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Abstract: Loaded meshing transmission performance optimization has been an increasingly signif-
icant target for the design and manufacturing of aerospace spiral bevel gears with low noise and
high strength. An innovative data-driven multi-objective optimization (MOO) method is proposed
for the loaded meshing transmission performances of aerospace spiral bevel gears. Data-driven
tooth surface modeling is first used to obtain a curvature analysis of loaded contact points. An
innovative numerical loaded tooth contact analysis (NLTCA) is applied to develop the data-driven
relationships of machine tool settings with respect to loaded meshing transmission performance
evaluations. Moreover, the MOO function is solved by using an achievement function approach to
accurate machine tool settings output, satisfying the prescribed requirements. Finally, numerical
examples are given to verify the proposed methodology. The presented approach can serve as a
powerful tool to optimize the loaded meshing transmission performances with higher computational
accuracy and efficiency than the conventional methods.

Keywords: aerospace spiral bevel gears; loaded meshing transmission performances; machine tool
settings; numerical loaded tooth contact analysis (NLTCA); multi-objective optimization (MOO)

1. Introduction

Spiral bevel gears are increasingly demanded for torque or speed transformation in
many industrial applications [1]. Especially in the aerospace industry, in order to satisfy
the increasingly high transmission requirements of low noise and high strength, loaded
meshing transmission performance evaluations are needed to be guaranteed during the
design and manufacturing. Actually, loaded meshing transmission performance evalu-
ations have always been required for spiral bevel gears. For instance, no loaded edge
contact, no stress concentration, a reasonable loaded transmission error, and a good contact
pattern are usually prescribed as important evaluations for noise and strength [2]. In
recent research on the tooth contact analysis (TCA) technique, the simulated loaded tooth
contact analysis (SLTCA) based on an economical finite element software package has
always been an important access to loaded meshing interface state prediction and contact
mechanical performance optimization before the actual flank manufacturing [3-5]. Here,
loaded meshing transmission performance evaluations mainly include contact pressure,
contact stress, root bending stress, the loaded contact pattern, and the loaded transmission
error [6,7]. Argyris et al. [4] developed a computerized method to analyze the tooth contact
and stress of spiral bevel gears.

In the past few decades, in order to acquire high-loaded meshing transmission per-
formances, many researchers have proposed many methods for complex loaded contact
behavior analysis [8-11]. Gleason Works [12] first applied a prescribed parabolic transmis-
sion error curve to improve the contact motion path. Litvin [13] developed an accurate
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geometric tooth flank model of a spiral bevel gear with the applications of the differential
geometry method and gearing theory, where the loaded contact stress and root bending
stress were determined. Wink and Serpa [14] proposed an accurate composite deformation
determination of the whole contact flank. The sum of deformation caused by the load at
each point was calculated to determine the loaded transmission error. Wu and Tsai [15]
developed loaded contact pressure distribution, which was always one of the important
standards for loaded meshing transmission performances. Kolivand and Kahraman [16]
proposed a prediction approach to the loaded contact pattern and time-varying meshing
stiffness. However, the loaded tooth surface contact problem has not been effectively
dealt with since loaded contact stresses underneath the tooth surface have not been taken
into account.

More recently, many gear designers have paid attention to loaded meshing transmis-
sion performance optimization design considering the actual manufacturing requirements.
Machine tool settings have always been used as basic design variables for tooth surface
design and loaded meshing performance assessment [13,17]. Simon [18] focused on loaded
meshing performances and made improvements by analyzing the influence on the tooth
flank from errors. Sugimoto et al. [19] performed analytical and experimental investiga-
tions on the loaded transmission error. The actual contact ratio was finally determined by
them through numerical comparisons between the theoretical and experimental results. Su
et al. [20] proposed a design and analysis approach for spiral bevel gears with a seventh-
order transmission error, where the spiral bevel gear could be face-milled on a universal
cradle-style or computerized numerical control (CNC) hypoid generator. Undoubtedly, to
obtain high-performance evaluations satisfying the complex conditions, the data-driven
optimization or modification of the tooth surface played an influential role in integrating
the design with the actual manufacturing [21,22]. Stadtfeld and Gaiser [23] developed a
universal motion concept (UMC) and ultimate motion graph (UMG), which were capable
of correcting the complex tooth surface in multi-axis CNC gear generators. Fan et al. [24,25]
developed a tooth surface form error correction method with a high order for face-hobbed
or face-milled spiral bevel gears. Fan [26] obtained high-performance tooth surface eval-
uation using UMC higher-order universal motions. Ding et al. [27] presented a tooth
surface optimization method using machine tool settings modification and data-driven
correction considering the measured cutter geometric error. Here, it aimed at tooth flank
optimization considering both micro-geometry and loaded meshing transmission perfor-
mance evaluations. Artoni et al. [28,29] constructed a robust least squares model for the
modification of the target tooth surface. Formulations for optimizing the contact patterns
and loaded transmission errors were provided by employing an ease-off topography cor-
rection. Then, a set of accurate machine tool configurations were ascertained employing the
Levenberg-Marquardt algorithm. Artoni et al. [30] innovatively devised a flank morphol-
ogy correction technique with free-form using sensitivity analysis and nonlinear solu-
tion methods.

