperature changes and stress concentration.
Nb also affects the recrystallization behavior of materials, slowing down the recrystalliza-
tion process, allowing for finer grain sizes at higher deformation temperatures [10–12].
Due to these benefits of Nb-microalloying, bridge cable steel in modern bridge engineering
increasingly employs this approach [13].

Hot rolling, as one of the critical steps in metal material preparation, plays a decisive
role in determining the final microstructure and macroscopic properties of the material.
This process, through plastic deformation at high temperatures, enables the material to
achieve the desired geometric shape and size. Simultaneously, the internal microstructure
of the material undergoes a complex evolution, including recrystallization, grain growth,
and phase transformation [5,11,14,15]. Scientific research has shown that fine control of hot-
rolling parameters, such as the heating temperature, degree of deformation, deformation
speed, and cooling rate, can manipulate the material’s microstructure at the microscopic
level, thus achieving targeted performance design at the macroscopic scale [16,17]. For
example, in the development of ultra-high-strength steel for bridge cables, hot rolling is
not only a means to achieve the desired shape but also a key technological pathway for
optimizing material properties and enhancing structural safety.

This study aims to explore the impact of Nb-microalloying on the properties of
2000 MPa grade ultra-high-strength bridge cable steel during hot-rolling processes [6].
It specifically involves simulated dual-pass compression experiments that mimic the hot-
rolling process, combined with stress–strain curve analysis and Electron Backscatter Diffrac-
tion (EBSD) techniques, to conduct an in-depth analysis of the changes in grain size. This
study employs the dual-pass compression test simulation method, which closely approxi-
mates the actual rolling process in production. By precisely controlling the deformation
parameters, this method reveals the effects of Nb-microalloying on the grain refinement
mechanisms during the hot-rolling process.

2. Materials and Methods

The experiment utilized high-carbon steel with chemical compositions as shown in
Table 1. The materials were refined and produced by the high-speed wire workshop of
China WISCO. Sample 1 was Nb-free, while sample 2 contained Nb. A double-pass com-
pression test was conducted on the tested steel using the Gleeble-3500 thermal simulation
testing machine. The heat treatment schematic diagram is shown in Figure 1. Samples were
first processed by wire-cutting into cylindrical specimens with a diameter of 8 mm and a
height of 12 mm. The specimens were rapidly heated to a target temperature of 1200 ◦C
(with a heating rate of 10 ◦C/s) and held at this temperature for 5 min to homogenize their
microstructure. Subsequently, the samples were cooled to different deformation tempera-
tures within the range of 900 ◦C to 1000 ◦C (at five temperature points) at a cooling rate
of 5 ◦C/s, for the first compression (true strain of 0.4, strain rate of 1 s−1). After the first
deformation, they were held at the specified deformation temperature for varying times
(ranging from 300 s to 1 s) to simulate different cooling and dwelling conditions, followed
by a second compression (with the same true strain and strain rate as the first) and rapid
quenching to fix the microstructure. Stress–strain data were collected in real time via the
load and displacement sensors on the experimental machine.

Table 1. Chemical composition of the test steel (mass fraction, %).

Samples C Si Mn Cr Nb P + S Fe

1 Nb-free 0.98 0.98 0.49 0.35 - <0.003 Bal
2 Nb-bearing 0.98 0.99 0.48 0.35 0.025 <0.003 Bal
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Figure 1. Two–pass compression process schematic diagram.

Following the recrystallization experiments, the specimens were first cut open along
the axial direction, and they then underwent standard metallographic sample preparation
procedures, including grinding and polishing until the surface was free of visible scratches.
The sample surfaces were subsequently subjected to etching treatment. EBSD scanning
was performed using pre-set parameters (acceleration voltage of 20 kV, scan step size of
300 nm) to ensure high-quality diffraction patterns were obtained. After data collection,
specialized EBSD software was used for the post-processing, such as noise reduction, grain
boundary identification, and grain size measurement, as well as analysis of the crystal
orientation distribution. This provided an in-depth understanding of the microstructural
characteristics of the materials.

