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Abstract: Using fiber-reinforced polymer composite to replace metal in window frames has become
a trend in aircraft manufacturing to achieve structural weight reduction. This study proposes an
innovative winding compression molding process for continuous production of aircraft window
frames using continuous carbon fiber-reinforced polyamide 6 thermoplastic composite filaments
(CF/PA6). Through process parameter optimization, the production cycle of CF/PA6 composite
window frames was controlled within 5 min, with an ultra-low porosity of 0.69%, meeting aviation
application standards. Combining mechanical property experimental tests and finite element analysis,
the mechanical performance of window frames made from three different materials was compared
and evaluated. In the hoop direction, the mechanical performance of the continuous CF/PA6
thermoplastic window frames were significantly higher than that of chopped CF/epoxy compression
molding window frames and aluminum alloy window frames. In the radial direction, the maximum
strain occurred at the corner with the highest curvature of the frame due to the absence of fiber
reinforcement, resulting in weak pure interlayer shear. Nevertheless, the thermoplastic CF/PA6
winding compression molded window frame still exhibited a high resistance to crack propagation
and damage, as evidenced by the absence of any detectable sound of microdamage during testing
with a 9000 N load. It is believed that achieving a further-balanced design of hoop–radial performance
by appropriately introducing radial ply reinforcement can lead to a significant weight reduction goal
in the window frame. The findings in this study provide an innovative process reference that can be
universally applicable to high-speed and near-net-shape manufacturing without material waste of
continuous fiber-reinforced thermoplastic composite products.

Keywords: thermoplastic composites; aircraft window frame; winding compression molding; me-
chanical property; finite element

1. Introduction

Lightweight design is a crucial approach to improving the thrust–weight ratio and
fuel economy in the aerospace field. The commonly used materials in lightweight design
include Al alloys, Ti alloys, high strength steel, and composites [1]. Among them, carbon
fiber-reinforced polymer composites (CFRP) possess low density, no more than 1.8 g/cm3,
but with high strength, high damage tolerance, improved fatigue resistance, corrosion resis-
tance, and moisture resistance, making them indispensable materials for weight reduction
in the aviation field [2]. For instance, the usage of fiber composites in aircraft like the Airbus
A350 and Boeing 787 has surpassed 50 wt %, including structural components of the wing
box, empennage, and fuselage, as well as the control surfaces, setting a benchmark in the
commercial aircraft industry.

Materials 2024, 17, 1236. https://doi.org/10.3390/ma17061236 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17061236
https://doi.org/10.3390/ma17061236
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-2283-4236
https://orcid.org/0000-0001-7503-043X
https://orcid.org/0000-0003-0674-2198
https://doi.org/10.3390/ma17061236
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17061236?type=check_update&version=1


Materials 2024, 17, 1236 2 of 21

Aircraft windows, as crucial components of the fuselage, serving the dual functions of
structural support and human–machine interaction, are also a key aspect of weight reduc-
tion for commercial aircraft [1,3]. Presently, civilian aircraft models employing composite
material window frames include the Boeing 787 [4] and Airbus A350 [5]. Considering the
balance of production efficiency, cost, and maturity of composite processing technology, the
787 Dreamliner utilized chopped CF/epoxy composite compression molding technology in
its window frames. Compared to traditional aluminum alloy frames, the novel composite
aircraft window frames reduce weight by 50% and offer higher damage tolerance, provid-
ing excellent fuel economy. Meanwhile, they enhance the flight experience for passengers
by providing a larger view of the scenery outside [6,7]. However, there are two aspects that
are worth improving. Firstly, compared to continuous fiber reinforcement, the strength
and modulus levels of short fiber composites are still relatively low, thus failing to fully
exploit the maximum weight reduction potential of composites. Secondly, the thermoset-
ting composites used have long curing times and scrap rates, and are not recyclable after
retirement. As a comparison, the route employed in the manufacturing of Airbus A350
window frames provides a new technical reference by utilizing automatic continuous
carbon fiber layup-sewing followed by epoxy resin high-pressure resin transfer molding
(HP-RTM). Airbus A350 window frames manufacturing provides a new technical reference
by using automatic continuous carbon fiber layup-sewing with followed by epoxy resin
HP-RTM infusion process. However, the layup-sewing efficiency is low and the method
also faces the issue of how to recycle thermosetting composites.

In contrast, continuous fiber-reinforced thermoplastic composite materials (CFRTP)
can effectively address the aforementioned mechanical property, manufacturing efficiency,
and recycling concerns [8]. The specific strength and specific stiffness are several times
higher than those of short fiber reinforcement. Additionally, CFRTP is expected to achieve
much faster forming compared to thermosetting composites due to the physical changes in
thermoplastic polymers during molding, without the need for curing [9–11]. Additionally,
the intrinsic recyclability of thermoplastic composites aligns with the concept of green and
low-carbon development globally. More and more fields are in favor of developing and
using thermoplastic composite materials, structures, and manufacturing processes, aiming
to achieve weight and cost reduction and to minimize the environmental impact through
eco-design and energy consumption optimization all along the life-cycle (towards zero
impact) [12–16]. It is also recognized as the mainstream composite material system for the
next generation of aircraft. Typical examples are the programs of TAPAS and Clean Sky,
led respectively by Boeing and Airbus, which have been conducting foundational applied
research and validation for nearly two decades. To address the aforementioned issues of
window frames, a sub-project named WINFRAME 4.0 was developed to fabricate a kind of
carbon fiber-reinforced thermoplastic polyphenylene sulfide (CF/PPS) composite window
frame for the Green Regional Aircraft demonstrator in Clean Sky [17,18]. The CF/PPS
composite window frames were manufactured following an innovative molding process
named the Quilted Stratum Process (QSP) [19]. It can produce one window frame every
10–20 min, achieving a much shorter manufacturing cycle time of parts than currently used
processes to manufacture composite window frames such as RTM that the A350 employs.
However, there is still room for improvement in the production cycle. More importantly,
the use of prepreg with fabric forms results in significant waste during circular cutting.
Therefore, the development of a new type of thermoplastic composite window frame
molding technology, which integrates performance, efficiency, net-shaping, and low-carbon
friendliness, remains to be explored.