Contemporary investigations within the realm of gear research have predominantly
centered on a variety of tooth contact mechanical performance evaluations, such as contact
pressure, stress, and loaded contact pattern and transmission error [31,32]. However, some
researchers [33,34] have restricted their investigations to singular evaluations of loaded
meshing performance in isolation, thus inadvertently precluding a holistic assessment of the
multifarious evaluation parameters, only separately considering one of the loaded meshing
performance evaluations [35]. Moreover, in recent MOO designs for loaded meshing
performances, the establishment of data-driven functional relationships has not been direct
and efficient in terms of the final solution [36-38]. Ding [21] proposed indirect data-driven
relations between performance evaluations and machine tool settings, employing data-
driven operation and approximation of SLTCA numerical results. Similarly, Shao and
Ding [39,40] also used these approximate functional relations for the MOO machine tool
settings modification process. Artoni [38] neglected the detailed establishment of intricate
functional interdependencies vis-a-vis the pertinent key machine tool settings.
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Particularly within the aerospace domain, where spiral bevel gears are subjected to
conditions of high-speed operation, substantial loads, and intricate environments, there
exists an ongoing imperative for heightened and reinforced performance in loaded mesh-
ing transmissions. However, recently, integrated design considering both of the multiple
evaluations has been difficult because of complex data-driven relations. Here, in full
consideration of the requirements of aerospace spiral bevel gears under high speed, sub-
stantial load, and complex or even extreme weather conditions, this study attempts to
develop a high-performance optimization design. In particular, a novel data-driven MOO
computation is introduced herein to determine the required loaded meshing transmission
performances. In contrast to the conventional “trial-to-error” approach [21], the proposed
methodology incorporates an adaptive adjustment of machine tool settings through the
implementation of the MOO design framework. Furthermore, within the purview of this
data-driven approach, the amalgamated tooth flank design seamlessly interfaces with the
practical manufacturing domain through the optimization of initial machine tool settings.
Notably, these machine tool settings are not only harnessed to realize a data-driven tooth
flank design, but they are also seamlessly integrated into the hypoid generator for the pur-
pose of executing the tangible manufacturing process. Finally, with data-driven relations
and a robust MOO solution, data-driven control and decision for collaborative optimization
of the required loaded meshing transmission performances are developed. This endeavor
undertakes a series of distinct tasks aimed at realizing the aforementioned objective:

(i) Incontrast to the conventional approach of SLTCA, the current study employs a novel
numerical methodology termed Numerical Loaded Tooth Contact Analysis (NLTCA).
This innovative technique serves to delineate data-driven correlations between ma-
chine tool settings and evaluations of loaded meshing transmission performance. By
doing so, NLTCA effectively forges a significant link between the intricacies of flank
design and the real-world transmission performance of spiral bevel gears [1,21].

(ii) MOOQO computation of multiple loaded meshing transmission performance evaluations,
which mainly include the spatial distribution of loaded contact pressure, the config-
uration of loaded contact patterns, the elastic deformation characteristics exhibited
during contact interactions, and the quantification of loaded transmission error. This
computation can significantly improve the precision and efficiency of the complex
manufacturing system for spiral bevel gears [38,39].

(iii) Data-driven determination of loaded meshing transmission performances is provided
in the form of Hertz contact solution. In this context, the machine tool settings emerge
as pivotal yet unspecified parameters governing both the design and manufacturing
aspects. This integrated approach, which harmoniously aligns tooth flank design with
the manufacturing phase, has the potential to expedite the developmental efficiency
of aerospace spiral bevel gear products [40].

(iv) By employing the proposed MOO framework for machine tool settings modifica-
tion, a notable endeavor is undertaken to significantly contribute to contemporary
collaborative manufacturing paradigms taking into account both geometric and phys-
ical performances [40]. It can extend the recent collaborative manufacturing of a
case in that higher loaded contact performances were simultaneously controlled and
optimized within the qualified scopes for aerospace spiral bevel gears.