3. Experimental Results
3.1. Volume Fraction of Static Recrystallization

During the dual-pass compression experiments at different deformation temperatures
and time intervals on the Nb-free and Nb-bearing steels, the collected stress–strain data
revealed differences in the static recrystallization behavior of the two materials, as shown
in Figures 2 and 3. It can be observed that the deformation resistance of Nb-microalloyed
steel is significantly higher than that of Nb-free steel. The stress–strain curves of both
can be used to read parameters such as the peak stress during each deformation pass for
subsequent calculations. For the quantification of the static softening rate, this study em-
ployed a compensation method for the calculation [18]. This method selects the 0.2% plastic
deformation yield point as the benchmark, as data collection at this point is convenient
and the error is relatively small, with precision superior to the 2% yield stress point. The
calculation formula is as follows:

R = (σm − σ2)/(σm − σ1) (1)

In this formula, σm represents the peak stress at the end of the first pass deformation; σ2
and σ1 are the yield stresses for the first and second pass, respectively, where the yield stress
refers to the flow stress at 2% strain. The austenite deformation softening rate calculated
through the 2% compensation method includes both the contributions of static recovery
and the effects of static recrystallization. Based on the understanding that a softening rate
of 0.2 marks the onset of recrystallization, the volume fraction of static recrystallization
XSRX can be further calculated [19]. The calculation formula is:

XSRX = (R − 0.2)/(1 − 0.2) = (R − 0.2)/0.8 (2)
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Figure 3. Stress–strain curves of Nb-bearing steel at (a–e) 900–1000 ◦C deformation temperatures and
at 1–300 s intervals.

Based on the aforementioned method, the static softening rates and volume fractions
for both types of steels were calculated and summarized in Table 2. From these data,
graphs depicting the relationship between the volume fraction of static recrystallization,
deformation temperature, and dwelling time were constructed (Figure 4). The graphs
indicate that when the volume fraction of static recrystallization exceeds 90%, complete
static recrystallization is considered to have occurred; when the volume fraction is below
20%, static recrystallization is considered not to have occurred [19]. Furthermore, the
addition of the microalloying element Nb significantly reduced the volume fraction of static
recrystallization in the new experimental steel under the same experimental conditions.
This suggests that microalloying with Nb has a significant impact on static recrystallization.
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Table 2. Softening fraction and recrystallization integral fraction of the tested steel.

Temperature 900 ◦C 925 ◦C 950 ◦C 975 ◦C 1000 ◦C
Time R/% XSRX/% R/% XSRX/% R/% XSRX/% R/% XSRX/% R/% XSRX/%

1

1 s 25.34 6.68 48.46 35.57 51.07 38.86 61.53 51.91 70.38 63.00
5 s 59.25 49.07 78.46 70.08 87.36 84.20 90.29 87.86 90.74 88.42

10 s 67.26 59.08 85.17 81.46 88.60 85.57 94.82 93.52 91.75 89.69
50 s 74.81 68.52 88.95 86.18 90.50 88.12 95.54 94.43 94.82 93.53

100 s 76.26 70.33 92.98 91.22 93.00 91.25 96.06 95.08 98.50 98.13
300 s 82.28 77.86 93.46 91.83 94.03 92.54 97.49 96.86 99.67 99.59

2

1 s 15.86 -- 27.51 9.39 36.73 20.91 48.55 35.69 59.55 49.43
5 s 49.66 37.08 60.50 50.63 72.85 66.06 77.72 72.15 80.43 75.53

10 s 68.87 61.09 77.90 72.38 78.30 72.88 83.76 79.67 83.36 79.20
50 s 77.79 72.23 81.83 77.29 83.16 78.94 84.87 80.87 85.67 82.08

100 s 80.13 75.16 81.95 77.44 86.09 82.61 86.11 82.64 91.13 88.92
300 s 85.13 81.41 85.51 81.89 86.67 83.34 88.63 85.78 91.66 89.57
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bearing steel.

3.2. Microstructural Characterization of Static Recrystallization

The quenched microstructures of Nb-free steel after static recrystallization are illus-
trated in Figures 5 and 6. Here, typical experimental conditions at 975 ◦C for intermediate
dwelling times of 1 s to 300 s and deformation temperatures from 900 ◦C to 1000 ◦C for a
100 s dwelling time were selected. Both types of experimental steels obtained a substantial
amount of martensitic structure after dual-pass rolling and quenching. EBSD analysis was
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performed for both steels under the same conditions, as shown in Figures 7 and 8. Due
to the small difference in the heat treatment temperatures, the difference in the average
grain area and size is limited. Considering the experimental error, the grain size data under
typical experimental parameters are shown in Figure 9.
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Figure 6. Microstructure of Nb-free steel at (a–e) 900–1000 ◦C deformation temperature and 100 s
residence time.