Currently, the manufacturing of circumferential or rotary structures resembling win-
dow frames with CFRTP is typically achieved through winding or automated laying
processing technologies [20–22]. However, to achieve high interlayer quality, auxiliary
equipment such as flame, laser heating, and rollers are often needed, leading to lower mold-
ing efficiency [23]. Alternatively, a preformed composite semi-product can be first created
using automated fiber placement (AFP) and then undergo a secondary hot-stamping mold-



Materials 2024, 17, 1236 3 of 21

ing. However, expensive equipment investment is usually required for AFP [24]. Hence,
in this paper, we propose an innovative and low-cost thermoplastic composite window
frame-forming process that approaches net shaping through a combination of winding
and compression molding processing: continuous carbon fiber-reinforced polyamide 6
(CF/PA6) thermoplastic composite filaments were prepared in advance, then a rough
window frame preform was prepared through a winding process, and then the thermo-
plastic window frame was finally obtained by further using a rapid hot-in and cold-out
compression molding technology. Simulation and performance comparison of window
frames manufactured from winding compression CF/PA6, chopped CF/epoxy sheet mold-
ing, and aluminum alloy were conducted. Preliminary experimental results demonstrate
that the entire molding cycle of winding compression processing can be controlled within
5 min, which is competitive to CF/epoxy sheet molding, alongside achieving high molding
quality and with low equipment investment. Our findings provide a novel reference for
the forming of circumferential or rotary structures manufactured from continuous fiber
thermoplastic composites with high-performance and rapid molding.

2. Materials and Methods
2.1. Preparation of the Window Frame

The winding compression technology proposed in this paper consists of three steps: fil-
ament impregnation, preform winding, and compression molding. Specifically, it first refers
to the preparation of pre-impregnated continuous carbon fiber-reinforced thermoplastic
composite filaments, such as CF/PA6 filament with 2 mm diameter, in this paper, followed
by a rapid filament winding forming to prepare a preform with a rough apparent shape,
such as aircraft window frame. Subsequently, this rough preform is reheated and placed in
a high-precision final product molding cavity for neat compression shaping, further com-
pacting the composites and improving the weak interface layer between winding layers or
fiber bundles under high pressure. Consequently, products with high performance and low
porosity are obtained. Thanks to the processing advantages of thermoplastic composites
without a chemical curing process and the high fault-tolerance of the preforms without
strict porosity requirements, efficient winding process parameters can be applied, achieving
high producing efficiency. The three steps are respectively depicted as follows.

2.1.1. Preparation of the CF/PA6-Impregnated Filaments

Continuous CF/PA6 pre-impregnated filaments with diameter of 2 mm were prepared
using a melt impregnation method. Specifically, three bundles of 12 K carbon fibers (Toray
T700SC-12K), i.e., 36 K in total, preheated to 150 ◦C, were continuously passed through
cross-head impregnation dies at a speed of 5 m/min. In the dies, the fibers were thoroughly
impregnated with molten PA6 (UBE 1013B, Tm = 220 ◦C) provided by an extruder. Fiber
content control was achieved through a shaping die with a 2.0 mm aperture, followed by
rapid cooling for the filament shaping. Finally, the continuous CF/PA6 filaments ready for
preform winding were obtained through traction and winding into rolls.

2.1.2. Winding Molding of the Window Frame Preform

The experimental production line for the continuous winding of continuous fiber ther-
moplastic filaments for window frame preforming is depicted in Figure 1. The equipment
mainly consists of unwinding devices, traction rollers, a heating channel, guiding rollers,
pressure rollers, winding molds, and winding machines. The specific procedural steps are
as follows: Continuous CF/PA6-impregnated filaments, under the power of the traction
roller and a pre-tension force of 13 N, continuously pass through a 400 ◦C infrared heating
channel at a speed of 10 m/min to undergo thorough remelting. Subsequently, the bundles
are positioned by guiding rollers onto the rotating winding mold core. With the combined
action of radial rolling pressure rollers and a reciprocating mechanism, the preforming
process is completed.
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Figure 1. Winding process of the window frame preform manufactured with continuous CF/PA6
thermoplastic composite filaments.

2.1.3. Compression Molding of the Final Window Frame

The final shaping of the window frames was performed using a rapid stamping
process, fully exploiting the forming advantages of thermoplastic composite materials to
ensure high forming efficiency. As seen in Figure 2, the compression molding equipment
mainly consists of an infrared heating channel, preforming body clamping fixture, sliding
guide rails, molds, and a compression molding machine. The specific procedural steps
are as follows: Firstly, the preformed window frame, which has been wound into a rough
shape, is installed on the clamping fixture of the sliding guide rail. After heating to 260 ◦C
under the 400 ◦C infrared heater, the preformed window frame is quickly slid into the
cavity of the compression molding tool at 160 ◦C. It is then kept under 4 MPa pressure until
the temperature of the window frame drops to below 170 ◦C. Afterward, the continuous
CF/PA6 thermoplastic composite window frame sample is removed and placed in a
pressurized forming mold with a lower temperature of 80 ◦C. After cooling to 80 ◦C, it is
taken out. This two-step molding–cooling method can effectively avoid large deformations
induced by the crystallization shrinkage and cooling shrinkage of CF/PA6 consolidation
from 170 ◦C to 80 ◦C. In addition, it can significantly reduce the mold occupancy time
of window frame molds, thereby improving manufacturing efficiency and production
cycle. To facilitate easy component demolding, two plies of polyimide (Kapton, DuPont,
WA, USA) and a release agent (FREKOTE, Henkel, Düsseldorf, Germany) were placed
in both the male and female tooling parts in advance. To determine the compression
molding process parameters, the influence of compression molding temperature and
holding pressure time on the surface forming quality and mechanical properties of the
material were simultaneously investigated.
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Figure 2. Rapid cold compression process of the final window frame through a wound CF/PA6
frame preform.

