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Abstract: In order to improve the impact resistance of sandwich panels under low-velocity impact,
the lotus leaf vein is selected as a biological prototype to design a bio-inspired honeycomb (BIH)
sandwich panel. ABAQUS is used to establish and effectively verify the finite element (FE) model
of the BIH sandwich panel. To systematically compare and study the mechanical properties of BIH
and conventional hexagonal honeycomb sandwich panels under low-velocity impact, the maximum
displacement of face-sheets, the deformation mode, the plastic energy consumption and the dynamic
response curve of the impact end are presented. At the same time, the performance differences
between them are revealed from the perspective of an energy absorption mechanism. Furthermore,
the influence of the circumscribed circle diameter ratio of the BIH trunk to branch (γ), the thickness
ratio of the trunk to branch (K) and the impact angle (θ) on impact resistance is studied. Finally, the
BIH sandwich panel is further optimized by using the response surface method. It can be concluded
that, compared to conventional hexagonal honeycomb sandwich panels, the addition of walls in
the BIH sandwich panel reduces the maximum deformation of the rear face-sheet by 10.29% and
increases plastic energy consumption by 8.02%. Properly adjusting the structural parameters can
effectively enhance the impact resistance of the BIH sandwich panel.

Keywords: sandwich structure; low-velocity impact; numerical analysis; energy absorption

1. Introduction

As a typical lightweight thin-walled structure, honeycomb sandwich panels have
been widely used as protective equipment due to their outstanding impact resistance and
meeting the requirements of lightweight design [1–3]. They also have a wide range of
applications in the fields of aviation [4], automobiles [5] and personal protective equip-
ment [6]. Therefore, the honeycomb sandwich structure has always been a hot topic for
scholars [7–12]. Rejab [13] et al. focused on studying the mechanical properties of corru-
gated sandwich panels, which exhibit stronger impact resistance. Sun [14] et al. introduced
periodic grids to enhance the hexagonal honeycomb core sandwich structure and conducted
plane compression experiments and numerical studies. Research has shown that the me-
chanical properties of sandwich panels were closely related to their core structure. Lan [15]
et al. comprehensively analyzed the dynamic response of hexagonal honeycomb cores
and cylindrical sandwich panels with auxetic concave honeycomb cores. The cylindrical
sandwich panel with auxetic concave honeycomb cores was proven to have a better anti-
explosive performance than those with hexagonal honeycomb cores. McShane et al. [16]
found that the three special-shaped sandwich panels have better impact resistance.

Meanwhile, the honeycomb sandwich structure is very vulnerable to low-speed im-
pacts from gravel, hail, etc. Therefore, scholars have paid great attention to the mechanical
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properties of honeycomb sandwich panels under low-speed impact. Sun et al. [17] ana-
lyzed the low-velocity impact characteristics of sandwich panels with different structural
parameters and carried out relevant experimental research. Zhang et al. [18,19] combined
experimental and numerical methods to derive an analytical model of energy balance based
on the dynamic response of a spherical indenter impacting the sandwich panel at low
speed. The research of Liu et al. [20] showed that sandwich panels with round tube-filled
hexagonal honeycomb cores had better impact resistance than conventional hexagonal hon-
eycomb core sandwich panels. Reyes and Børvik [21] conducted quasi-static and dynamic
experiments on the impact resistance of polymer foam core sandwich panels. Zhou [22]
proposed an auxetic recessed honeycomb filled with new foam concrete and found that,
with an increase in foam concrete density, the structure changed from a compression failure
mode to a shear failure mode. Dhanarasu et al. [23] systematically analyzed the mechani-
cal response of sandwich panels with CFRP face-sheets. Dai and Akatay [24,25] focused
on the effects of repeated impacts on sandwich panels. Zhang and Al [26,27] proposed
tube-reinforced honeycomb and comprehensively analyzed its mechanical properties.