The pearlite colony sizes and pearlite colony boundaries of the samples’ varied size
angles are displayed in Figure 7a. Figure 7b shows the high- and low-angle grain boundary
(H/LAGB) misorientation of the sample, and the statistics are determined with 15◦ as the
boundary.
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4. Discussion
4.1. The Impact of Niobium-Microalloying on Static Recrystallization

The dual-pass compression tests were primarily conducted to study the impact of
Nb-microalloying on high-carbon steel during hot-rolling processes, especially regarding
static recrystallization [17,20]. Table 2 presents the data for the softening fraction (R/%)
and recrystallization volume fraction (XSRX/%) of the two types of steels under various
deformation temperatures (900 ◦C to 1000 ◦C) and intermediate dwelling times (1 s to 300 s).
Typically, a higher softening fraction indicates more significant microstructural changes in
the material, signifying the extent of the microstructural alterations (such as the dislocation
rearrangement and grain restructuring) induced by deformation during hot rolling [21]. For
both types of steels, the softening fraction and recrystallization volume fraction generally
increase with higher deformation temperatures and longer intermediate dwelling times.
This suggests that under higher temperature and longer duration conditions, the material
is more prone to recrystallization, leading to more pronounced softening. Comparing
Nb-bearing with Nb-free steel under the same experimental conditions, the Nb-bearing
steel generally shows lower softening fractions and recrystallization volume fractions. This
indicates that the addition of Nb inhibits the recrystallization process, slowing down the
softening of the material. This could be due to the formation of niobium carbides, which act
as pinning agents at the grain boundaries, inhibiting grain growth and recrystallization [22].
The recrystallization proportion fractions are also more visually evident in Figure 4.

The addition of Nb leads to a significant reduction in the grain size, as well as to
changes in the grain morphology and distribution. The microstructure of the samples was
analyzed in detail using EBSD technology. However, in this experiment, the factors affect-
ing the grain size included not only the temperature but also the intermediate dwelling
time. When the intermediate dwelling time is sufficiently long, and the volume fraction
of static recrystallization exceeds 90%, complete static recrystallization is considered to
have occurred. In such cases, the expected grain size is smaller because the recrystalliza-
tion process typically results in the formation of new grains, thereby refining the grain
structure. Conversely, when the dwelling time is short and the volume fraction of static
recrystallization is below 20%, static recrystallization is considered not to have occurred,
and the grain size may be larger due to insufficient new grain formation to replace the
original deformed grains. A recrystallization volume fraction between these two extremes
is referred to as mixed crystal, a phenomenon that improves with an extended holding time.
Figure 9a indicates the average grain area at different deformation temperatures, showing
the changes in the average grain area for both types of steels within the 900 ◦C to 1000 ◦C
deformation temperature range, under a 100 s intermediate dwelling time. Typically, the
grain area increases with a rising deformation temperature, as higher temperatures promote
grain growth [23]. Additionally, the Nb-bearing steel exhibits a generally smaller average
grain area across the entire temperature range compared to the Nb-free steel, indicating
that Nb addition effectively inhibits grain growth, maintaining smaller grain sizes even
at higher temperatures. Figure 9b shows the average grain area at different intermediate
dwelling times. Under longer dwelling times, the grains have more time to grow, thus
increasing the average grain area. Conversely, under shorter dwelling times, a mixed
crystal state or a lower proportion of recrystallization results in a larger final average grain
area. Comparing the two materials, it is evident that Nb-bearing steel can achieve the
smallest average grain area of 4.1 µm2 under optimal processing parameters, a notable
improvement over the 4.48 µm2 of Nb-free steel. Although the grain size of Nb-bearing
steel increases faster with extended dwelling times, this is mainly due to the increased
deformation resistance of Nb-bearing steel. Comparing the dual-pass compression curves
in Figures 2 and 3, the stress–strain curves of Nb-bearing steel exhibit higher yield strength
and deformation resistance. In hot-rolling or heat-treatment processes, the material’s re-
sistance to deformation is closely related to changes in its microstructure. Nb-bearing
steel, due to its higher resistance to deformation, may undergo more deformation work
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during the dual-pass compression process [12,24]. This deformation work can induce grain
boundary movement, accelerating grain restructuring and growth [25].