2.1.4. Preparation of Chopped CF/Epoxy Composite Frame

For comparison, short carbon fiber-reinforced epoxy composite material (CF/epoxy)
window frames were also prepared and tested. Based on the Lytex Molding Guidelines
provided by Quantum Composites for Lytex® 4149 (Bay, MI, USA) the material preheating
temperature was determined to be 90 ◦C for 2 min, and the feeding weight was calculated
as Vsample × density × 1.05%, where Vsample is the volume of the frame. The molding
temperature was set at 150 ◦C, the molding pressure at 7 MPa, and the holding pressure
time at 5 min, and the mold extrusion surface was vented.

2.2. Characterization
2.2.1. Fiber Content

According to the experimental requirements in this paper, the fiber volume fraction of
the composite material was calculated or tested using the following three methods.

(1) Density method

Firstly, the material density is determined using the Archimedes buoyancy method.
Then, the volume fraction of the fibers in the composite material is calculated using
Equation (1).

Vf =
ρ − ρr

ρ f − ρr
× 100% (1)

where ρf is the fiber density (1.80 g/cm3 for carbon fibers), and ρr is the resin density
(1.13 g/cm3 for PA6).

(2) Weight-loss method

As shown in Figure 3, a certain mass of the composite material sample, denoted as m1,
is weighed and then placed in a crucible with a mass denoted as m2. The crucible is heated
in a Muffle furnace at 650 ◦C for 30 min. The remaining total mass of the crucible and the
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residue is recorded as m3. The mass fraction, Mf, and volume fraction, Vf, of carbon fibers
in the CF/PA6 composite material are calculated using Equations (2) and (3).

M f =
m3 − m2

m1
× 100% (2)

Vf =
M f ρr

M f ρr + Mrρ f
× 100% (3)

where Mf is the fiber mass fraction, Mr is the resin mass fraction, and Vf is the fiber
volume fraction. Since the burning process may involve the oxidation of carbon fibers,
the fiber content calculated by this method may be slightly lower compared to the other
two methods.
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Figure 3. Muffle furnace weight-loss method used for measuring the fiber content of CF/PA6
composites: (a) the obtained CF/PA6 composite, (b) the residual after weight-loss, and (c) the residual
CFs.

(3) Metallographic imaging method

Composites with specific dimensions are vertically embedded in epoxy resin. After the
epoxy resin cures, the cross-section is polished, and optical micrographs are taken using a
microscope (DM4000M, Leica, Germany). Subsequently, Image J software v1.54 is employed
for black-and-white threshold processing of the metallographic images, where pixels
representing fibers and resin are replaced with “255” and “0”, respectively. The fiber volume
fraction is then determined by calculating the percentage of pixels representing fibers. With
adjustments to different thresholds, it can also be used to calculate the porosity of composite
materials. It is important to note that the imaging method has high requirements for
polishing precision of the samples, and the fibers must be polished completely. Otherwise,
the identification effectiveness may be significantly compromised. Additionally, the limited
characterization zone, uneven dispersion of fibers caused by processing, and random
distribution of pores may lead to significant errors in volume fraction calculations in
different selected regions.

2.2.2. Porosity

In addition to obtaining the material porosity through metallographic image process-
ing, it can also be measured using the density method. Specifically, considering the known
fiber volume fraction Vf, the theoretical density ρ0 is calculated assuming that the composite
material is without voids. The actual density ρ is then measured using the Archimedes
buoyancy method, and the porosity φ is calculated according to Equations (4) and (5).

ρ0 = Vf ρ f +
(

1 − Vf

)
ρr (4)

φ =
V − V0

V
× 100% =

ρ0 − ρ

ρ0
× 100% (5)

where ρ0 is the theoretical density of the void-free composite specimen, ρ is the actual
density of the specimen, V is the actual volume of the specimen, and V0 is the theoretical
volume of the specimen.
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The porosity of composite panels and CF/PA6 window frames is inspected by ultra-
sonic C-scan technology. The detection is performed using the bottom reflection method. In
the case of a uniform and defect-free material, the bottom reflection wave exhibits minimal
attenuation and a larger amplitude. Conversely, when defects are present in the material,
the bottom reflection wave experiences significant attenuation and a smaller amplitude.

2.2.3. Mechanical Property

Mechanical property tests include two parts: CF/PA6 composite materials and CF/PA6
winding compression-molded window frames.

Mechanical property test samples of CF/PA6 composite materials were prepared using
the same compression molding process as the window frames to evaluate the influence of
molding process parameters on the quality of composite material compression molding.
Additionally, the testing results were used to obtain the engineering mechanical parameters
(Table 1) required for simulation calculations of CF/PA6 composite materials and chopped
CF/epoxy composite materials. The laying, cutting, and testing processes of the relevant
samples followed ASTM standards, as detailed below:

Table 1. The material parameters of CF/PA6, CF/epoxy, and aluminum alloy used in this paper for
the FEA on the window frame properties.