Numerous studies have shown that the performance of sandwich plates is closely
related to its cell structure [28–33]. With the improvement in energy absorption capacity
requirements, how to design a honeycomb sandwich structure with better impact resis-
tance has been a challenge for scholars. Researchers have found that applying biological
structural features to the design of thin-walled structures can effectively improve their
crashworthiness [34–38]. Song et al. [39] designed a new type of bionic tube with grooves
and studied its crashworthiness under lateral impact. They found that the energy absorp-
tion efficiency of the bionic tube was better than that of the circular tube. Based on the
structural characteristics of bamboo, Zou et al. [40] proposed a bionic tube and solved its
numerical examples under axial/transverse impact. The results showed that the bionic de-
sign improved the specific energy absorption of the tube. Palombini et al. [41] mechanically
explored the special geometry of a single vascular bundle in bamboo, and the new design
had a noticeable improvement in its strength and energy absorption under axial/transverse
loads. It is widely known that the leaf veins not only carry nutrients, but also support the
weight and external load of the whole blade structure to ensure the overall stiffness and
plane ductility of the blade. He et al. [42] introduced this leaf-vein-branched characteristic
into the honeycomb in previous studies, but they only focused on the dynamic response
under in-plane dynamic compression.

Inspired by the lotus leaf vein biological structure, we designed a bio-inspired hon-
eycomb (BIH) core sandwich structure. Based on ABAQUS 6.14 software, the dynamic
response process of the BIH sandwich panel under low-speed dynamic impact was system-
atically investigated. Firstly, the reasonableness and accuracy of the simulation method
used in this paper were verified by comparing them with previous experimental results.
Secondly, the dynamic responses of the BIH sandwich panel and conventional hexagonal
honeycomb sandwich panels under low-velocity impact were systematically compared,
and the performance difference between them was analyzed from the perspective of the
energy absorption mechanism. Then, the coupling influence law of the structural param-
eters of the BIH sandwich panel and its mechanical properties was further analyzed by
parametric study. Finally, the BIH sandwich structure was optimized using the response
surface method.

2. Geometric Model of the BIH Sandwich Structure

Inspired by the biological structure of nature, the lotus leaf vein was chosen as a
biological prototype. Figure 1 shows the design process and geometric configuration of the
bio-inspired honeycomb core sandwich structure. The geometric structure of the lotus leaf
vein in Figure 1a is characterized by the main trunk branch, and the cross-sectional size
of the trunks is larger than that of the branches. Figure 1b shows the BIH core sandwich
structure and its cell geometry is shown in Figure 1c. The dotted circles, as seen in the
picture, are the circumscribed circles of the main trunks and branches. tt and tb are the wall
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thicknesses of the trunks and branches, respectively, and Φb and Φt are the circumscribed
circle diameter of the branches and trunks, respectively. The BIH structure parameter, K, is
the ratio of tt to tb, and γ is the ratio of Φt to Φb, as shown in Equations (1) and (2). The
branch circumscribed circle diameter Φb is 12 mm, and the sum of tt and tb is 0.15 mm, as
shown in Equations (3) and (4). The range of values for γ and K are 0.1 to 0.7 and 0 to 10,
respectively. The structure size and wall thickness of the BIH change with parameters K
and γ, respectively. Figure 1d depicts the cross-sectional evolution of BIH cells, and Table 1
gives the specific parameters of the BIH sandwich panel.
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Figure 1. The design process and geometric configuration of the bio-inspired honeycomb sandwich
structure: (a) geometry of lotus leaf veins; (b) BIH core sandwich structure; (c) cell geometry; (d) cross-
sectional evolution of BIH cells.

K =
tt

tb
0 < K < 10 (1)

γ =
Φt

Φb
0.1 ≤ γ ≤ 0.7 (2)

tt + tb = 0.15 mm (3)

Φb = 12 mm (4)

Table 1. Structural parameters of the BIH sandwich panel.