4.2. Analysis of Thermal Deformation Process Parameters of Bridge Cable Steel

The dual-pass compression static recrystallization experiments simulated recrystallization-
controlled rolling, involving heating the steel to the austenitization temperature, followed
by plastic deformation. During each pass of deformation or between the two passes,
dynamic and static recrystallization occurred, completing the recrystallization process.
Repeated rolling and recrystallization refined the austenite grains, setting the stage for the
formation of fine grains after phase transformation. To prevent the growth of recrystallized
austenite grains, it is crucial to strictly control the reduction in the final passes, rolling
temperature, and interval time between passes. However, the work hardening of austen-
ite during thermal deformation cannot be completely eliminated, leading to instability
in the microstructure. Consequently, the structure after deformation undergoes changes
due to static softening at high temperatures. The static softening process, influenced by
the amount of hot deformation, can be divided into three stages: static recovery, static
recrystallization, and metadynamic recrystallization. Static and metadynamic recrystal-
lization are the main mechanisms of static softening after deformation, determining the
degree of softening during the intervals in multi-pass hot rolling. Figure 4 shows that
under the same interval, the volume fraction of static recrystallization increases with the
deformation temperature. The relationship with the dwelling time shows a rapid increase
in the volume fraction of static recrystallization within 1–10 s, followed by a slower in-
crease. This is mainly because the static recrystallization process, including nucleation
and growth, is a thermally activated process; the higher the deformation temperature, the
greater the nucleation rate of static recrystallization. Grain growth, essentially a grain
boundary migration process, requires atomic diffusion, which accelerates with higher de-
formation temperatures, increasing the boundary migration rates, thus increasing the static
recrystallization volume fraction. Related research [26,27] utilized multivariate nonlinear
regression analysis to determine the coefficients and establish a model describing the static
and dynamic recrystallization of steel microstructures. The study examined the influence
of the initial grain size, deformation temperature, strain, and strain rate on the austenite
recrystallization volume fraction and grain size. It found that a larger recrystallization
volume fraction reduces the grain size during deformation. At the same time, the static
recrystallization volume fraction increases with an increasing deformation temperature,
strain, strain rate, and decreasing initial grain size. The recrystallization volume fractions
calculated in this experiment are consistent with the experimentally measured grain sizes.
Figure 4 shows that the recrystallization volume fraction of the experimental steel trends
upward with an increasing deformation temperature or interval time between passes. Static
recrystallization, including nucleation and growth, increases with extended interval times
due to the high dislocation energy in the matrix continuously generating new nucleation
sites [28,29]. Higher deformation temperatures cause austenite grains to grow continuously,
thus increasing the static recrystallization softening rate and volume fraction. Typically,
a static recrystallization softening rate of 90% or more indicates the completion of the
recrystallization process. At a deformation temperature of 1000 ◦C and an interval of 5 s,
both Nb-free and Nb-bearing steels achieve a recrystallization volume fraction of over 70%.
However, for Nb-bearing steel to reach a 90% recrystallization volume fraction, an interval
of over 100 s is needed. It is noteworthy that a recrystallization fraction of 80% or less leads
to the mixed crystal phenomenon, indicating that to achieve full recrystallization of the
experimental steel, the hot-rolling conditions for Nb-free steel should be above 975 ◦C with
an interval time of more than 10 s, while Nb-bearing steel requires an interval time of over
100 s. Under these conditions, the smallest grain size after two-pass rolling is obtained.
Overall, the impact of niobium-microalloying on static recrystallization in hot-rolling pro-
cesses highlights its potential in refining grains and enhancing material properties. This
effect not only helps improve the mechanical properties of materials but is also significant
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for optimizing material processing and enhancing the performance of the final products in
industrial applications.

5. Conclusions

This study delves into the impact of niobium-microalloying on the properties of
steel used for ultra-high-strength bridge cables during hot-rolling processes. Utilizing
dual-pass compression tests, stress–strain curve analysis, and Electron Backscatter Diffrac-
tion techniques, we have uncovered significant effects of Nb-microalloying on the static
recrystallization behavior and grain size. The key findings are as follows:

1. The experimental results clearly demonstrate that Nb-microalloying can effectively
inhibit static recrystallization and promote grain refinement. The addition of Nb
significantly reduces the volume fraction of static recrystallization, leading to finer
grain sizes and higher deformation resistance.

2. This study also found that under a deformation temperature of 975 ◦C, Nb-microalloyed
high-carbon steel achieves finer grain sizes than Nb-free steel when held for 10–50 s.
However, the rate of grain size growth accelerates after an intermediate dwelling time
of over 50 s, related to the increased deformation resistance caused by Nb.

3. The optimal hot-rolling conditions for new bridge cable steel are as follows: For Nb-
free steel, the finishing temperature in the roughing stage should be ≥1000 ◦C, and
the inter-pass time ≥ 10 s; the starting temperature in the finishing stage should be
≤900 ◦C, and the inter-pass time ≤ 5 s. For Nb-bearing steel, the finishing temperature
in the roughing stage should be ≥1000 ◦C, and the inter-pass time ≥ 100 s; the starting
temperature in the finishing stage should be ≤925 ◦C, and the inter-pass time ≤ 5 s.
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