Materials E11 E22 E33 γ12 γ13 γ23 G12 G13 G23 Density Ultimate Failure
Strain, εult

Units GPa GPa GPa GPa GPa GPa g/cm3

UD T700/PA6
(40 vol.%) 86 4.94 4.94 0.3 0.3 0.3 2.22 2.22 1.9 1.4 0.0105 (0◦)

0.0073 (90◦)
Chopped CF/epoxy

Lytex-4149 34.5 34.5 8.6 0.3 0.3 0.3 0.82 0.82 0.33 1.48 0.0063

6061-T6 aluminum alloy 70 0.3 2.7 ≈0.005 (yield strain) [25]

Note: for CF/PA6, E11 = 0◦ tensile modulus, E22 = E33 = 90◦ tensile modulus, G12 = G13 = ±45◦ tensile modulus,
G23 = E22/[2 × (1 + γ12)], γ1 = γ2 = γ3 = 0.3: a general estimate value for fiber composites.

Regarding the 0◦ tensile and 90◦ tensile tests, refer to ASTM D3039 [26], where the
dimensions of the 0◦ tensile specimen are 250 mm (length) × 15 mm (width) × 1 mm
(thickness), with reinforcing patches of 55 mm length attached at both ends and a testing
length of 140 mm retained in the middle. The dimensions of the 90◦ tensile specimen are
175 mm (length) × 25 mm (width) × 2 mm (thickness), without the need for reinforcing
patches. The testing speed is set at 2 mm/min, with strain gauges attached to the middle
part of the specimen during testing to collect strain data, and a strain range of 1000–3000 µε

is taken to calculate the modulus of the specimen. Each test condition is repeated five times,
and the experimental results are averaged.

Regarding the 0◦ compression test, refer to ASTM D6641 [27], with compression
dimensions of 140 mm (length) × 12 mm (width) × 2 mm (thickness), with reinforcing
patches of 63 mm length attached at both ends and a testing length of 14 mm retained in
the middle. The strain collection and modulus calculation methods are the same as those
for tensile testing.

Regarding the 0◦ bending test, refer to ASTM D7264 [28], using a three-point loading
method. The specimen dimensions are 150 mm (length) × 13 mm (width) × 4 mm (thick-
ness). The span-to-thickness ratio of the specimen is 32:1, with the two lower supports
spaced 128 mm apart. The testing speed is set at 1 mm/min, and the test ends when the
specimen fractures into two halves or when the stress decreases to 40% of the maximum
stress value. The strain collection and modulus calculation methods are the same as those
for tensile testing.

Regarding the interlaminar shear strength test (i.e., short beam shear test), refer to
ASTM D2344 [29], using a three-point loading method. The specimen dimensions are
length: width: thickness = 6:2:1, with a cutting size of 18 mm (length) × 6 mm (width) ×
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3 mm (thickness). During testing, the span-to-thickness ratio of the two lower supports is
4:1, with a span of 12 mm. The testing speed is set at 1 mm/min, and the test ends when
the specimen fractures, the force decreases to 30%, or if there is no obvious stress drop. The
test is manually stopped when the upper pressing head displacement exceeds the nominal
thickness of the specimen or when the stress rises to 3000 N, to prevent excessive force
from squeezing the specimen and damaging the supporting fixture. The strain collection
and modulus calculation methods are the same as those for tensile testing.

Regarding the ±45◦ in-plane shear test, refer to ASTM D3518 [30]; the specimen layup
sequence is [45/−45]4. The specimen dimensions are 250 mm (length) × 25 mm (width)
× 5 mm (thickness), without the need for reinforcing patches. The tensile speed, strain
collection, and modulus calculation methods are the same as those for tensile testing.

The mechanical property tests for CF/PA6 composite materials are schematically
shown in Figure 4.
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Figure 4. Schematic for the mechanical properties tests of CF/PA6 composite materials.

In the mechanical performance testing experiments of the window frames, a simplified
test method was used to evaluate the longitudinal tensile properties of two composite
material window frames: the continuous CF/PA6 winding compression molded window
frame and Quantum Company’s Lytex-4149 chopped CF/epoxy compression-molded
window frame. As shown in Figure 5a, to prevent damage to the window frame samples by
the fixtures, the top sections of the aircraft window frames were wrapped with thick, soft
fabric longitudinally, and flexible fiber bundles were used for wrapping and subsequent
load application. Before testing, five points were selected for strain gauge placement on
the inner and outer sides of the middle section, as well as on the front and back corner
sections of the window frames, and strain data were collected along both the hoop and
radial directions (Figure 5b,c), to collect strain data in different directions at different points
during the tensile test. The testing speed was set at 2 mm/min. The experimental stop
condition was set to a deformation of 1% or initial fracture of the specimen.

2.3. Simulation
2.3.1. Material Properties

In order to comprehensively evaluate the mechanical performance of the window
frames prepared by the novel winding compression molding process proposed in this
paper, further finite element analyses (FEA) were conducted based on the experimental tests
mentioned above. Additionally, a comparative evaluation of the performance of window
frames produced using three different materials—a continuous CF/PA6 thermoplastic
composite winding compression molding frame, a chopped CF/epoxy thermosetting
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composite compression molding frame, and a 6061-T6 aluminum alloy frame—was further
performed. Three groups of material properties used in the FE model are presented
in Table 1.
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2.3.2. Finite Element Models

As shown in Figure 6, the models used in the finite element analysis section not only
establish the model of the window frame itself but also incorporate additional loading skin
parts to simulate the actual load transfer scenario from the aircraft fuselage to the window
frame. Specifically, the window frame is modeled using CHEXA solid elements, with
CF/PA6 and CF/epoxy anisotropic materials using the MAT9 property card, aluminum
alloy isotropic materials using the MAT1 property card, and the element property defined
by the PSOLID card. The material coordinate system for the curved area of the window
frame adopts a cylindrical coordinate system, while the remaining straight areas adopt a
Cartesian coordinate system. The skin is made of unidirectional T800 carbon fiber/epoxy
prepreg, with a layup pattern of [45/−45/45/−45/0/90/0/90/0/−45/45/−45/45]. Mate-
rial properties are listed in Table 2. Modeling is done using CQUAD4 shell elements, with
material cards utilizing the MAT8 card, and properties defined by the PCOMP card. The
connection between the skin and the window frame is modeled using GLUE contact type
to simulate the bonding between the window frame and the skin.
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Figure 6. Finite element models: (a) window frame, (b) skin for tensile, (c) skin for shear. (Unit: mm).
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Table 2. The material parameters for the skin.