Face-Sheets (AL5083) BIH Core (AL3003)

Dimension Thickness K γ
150 mm × 150 mm × 16 mm 0.5 mm 0.4; 0.6; 0.8; 1; 3; 5; 7 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7

3. Finite Element Method of BIH Sandwich Structure
3.1. FE Model

ABAQUS is used to simulate the mechanical properties of the BIH sandwich panel
under low-speed impact, and the numerical simulation model is depicted in Figure 2. The
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material model of the BIH sandwich structure adopts a bilinear elastoplastic model, the
panel material is AL5083 and the honeycomb core material is AL3003 [18]. The specific
material parameters of AL5083 and AL3003 are shown in Table 2. A binding constraint is
adopted between the honeycomb core and the panel; the trunk and branches are connected
together by means of co-nodes. The diameter and mass of the spherical impactor are 40 mm
and 0.2 kg, respectively. The mass and velocity are set at the center of the sphere and
the impact direction is downward and perpendicular to the sandwich panel. The impact
point is at the center of the sandwich panel. When the spherical impactor impacts the
BIH interlayer structure, the speed of the spherical impactor is 35 m/s [20]. The spherical
impact block is set as a rigid body and meshed by 4-node 3D bilinear rigid elements. The
4-node doubly curved shell element is used to mesh the face-sheets and the honeycomb
core. Meanwhile, the contact between the spherical impactor and the sandwich panel
is simulated by a surface-to-surface contact. A general contact is set for the rest of the
contacts to avoid interpenetration of the honeycomb cores. The static and dynamic friction
coefficients between each structure are both set to 0.3 [20]. The three sides of the face-sheets
are fixed [18], as reflected in the red line in Figure 2.
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Figure 2. FE model of BIH under low-velocity impact.

Table 2. Material parameters [18].

ρ (kg/m3) E (GPa) v Yield Stress σy (MPa) Tangent Modulus Et (MPa)

AL5083 (face-sheets) 2700 72 0.33 280 933
AL3003 (BIH core) 2700 70 0.33 185 720

The grid size of the finite element model has an inseparable influence on the calculation
cost and accuracy. After weighing the calculation cost and accuracy, a gradient grid is used
to divide the finite element model into several areas. According to Figure 3, the light blue
area is meshed by a grid with a size of 0.5 mm × 0.5 mm, the grid size of the orange area is
1.0 mm × 1.0 mm and the other areas are 2.0 mm × 2.0 mm.
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3.2. Validity Verification

The experimental results of Zhang [18] were used to verify the validity of the FE
model. The detailed information of drop-weight tests was reported in [18]. In order to be
consistent with the test conditions, the weight of the impactor was 0.3 kg with a radius
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of 20 mm and an impact velocity of 5.05 m/s. Other relevant parameters and settings,
such as the structural dimensions, the material properties and the boundary conditions,
are consistent with those in Section 3.1. The numerical simulation results were compared
with the experimental results, as shown in Figure 4. It can be seen from the map that
the experimental and numerical deformation modes are in good agreement. The errors
of the dent depth on the rear face-sheet and the energy absorption are 3.24% and 4.67%,
respectively. Therefore, the FE method and the material model are accurate enough to be
used to simulate the dynamic response of the BIH sandwich panels.
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4. Comparative Analysis of Two Honeycomb Core Sandwich Structures
4.1. Dynamic Response Analysis

In order to compare the performance difference between the BIH and the conventional
hexagonal honeycomb sandwich panel, the cell wall thickness of the honeycomb core is adjusted
to ensure the same mass. The sizes of both honeycomb cores are 150 mm× 150 mm× 16 mm.
The other structural parameters are shown in Table 3. Figure 5 shows the dynamic response
curve at the impact end. The dynamic response of the impact end of these two structures
shows a trend of first increasing and then decreasing. When the spherical block impacts the
two sandwich structures, it goes through three stages, namely, an elastic stage (I), a plastic
deformation stage (II) and a rebound stage (III). In the elastic phase, the BIH sandwich
structure has the same impact level as the conventional hexagonal honeycomb sandwich
panel, which shows that the initial structural rigidity of the BIH sandwich panel is similar
to that of the conventional structure. In the plastic deformation stage, the impact load level
of the BIH sandwich structure is higher than that of the conventional hexagonal honeycomb
sandwich structure.

Table 3. Structural parameters of the honeycomb core.