Materials E1 E2 E3 γ1 γ2 γ3 G12 G13 G23 Ply Thickness

Units GPa GPa GPa GPa GPa GPa mm

T800/Epoxy 141 8.54 8.54 0.3 0.3 0.45 4.43 4.43 3.1 0.184

2.3.3. Loading Scheme and Boundary Conditions

The window frame structure serves as an open structure on the aircraft sidewall and
primarily experiences tensile and shear loads induced by fuselage twisting during flight.
Therefore, three loading schemes (Figure 7) were adopted in this study to assess the me-
chanical performance of the window frame: the X-directional tensile scheme, which applies
tensile loading along the longitudinal axis of the fuselage; the Y-directional tensile scheme,
which applies tensile loading along the lateral axis of the fuselage; and a diagonal shear
scheme simulated by pure shear loading through fixture formation. In both tensile loading
schemes, all degrees of freedom in the restrained fixture segment area were constrained,
while the degrees of freedom in direction 23,456 were constrained in the loaded segment,
along with the freedom of direction 3 on both sides. Loading was applied using RBE3
elements, with a +10,000 N load in the X direction for X-directional tensile analysis and
a +10,000 N load in the Y direction for Y-directional tensile analysis. In the shear loading
mode, the fixture clamping effect was simulated using one-dimensional BAR elements.
The degrees of freedom in direction 12,345 were constrained at the clamping angle, and
the degrees of freedom in the load direction and rotation direction were constrained at the
loading angle. Additionally, the degrees of freedom outside the surface were restrained
at the other two corners to simulate hinges. A +10,000 N load was applied in the loading
segment. The maximum strain εmax was outputted and compared with the experimental
true failure strain εult to evaluate the load-bearing capacity of the material.
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3. Results and Discussion
3.1. Performance of CF/PA6 Filaments

The properties of continuous CF/PA6 filaments used for preform winding of the
window frame are summarized in Tables 3 and 4 through detailed physical and mechanical
property tests. It can be observed that the fiber volume fraction measured by the metallo-
graphic imaging method (Figure 8) is in good agreement with the theoretical value, reaching
42 vol %. The porosity of the filaments is 6.38%, with a density of 1.32 g/cm3, which is
lower than the theoretical density of 1.41 g/cm3. This may be attributed to insufficient
impregnation of PA6 on CF during the impregnation process through the impregnation
cross-head. Additionally, the effective compaction distance at the exit of the filament shap-
ing die also affects the porosity. In terms of mechanical properties, continuous CF/PA6
material exhibits typical anisotropic characteristics. It demonstrates superior 0◦ tensile
strength and modulus compared to Quantum Lytex-4149 CF/epoxy and 6061-T6 aluminum
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alloy, but presents a significant shortfall in the 90◦ direction. This is the fundamental reason
for the unique performance characteristics of the window frame to be introduced later.

Table 3. CF/PA6 filament physical properties.

No. of Specimen 1 2 3 4 5 6 Avg.

CF-T700SC (µm) 7 7 7 7 7 7 7
Monofilament fiber dosage 36 k 36 k 36 k 36 k 36 k 36 k 36k
CF/PA6 filament diameter

(mm) 1.97 1.98 2.05 2.15 2.11 2.1 2.06

Fiber volume content (vol %) 46 45 42 39 40 40 42
Density (g/cm3) 1.32

Porosity (%)
6.38

(Density method
determined)

Table 4. CF/PA6 filament mechanical properties.

Materials T700/PA6 Quantum Lytex-4149
CF/Epoxy

6061-T6 Aluminum
Alloy

Fiber-reinforced form Continuous Chopped —

Fiber weight fraction (wt %) 50
(weight-loss method) 55 —

Theoretical density (g/cm3) 1.41 1.48 2.7
0◦ tensile strength (MPa) 1357 217 303
0◦ tensile modulus (GPa) 86 34.5 70
90◦ tensile strength (MPa) 26 217 303
90◦ tensile modulus (GPa) 4.9 34.5 70

0◦ compressive strength (MPa) 378 — 303
0◦ compressive modulus (GPa) 56 — 70

0◦ bending strength (MPa) 733 531 303
0◦ bending modulus (GPa) 80 31.7 70

Interlaminar shear strength (ILSS) (MPa) 65 44.8 —
±45◦ in-plane shear strength (MPa) 35 — —
±45◦ in-plane shear modulus (GPa) 2.2 — —
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Figure 8. Image threshold method used for measuring the fiber content of CF/PA6 composites:
(a) typical OM image of the CF/PA6 composite cross-section after polishing, (b) the black-and-white
image of (a) processed by ImageJ threshold controlling, and (c) the software interface screenshot of
ImageJ used for calculating the fiber volume fraction.

3.2. Optimization of Winding Compression Process
3.2.1. Process Parameter Optimization

The main controlled process parameters during winding compression molding are
winding tension, preform mass, mold temperature, and holding time. The relevant opti-
mization process and experimental results are shown in Figure 9. The winding tension
mainly originates from the unwinding and pre-tensioning of CF/PA6 filaments. To avoid
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excessive relaxation between wound layers leading to high porosity, while also aiming to
maintain a high winding speed to ensure high production efficiency, a winding tension
of 13 N was selected to fabricate the window frame preforms. As shown in Figure 9a,
noticeable roughness and porosity are observed on the surface of the wound window
frame preform, but overall, the morphology is good and the structure is stable, meeting
the requirements for subsequent compression molding. In fact, as will be discussed later
regarding the results of the window frame compression molding, it is also coincidentally
shown that the novel process of thermoplastic composite winding compression molding
using the preform proposed in this paper has a high tolerance and good potential for
industrial application.
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Figure 9. (a) The winding CF/PA6 window frame preform prepared under 13 N pretension force.
Effects of the preform mass on the quality of compression-molded CF/PA6 frame: (b) 600 g, (c) 700 g,
(d) 800 g. (e) Effects of the compression dwell time on warpage of the CF/PA6 composites: when the
time is less than 300 s, warping deformation is prone to occur due to the release of residual stress.
Effects of the mold temperature on surface quality of the CF/PA6 composites: (f) 160 ◦C with smooth
surface, (g) 180 ◦C with small pores, (h) 200 ◦C with many big pores.

After making the preform, when proceeding to the next step of molding, if the feed
mass is too low, it can result in incomplete mold filling, leading to product defects such
as insufficient resin. Conversely, excessive feed material can cause fiber overflow and
deformation. According to the theoretical volume of the window frame mold and the
theoretical density of the material, the theoretical mass of the wound preform is 690 g.
However, considering the relatively high porosity of the preform during winding, we
selected three preforms with different masses of 600 g, 700 g, and 800 g for comparison in
molding quality. In addition, while increasing the mass, the preform must also be matched
with the cavity of the compression mold without affecting closure. Therefore, we mainly
adjusted the thickness of the winding mold to produce preforms of different masses. From
the actual appearance results of the molded parts in Figure 9b–d, it can be seen that the
window frame samples obtained from the 600 g preform exhibit noticeable resin starve at
the edges and center surface. The 800 g molded product shows a relatively full and dense
center surface, but noticeable composite material overflow occurs at the edges, indicating
overfeeding of the preform. The 700 g sample exhibits smooth and defect-free surfaces and
edges. However, to ensure efficient compactness and minimize porosity, the final preform
mass was set to 720 g, representing a 4.3% overfeeding.

The impact of the molding die temperature on the surface quality of CF/PA6 is
illustrated in Figure 9f–h. It can be observed that when the temperature exceeds 160 ◦C,
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numerous white bubbles appear on the surface of the composite material, indicating that
the residual gas within the material cannot be effectively expelled or shrunk to a sufficiently
small volume. At the same time, the active movement of PA6 polymers prevents rapid
cooling and stabilization, leading to crystallization and significant volume reduction,
causing material shrinkage and potentially severe shrinkage defects. Therefore, we selected
160 ◦C as the final molding temperature for CF/PA6 composite material window frames.

The holding time has a significant influence on warpage deformation (Figure 9e). This
is because the molding stage primarily involves cooling the PA6 polymer from its melting
temperature (260 ◦C) to the mold temperature (160 ◦C). This process consists of two stages:
(1) the stage of high-temperature resin flow and impregnation, during which the main
purpose of holding pressure is to ensure uniform flow and redistribution of PA6 resin
within the preform, accompanied by bubble elimination; (2) the stage of low-temperature
solidification, where amorphous PA6 undergoes cold consolidation and rearrangement of
crystalline structure. A longer holding time results in a smaller temperature gradient in
the thickness direction and more complete crystallization of the material. Thus, a longer
holding time is conducive to reducing residual stresses within the specimen, and the
resulting window frame structure is more stable after demolding. However, considering
production efficiency, we chose 300 s as the final holding time. Achieving faster production
rates can be addressed by implementing a separate post annealing and shaping fixture.

Ultimately, the CF/PA6 winding compression window frames are prepared using
the critical parameter combination of a winding tension of 13 N, preform overfill mass of
4.3%, molding temperature of 160 ◦C, and holding time of 300 s. The obtained CF/PA6
frame, along with the comparison with the short-cut CF/epoxy window frame, are shown
in Figure 10. It can be seen that they both exhibit good appearances.
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via compression molding, and (c,d) continuous CF/PA6 thermoplastic composites via winding
compression molding.

It is worth noting that the technique employed in this study achieves the manufac-
turing of rotary structures with high-quality by using only simple and low-cost winding
equipment with the assistance of post-compression molding. However, in future improve-
ment studies or industrial batch production, the use of high-precision automation control
systems or robots [31–33] for preform winding molding remains recommended to enhance
the accuracy of fiber laying paths and the production stability of window frames through
this novel winding compression technology.



Materials 2024, 17, 1236 14 of 21

3.2.2. Porosity

The porosity of composite materials has a direct impact on their mechanical properties
and usability. Bascom and Romans [34] observed that reducing the void content from 5% to
less than 0.1%, leads to a 50% increase in ILSS. Stamopoulos [35] reported 11% reduction of
ILSS for ~3% of porosity. The aerospace industry commonly uses 2% void volume fraction
as the acceptable level of laminate porosity [36,37].