Hexagonal Honeycomb Core BIH Core

Cell wall length Wall thickness Φb tb K γ
6 mm 0.193 mm 12 mm 0.075 mm 1 0.5

Figure 6 exhibits the maximum displacement of the face-sheet of the BIH sandwich
structure and the conventional hexagonal honeycomb sandwich structure. The maximum
displacement of the front face-sheet of the BIH sandwich structure is 16.35 mm, which
is 3.22% higher than the 15.84 mm conventional sandwich structure displacement. How-
ever, the maximum displacement of the rear panel decreased by 10.29% compared to the
conventional sandwich structure. This means that the BIH sandwich cores are easier to
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compress and deform than the conventional hexagonal honeycomb sandwich cores, which
is beneficial for the absorption of more impact kinetic energy. Therefore, the BIH sandwich
structure shows better impact resistance.
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Figure 6. Comparison of maximum displacement of sandwich structure face-sheets: (a) conventional
hexagonal honeycomb sandwich structure; (b) BIH sandwich structure.

4.2. Energy Absorption and Its Enhancement Mechanism

Figure 7 exhibits the plastic energy consumption of each part of the BIH sandwich
structure and the conventional hexagonal honeycomb sandwich structure. The plastic
energy consumptions of the front face-sheet and the honeycomb core of the BIH sandwich
panel are higher than those of the conventional hexagonal honeycomb sandwich panel. The
plastic energy consumption of the rear face-sheet of the BIH sandwich panel is lower than
that of the conventional panel. Among them, the plastic energy consumption of the BIH
is 8.02% higher than that of the hexagonal honeycomb. The damage to the rear face-sheet
may be reduced considering that the front face-sheet and the honeycomb core of the BIH
sandwich panel absorb most of the impact energy.
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structures.

The deformation modes are given in Figure 8. The interaction between honeycomb
cells mainly occurs near the local recessed area, and the buckling of the cells occurs in
the fold area. Evidently, the interaction enhancement effect between the BIH cells is more
obvious than that of the conventional hexagonal honeycomb, and the folding wavelength
of the BIH fold area is smaller than that of the hexagonal honeycomb. Generally, the more
interactions between honeycomb cells, the better the impact energy dissipation. The shorter
folded wavelengths are beneficial to the formation of more folds, which causes more energy
to be absorbed. This analysis explains why the BIH sandwich structure has better impact
resistance than the conventional hexagonal honeycomb sandwich structure.
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5. Parameter Study

In order to reveal the coupling effects of the structural parameters and their im-
pact resistance, the influence of the circumscribed circle diameter ratio of the BIH trunks
and branches (γ), the thickness ratio of trunks to branches (K) and the impact angle
(θ) were investigated.

5.1. Effect of Ratio γ

Four different γ values were designed as follows: 0.1, 0.3, 0.5, 0.7. At the same time,
the parameter K remained unchanged (K = 1). Figure 9 shows the maximum displacement
and the plastic energy dissipation of the BIH sandwich structure with different γ ratios.
The maximum displacements of front and rear face-sheets both increase and then decrease
as γ increases. In particular, when γ is equal to 0.3, the front and rear face-sheets have
the largest displacement. Figure 9b describes the plastic energy dissipation of the BIH
sandwich structure. As γ increases, the plastic energy dissipation of the whole structure
and the honeycomb core decreases and then increases, while the plastic energy dissipation
law of the structural face-sheets is exactly the opposite to the previous two. It should
be noted that when γ is 0.3, the plastic energy dissipation values of the overall structure
and the honeycomb core are the lowest, while the plastic energy dissipation value of the
face-sheet is the highest. This means that the honeycomb core has important impacts
on its total plastic dissipated energy, which may further determine the impact resistance
performance of this structure.
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Figure 9. Maximum displacement and plastic energy dissipation of BIH sandwich structure with
different γ ratios: (a) maximum displacement; (b) plastic energy dissipation.

Therefore, Figure 10 exhibits the deformation modes of the BIH sandwich structure at
0.3 ms and 0.9 ms under different γ values. When the BIH sandwich structure is impacted
by a solid sphere at low speed, the central area is in a depression state and the cell walls in
this region buckle plastically. The contour line of cell buckling is enlarged inside the red
dashed box. When γ is equal to 0.7, the folding wavelength is the shortest, followed by
γ equal to 0.1. Interestingly, the structures with γ = 0.3 and γ = 0.5 have similar folding
wavelengths. According to the plastic collapse of the cells in the orange dotted box, it
can be clearly seen that the cell walls of the sandwich structure, with γ = 0.1, γ = 0.5 and
γ = 0.7, gradually fold in an orderly manner, which is different from the irregular folding in
the sandwich structure with γ = 0.3. Ordered cell folding means that more impact energy
is effectively absorbed. Therefore, when designing the BIH sandwich energy-absorbing
structure, it should be noted that γ equal to 0.3 is not conducive to impact resistance.
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5.2. Effect of Ratio K

To analyze the influence of the K ratio on the dynamic response of the BIH sandwich
panel, seven different K values were designed as follows: 0.4, 0.6, 0.8, 1, 3, 5, 7. At
the same time, the parameter γ remained unchanged (γ = 0.5). Figure 11 shows the
maximum displacement and the plastic energy dissipation of the BIH sandwich structure
with different values of K. When K ≤ 1, the plastic energy consumption of the face-sheets
and the honeycomb core of the BIH sandwich structure changes very little with the change
in K. However, when K > 1, they all have significant differences with the change in K. The
maximum displacement of both the front and rear face-sheets decreases and then increases
with the increase in K. In particular, the rear face-sheet of the BIH sandwich structure has
a minimum depth of depression when K = 0.6. This means that when K = 0.6, the BIH
sandwich structure has the best impact resistance, and its deformation mode is shown in
the red dashed box of the picture.
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5.3. Effect of Impact Angle θ

Considering that sandwich panels may be subjected to impact loads from different
directions, an analysis of the impact angle θ is of great significance. Four different θ
values were designed as follows: 0◦, 10◦, 20◦, 30◦. At the same time, K and γ were set
to 1 and 0.5, respectively. Figure 12 depicts the maximum displacement and the plastic
energy dissipation of the BIH sandwich structure at different impact angles. The maximum
displacement of the front and rear face-sheets gradually decreases as θ increases. In
Figure 12b, the plastic energy dissipation of the front and rear face-sheets of the BIH
sandwich panel gradually decreases with the increase in θ. However, the plastic dissipated
energy of the BIH core is the opposite. The impact from different angles will cause varying
degrees of damage to the BIH sandwich panel.
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Figure 12. Maximum displacement and plastic energy dissipation of BIH sandwich structure under
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Figure 13 gives the deformation mode of the BIH sandwich structure for different
values of θ. As the impact angle increases, the number of wrinkles at the local buckling
of the sandwich structure increases. In addition, the interaction between the cells of
the BIH gradually increases. Therefore, it can be concluded that the energy absorption
characteristics of the structure are closely related to the impact angle.
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6. Optimization Design
6.1. Determination of Optimization Problem

In order to obtain the BIH sandwich panel with the best impact resistance, the struc-
tural parameters of the BIH sandwich structure were further optimized. In the process of
design optimization, the weight efficiency control of the BIH sandwich structure cannot
be ignored. The dent depth and the mass of the BIH sandwich structure are represented
by U and M, respectively. The response surface method [43–45] is used to optimize the
design of the BIH sandwich panel. The expression of the optimization problem can be
described as follows: 

Minimize [U(K, γ)]
0.4 ≤ K ≤ 1.7
0.1 ≤ γ ≤ 0.7

[M(K, γ)] ≤ 100 g

(5)

6.2. Response Surface Method
6.2.1. The Process of Design Optimization

The optimization design process using the response surface method is shown in
Figure 14. The optimization problem is first determined. Then, the design of experiments
is carried out according to the optimization problem to obtain the corresponding design
sample points. The corresponding value of the objective function is obtained through
finite element simulation. Subsequently, a response surface model is established through
regression analysis based on the design sample points and their response values, and the
optimal solution is then obtained from the response surface model. Finally, the optimal
solution is tested. If the error between the optimal result obtained from the prediction model
and the numerical simulation result is within the allowable range, the optimal solution is
considered acceptable. If the error between them is large, the design domain needs to be
adjusted, re-optimized and analyzed until the error is within the allowable range.
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6.2.2. Design of Experiments and Metamodel