The actual density and porosity of CF/PA6 composites at various forming stages
are shown in Figure 11a. It can be observed that the porosity of the prepreg filament is
6.38% due to incomplete impregnation and compaction during filament shaping, while
the porosity of the winding preform reaches 9.92%. However, after the final compression
molding, the porosity decreases to only 0.69%, far below the 2% limit allowed for civil
aviation composite structural components. Meanwhile, the density increases to 1.43 g/cm3,
exceeding the theoretical density of 1.41 g/cm3 in Table 4. This is because, during winding,
the high rapid winding speed and low pressure result in insufficient compactness of the
preform and high porosity, leading to a decrease in density. After compression molding,
under the combined action of higher pressure and the overflow gap between the molds,
some PA6 resin flows out with the voids during compaction, resulting in a loss of resin
matrix quality, indirectly increasing the fiber content, and consequently exceeding the
theoretical density of the window frame. This also indicates that although the porosity of
the preform is relatively high, the aircraft window frame samples prepared through the in-
novative winding compression combination method in this paper can still achieve excellent
molding quality. Investigation through ultrasonic C-scan (Figure 11b) also demonstrates
that the aircraft window frame samples prepared using the winding compression process
are virtually free of void defects, further confirming the feasibility of the process. However,
when performing ultrasonic C-scan on the chopped CF/epoxy specimens (Figure 11c,d), it
is evident that discontinuous fibers caused by necessary cutting processes during material
laying result in noticeable lap marks in the C-scan images. This inherent process flaw can
significantly affect the performance and operational safety of the products.

3.3. Window Frame Mechanical Properties

This study conducted Y-directional tensile test experiments on the window frames and
simultaneously established corresponding Abaqus finite element analysis (FEA) under the
same loading conditions. By comparing experimental and simulation results, the reliability
of the established FE model was firstly evidenced. Then, the established models were used
to evaluate the X-directional tensile, Y-directional tensile, and diagonal shear properties
of aircraft window frames manufactured from three different materials to simulate three
typical loading scenarios.

3.3.1. Tensile Experiments on Composite Window Frames

The experimental test procedure on the Y-directional tensile properties of CF/PA6
winding compression window frames and chopped CF/epoxy compression-molded win-
dow frames are shown in Figure 4. In the actual experimental testing process, we simplified
the testing method by not using peripheral loading skins. the maximum principal strain
data at characteristic point locations was selected for evaluating the window frame perfor-
mance. Under a 7000 N tensile load, the tested experimental strain data and the Abaqus
strain contour plots are shown in Figures 12 and 13, respectively. For clarity and analysis
purposes, the strain data in Figure 11 are divided into three regions based on absolute strain
values of |µε| < 1000, 1000 < |µε| < 2000, and |µε| > 2000. The critical strain response
locations are annotated in Figure 13, where red represents the principal strain.
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Figure 11. (a) The density and porosity variations of CF/PA6 composites at different forming stages;
(b) ultrasonic C-scan of the CF/PA6 winding compression window frame; (c) Lytex-4149 chopped
CF/epoxy thermosetting composite panel, and (d) ultrasonic scanning results of (c), where the
lap marks are clearly visible. (Note: The porosity of the window frame is obtained through the
metallographic imaging method, and, due to the actual density of the window frame exceeding the
theoretical density, the Archimedes density method is no longer applicable).
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Figure 13. The strain maps of the CF/PA6 winding compression window frames and the chopped
CF/epoxy compression molded window frames at a load of 7000 N.

It can be observed that they have similar strain distributions for CF/PA6 and CF/epoxy
frames. For the CF/PA6 winding compression window frames, both experimental and
simulated maximum principal strains occur at position 4_1, i.e., the radial direction at the
maximal curvature corner. This is attributed to the occurrence of pure interlayer shear or
90◦ tensile stress due to the absence of fiber reinforcement in the radial direction, making
it prone to delamination and fiber fracture and resulting in considerable deformation.
The maximum experimental and simulation strains are 3347 µε and 2731 µε, respectively,
showing good agreement. In contrast, for the chopped CF/epoxy window frames, the
maximum strain occurs at position 3_1 (Note: although position 2_1 also exhibits strains of
the same magnitude, it is more likely influenced by stress concentration in the loading area,
which is considered less objectively valuable and thus not discussed here. The strain level
at this point will be objectively analyzed in Section 3.3.2). This indicates that the maximum
load is distributed along the straight sections on both sides of window frame, indicating
that the window frame is primarily subjected to longitudinal tensile loads. The maximum
strain in experimental measurements and simulation contour plots is 2317 µε and 3316 µε,
respectively, also showing good correspondence. Due to the high-performance continuous
fiber reinforcement in the circumferential direction of the CF/PA6 winding compression
window frames, the strains at position 3_1 are experimentally measured at 1311 µε and
simulated at 1312 µε, which are almost identical and significantly lower than the strain
levels of the chopped CF/epoxy.

In summary, through the comparison of the above principal strain experimental data
with simulations, good correspondence is achieved, demonstrating the reliability of the FE
models. This provides a foundation for subsequent comprehensive analysis of window
frame performance. It also preliminarily indicates that CF/PA6 winding compression
window frames exhibit superior hoop performance but may be weaker radially, and under
higher load levels, there may be a risk of preferential occurrence of shear delamination or
fiber fracture failure at the maximum curvature.

3.3.2. Performance Evaluation through Simulation Analysis

The lack of precise position correspondence between the experimental strain gauge
and the simulated strain maps, and the simplified loading test method selected, may
lead to stress concentration areas in the window frames, affecting the true distribution of
loads. However, the accuracy of the window frame FE model is validated through the
comparison of the aforementioned experimental and simulation results. Therefore, based
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on this, in this section, a more reasonable FE model is re-modeled for a more objective
and accurate analysis of stress levels and positions in the window frames according to the
standard window frame testing method [17]: (1) The skin of the simulated fuselage was
added, and the window frames were indirectly loaded through this skin, which makes the
simulation more representative of real conditions. (2) Three loading schemes are added:
the X-directional tensile scheme and Y-directional tensile scheme along the longitudinal
and lateral sides of the fuselage, respectively, and diagonal tensile loading with pure
shear scheme through the fixture. (3) Three materials are compared: continuous CF/PA6
thermoplastic composite winding compression molding, chopped CF/epoxy thermosetting
composite compression molding, and 6061-T6 aluminum alloy. By comparing with the
real window frame, the performance characteristics of the CF/PA6 winding compression
molding window frames in this paper are intended to be objectively evaluated.