Typical design experiments include the Taguchi orthogonal experiment method [46,47],
the central composite design, the full factor design and the Latin hypercube. The full
factor design was adopted to generate 20 design sampling points (four levels for K, five
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levels for γ), and the response values of the selected sample points were obtained by
simulation. Polynomial regression analysis was used to deal with the design optimization
problems [48,49]. The least squares method was used to fit U and M. Figure 15 is the
response surface and the predictive models of U and M are as follows:

U = 3.698 − 0.430K + 2.957γ − 1.485Kγ + 0.817K2 − 1.984γ2 (6)

M = 130.298 − 32.632K − 41.814γ + 21.091Kγ + 6.007K2 + 15.25γ2 (7)
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Figure 16 compares the predicted value of the response surface model with the actual
value. It can be seen that all the square dots fluctuate around the red diagonal line with a
slope of 1. The predicted values of U and M are not significantly different from the actual
values, which further verifies the accuracy of the response surface model.
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6.3. Results and Discussion

In order to obtain the optimal BIH sandwich structure, Figure 17a shows a partial
solution of the response surface model during the optimization process. The blue dot is
the optimal design point to obtain the smallest U value, and its detailed cross-sectional
parameters are given in Figure 17b. Interestingly, when the mass is less than 97.286 g,
the dent depth of the rear face-sheet increases as the mass increases. However, when the
mass is greater than 97.286 g, the dent depth of the rear face-sheet decreases as the mass
increases. This shows that when the mass is greater than 97.286 g, reducing the mass of the
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BIH sandwich structure is conducive to the enhancement of its impact resistance. This is of
great benefit in engineering applications.
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The optimal solution of the response surface model is U = 4.135 mm, mass M = 97.286 g,
and the corresponding ratios are K = 0.9 and γ = 0.7. The BIH sandwich structure with
the same structural parameters must be simulated to further verify the credibility of the
optimal result. The simulation value of U is 4.246 mm, and the error between prediction
and simulation is 2.61% (Table 4), which is within an acceptable range. Therefore, the
optimal solution obtained by the response surface model is highly reliable. The maximum
rear face-sheet displacement U was used as the evaluation index for the sandwich panel’s
impact resistance. It can be concluded that the impact resistance of the optimized sandwich
panel increased by 5.16% compared to the un-optimized sandwich panel.

Table 4. Comparison of optimal solution and numerical result.

Optimal Solution FEM Error

U (mm) 4.135 4.246 2.61%
M (g) 97.286 98 0.729%

7. Conclusions

Inspired by the vein structure of a lotus leaf, a bio-inspired honeycomb (BIH) core
sandwich structure was proposed to further enhance the impact resistance of conventional
honeycomb sandwich structures. ABAQUS was used to establish and effectively verify
the numerical model of the BIH sandwich structure. Then, the dynamic responses of the
BIH sandwich panel and the conventional hexagonal honeycomb sandwich panel under
low-velocity impact were compared and analyzed, followed by a detailed analysis of the
coupling effect of structural parameters and impact resistance. Finally, the BIH sandwich
panel was optimized using the response surface method.

Considering that the BIH is more prone to plastic deformation and there is more
contact between cells, it may be concluded that the BIH has better impact resistance than
conventional hexagonal honeycomb sandwich panels. Meanwhile, the impact resistance of
the sandwich panel decreased and then increased as the circumscribed circle diameter ratio
of the BIH trunk to branch (γ) increased; the sandwich panel with γ = 0.3 showed the worst
impact resistance. However, the thickness ratio of trunk to branch (K) showed the opposite
trend. The impact resistance increased and then decreased as K increased and the sandwich
panel with K = 0.6 showed the best performance. As for the influence of the impact angle
(θ), the impact resistance of the sandwich panel gradually increased as θ increased. The
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coupling effect between the structural parameters and the energy absorption capacity can
provide a reference for design optimization and engineering applications.

Based on the sample points obtained by the full-factor design of the experiments and
their response values, the prediction models of U and M were obtained by polynomial
regression analysis. The optimization results were further tested, which verified the
reliability of the optimization results obtained from the response surface model. These
results can provide valuable suggestions for the research and design of new honeycomb
sandwich structures.
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