The strain maps and failure probabilities of the three materials under three test loading
schemes are summarized in Figures 14–17. It can be seen that under the same loading
scheme, the three materials exhibit similar experimental values and trends, while the
chopped CF/epoxy and aluminum alloy frames show similar radial and hoop stress
levels under all loading schemes. Specifically, CF/PA6 exhibits significant performance
advantages over the other two materials in the hoop direction. Under a load of 10,000 N,
it only reaches a level below 2% of the material intrinsic failure strain, which is about
half those of the other two materials. This is due to the continuous fiber reinforcement
effect. However, it shows significant deficiencies in the radial direction, reaching a level
of 10% of the intrinsic failure strain, about ten times higher than the other two materials’
levels of around 1%. This is because in the radial direction, the CF/PA6 frame lacks fiber
reinforcement and mainly relies on the resin matrix and CF/PA6 interface. As shown in
Table 4, the strength in this direction, i.e., the 90◦ strength and interlayer shear strength,
is only about 26–65 MPa, far lower than the 0◦ fiber direction strength of 1357 MPa and
the other two materials’ strengths of 217 MPa (chopped CF/epoxy) and 303 MPa (6061-T6
aluminum alloy). Therefore, significant strains occur in the radial direction, representing a
higher risk of failure. However, interestingly, during the actual experimental test process,
when the load reached 7000 N, the Lytex-4149 thermosetting aircraft window frame emitted
a crisp fracture sound, possibly corresponding to internal fiber damage, fracture, and
delamination. In contrast, although the T700/PA6 thermoplastic aircraft window frame
experienced significant strains in the corner radius direction, it did not exhibit significant
damage or fracture until loaded to 9000 N, demonstrating a higher damage tolerance. This is
attributed to the higher toughness of thermoplastic composites compared to thermosetting
composites. Nonetheless, for higher safety, future design optimizations should focus on
balancing the hoop–radial comprehensive performance, for example, by reducing the
number of hoop fiber winding layers and compensating by increasing the radial fiber
laying layers as indicated by the blue and red arrows in Figure 17.
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Additionally, by comparing Figure 15 and the previous Figure 13, it can be observed
that after applying skin loading to the window frames, the strain levels significantly de-
crease due to the uniform distribution of external loads onto the window frame. Under



Materials 2024, 17, 1236 19 of 21

X-directional tension, the maximum principal strain in the hoop and radial directions of
the window frame occurs at the apex of the arc. In Y-directional tension, the positions
of maximum principal strain in the hoop direction for both CF/PA6 and CF/epoxy have
shifted from the original inner side of the window frame (3_1) to the outer side (1_1),
corresponding to the different applied methods of external loads. The radial direction
still exhibits weaker stress concentrations at 2_1 (also 4_1). In shear testing, the maximum
principal strain in both hoop and radial directions for all three materials occurs at position 2,
with symmetrical angles displaying symmetrical strains but with positive and negative val-
ues. This once again emphasizes the importance of the mechanical properties at position 2
for the overall performance of the window frame.

4. Conclusions

This study proposes an innovative winding compression molding process for contin-
uous production of aircraft window frames using self-prepared continuous carbon fiber-
reinforced thermoplastic composite filaments. Through process parameter optimization,
high molding efficiency, low porosity, and high-performance manufacturing of CF/PA6
window frames were achieved. Combined with experimental testing and finite element
analysis, the performance of window frames made of three different materials was compar-
atively evaluated, leading to the following conclusions:

(1) The production cycle of the new winding compression process can be controlled
within 5 min. Key process parameters include a winding preheating infrared heater
temperature of 400 ◦C, a winding speed of 10 m/min, a winding pre-tension force of 13 N,
and a preform feeding mass of 720 g. The preform is then preheated at 260 ◦C and stamping
molded at 160 ◦C under a pressure of 4 MPa, with a holding time of 300 s, and additional
post-molding shaping fixtures are applied after demolding.

(2) Winding molding ensures efficient preform manufacturing cycle for window
frames, while molding further consolidates the preform during final shaping, ensuring
low porosity and high performance. The density increased from 1.27 g/cm3 of the preform
to 1.43 g/cm3, and the porosity decreased from 9.92% of the preform to 0.69%, meeting
aviation application standards.

(3) In the hoop direction, the performance of CF/PA6 window frames with continu-
ous fiber winding reinforcement is much higher than that of chopped fiber compression
molding and aluminum alloy. Although the radial performance is weaker compared to the
competitors, it still exhibits high crack propagation resistance and damage tolerance: when
the load is applied up to 7000 N, the thermosetting aircraft window frame of Lytex-4149
emits a crisp cracking sound, while the toughness of the T700/PA6 thermoplastic aircraft
window frame is much higher, and no obvious cracking occurs even when loaded up to
9000 N. The simulation analysis results indicate that the maximum strains occur respec-
tively at the apex of the arc under X-directional tension, at the straight segment and corners
under Y-directional tension, and at the corners under shear.

(4) This study provides an innovative process reference for high-speed continuous
fiber-reinforced thermoplastic composite product molding, ranging from CF/PA6 to high-
performance CF/polyetheretherketone (CF/PEEK). The limitation is that the current exper-
imental approach relies solely on resin support in the radial direction, leaving significant
room for performance improvement. Further attempts to achieve balanced hoop–radial
performance by appropriately increasing transverse ply reinforced layers deserve future
investigation, with the potential to achieve significant weight reduction objectives. During
the winding preforming stage, high-precision automation control or robot winding meth-
ods should also be considered for enhancement in the future to increase accuracy and batch
stability.
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