2. Data-Driven Tooth Surface Modeling

Due to unique flank flexural behaviors [2], the tooth surface is so complicated that
explicit expression of the tooth surface equation cannot be obtained. Actually, to obtain
a unified and standard tooth surface expression, the establishment of this mathematical
model has become a data-driven simulation mirroring the intricacies of the genuine tooth
flank manufacturing process [32]. Recently, accurate modeling has been divided into two
steps: (1) cutter blade design, and (2) machine kinematics.
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2.1. Cutter Blade Design

Within the domain of aerospace spiral bevel gear generation, the process involves
the utilization of a cutter head, which, as it revolves around the axis, generates the tooth
surface by enveloping the spatial trajectory of its curved surface family while interacting
with the gear blank through cutting [2,5]. Notably, the present landscape of cutter blade
design comprises three fundamental geometric configurations. Figure 1 depicts a data-
driven representation of the geometric shape of the cutter blade, wherein the cutter center
system is denoted as O.(X, Y, Zc), with Z. signifying the orientation of the cutter axis.
In this context, a comprehensive geometric configuration has been chosen for simulation,
subsequently partitioned into two distinct segments: (A) the straight-line component, and
(B) the circular arc component. The attributes of the cutter blade, encompassing both its
position vector and unit normal vector, are outlined as follows:

(A) Straight-line component

(rc £ ppsinac) cos by
(re £ ppsinac)sinf,

rP(VP/ GP) = —Jp COS ¢ (1&)
1
P P cos ac cos b
ny(0p) = # X % = | cosacsinf, (1b)
4 b +sina,
(B) Circular arc component
(re £pf(1 —sinac)/ cosac F pssinAs) cost)
(re £pf(1 —sinac)/ cosac F pssinAy)sind, <O A< Ty )
—pf(1—cosAy) =rf=2 %
1 )
5 5 cos Ay cos b
re=ry* %w,np(ep) = % X %}’: = COS/\].rSingp
EsinAy

where Hp and Gp represent the Gaussian parameters of the tooth surface [21]; 7. denotes
the cutter point radius; a. stands for the blade pressure angle; pr signifies the edge
radius of the cutter head,; )Lf corresponds to the angle of the circular arc; 7, denotes the
cutter mean radius; and Py, represents the cutter point width. It is worth noting that
the upper and lower signs are used to distinguish between the convex and concave
sides of the tooth surface for spiral bevel gears [2], respectively.

2.2. Machine Kinematics

Within the realm of aerospace spiral bevel gear manufacturing, it is possible to con-
ceptualize the spatial trajectory of each cutting blade edge during high-speed rotation
as akin to a conical surface. This analogy allows us to envision it as a “tooth” on the
generating gear [2]. In light of the kinematic relationship between the simulated generating
gear and the workpiece blank, the tooth surface is generated through the enveloping of
the surface of the imaged generating gear [2]. The machine kinematics [28-30] can be
simulated by applying coordinate transformation with respect to the machine tool settings.
A basic mathematical model for the tooth surface can be built using a machine kinematics
simulation of the cutter blade cutting the work blank, where this process needs to satisfy
the gearing theory [33]. In this context, the modeling of the tooth surface is achieved by
implementing a kinematic coordinate transformation, transitioning from the tool coordinate
system to the gear coordinate system. It is of great significance to determine the coordinate
transformation matrices representing the machine kinematics from the cutter blade to the
gear work blank.
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Figure 1. The straight-line blade shape design of the cutter head.

Figure 2 illustrates the coordinate systems employed to represent the hypoid generator
kinematics. These coordinate systems, denoted as Om1(Xm1, Ym1, Zm1), Oa1(Xa1, Va1, Za1),
and Op1(¥p1, Y1, Zb1) are firmly affixed to the cutting machine center [2]. Furthermore, two
mobile coordinate systems, O1(x1, y1, z1) and O¢1(Xc1, Yc1, Zc1), are rigidly connected to the
pinion blank and the cradle. These systems rotate about the z},1 axis and the zy,; axis, and
their rotations are linked to the variable ¢;. In addition, the coordinate system Op(xp, yp,
zp) is utilized to illustrate the placement of the head-cutter on the cradle and is associated
with the pinion generation process. To achieve this, the coordinate transformation matrix
from the cutter coordinate system to the gear coordinate system is calculated:

= Mip1 - Mpia1 - Maim1 - Mmica - Map

cos ¢1
—sin 4)1
0
0
CoS P
—sin $c1
0
0

0 0

singg 0 0 siny,;,1 0 —cosym 0 1 0 0 0
cosy 0 O 0 1 0 0 0 1 0 AEm
0 10 cosym1 0 siny,1  —AXpo 0 0 1 —AXp
0 0 1 0 0 0 1 0 0O 1 3)
sing,; 0 O 1 0 0 S,cosqq
cos¢g 0 0O 0 1 0 Spsingg
0 10 0 01 0
0 01 0 00 1

where, ¢ represents the rotational angle of the gear; vy, denotes the machine root angle;
Xpy corresponds to the increment of the machine center to the rear; AE;,; signifies the blank
offset; Xp; refers to the sliding base; ¢.1 represents the rotational angle of the cradle; Sy
is the radial setting; g is the basic cradle angle; My, represents the matrix from the cutter
head to the work blank, My},; represents the matrix from the cradle to the work blank,
Mp1a1 represents the matrix from the machine base to the cradle, M,11 represents the
matrix from the offset position to the machine base, My,1.1 represents the matrix from the
radial cutter to the machine base, and M, represents the matrix from the cutter head to
the radial cutter. The sub-matrix of the 4 x 4 matrix My, is obtained by excluding the final
row and column, and it can be represented as:

] @

p - L1p1 - Lpiar - Laimi - Lmict - Lclp
cos¢p  sing
—sin¢g cos ¢

1
0
0

O = O
= o O

0 siny,;r 0 —cosyum 1 0 0 cos¢ep singq O
0 |- 0 1 0 10 1 0 || —sing; cos¢py O |-
0 0 1

1 cosyy1 0 sinyy,y 0 0 1
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Figure 2. Geometric coordinate system for aerospace spiral bevel gears manufacturing.

On the basis of coordinate transformations, a comprehensive numerical simulation of
the practical generation process of aerospace spiral bevel gears is conducted. Leveraging
position vectors and normal vectors associated with the cutter blade, we adhere to the
principles of gearing theory [1] to ascertain the geometry of the tooth flank. The modeling
of the tooth flank can be delineated as follows:

Ry (pp, 0p, Pe1) = Mip(Pe1) - 1p(pp, 0p) (5a)

N1(0p, ¢c1) - 0"~ = Lip(gcr) - mp(6,) - 0"~ =0 (5b)

where, vP~¢ denotes the relative velocity between the cutter and gear blank b and cutter
¢. During the gear generating process, the relationship between the angles ¢; and ¢; is
defined as ¢1 = mi.¢.1, where mj. represents the rolling ratio [2].

3. Curvature Analysis of Contact Surface Points

The analysis of the curvature at the contact surface points serves as a fundamental
basis for achieving precise TCA solutions [34]. It represents a primary avenue for establish-
ing data-driven functional relationships between machine tool settings and the resulting
evaluations of meshing transmission performance [30].

3.1. Tooth Contact Point Solution by TCA

In the analytical determination of loaded meshing transmission performance evalu-
ations, TCA is first performed to provide some basis input parameters [34]. To achieve
meshing contact positions, the pinion and gear should be rotated by a certain angle to
reach the meshing coordinate system [4,5]. The position vector and normal vector in the
gear coordinate system are converted into position vector Ry (yp, 0p, ¢c1) and unit normal
vector Nim1(fp, ¢c1) in an established meshing coordinate system.

Figure 3 provides a schematic representation of the TCA kinematics for aerospace
spiral bevel gears. To accomplish the meshing process, the contact point P>(6p, ¢.1) of the
pinion tooth surface rotates to a certain angle through the transformation matrix M,_¢ and
the contact point P1(0g, ¢c2) of the gear tooth surface rotates to a certain angle by M;_¢ at
the same time. Finally, the pinion and gear make contact at point P*(0g, ¢c2, 0p, ¢c1)) in
the meshing coordinate systems. The established set of TCA equations must adhere to the
following basic conditions:

Run1 (#p, 0p, §c1) = (Mi—g) - 11(pp, 0p, Pec1) (6a)
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Figure 3. The schematic diagram of TCA kinematics of aerospace spiral bevel gears.

In this context, the complete coordinate transformation matrix from the gear coordinate
system to the meshing contact coordinate system is represented as:

7g)1 '(Aqg a)l (A4a b)l Adb c Mg
0 0 —(Alx), cos Apz —sin(Apz); 0 O cos(Apy); 0 sin(Apy); O
1 0 —(Aly); sin Apz cos(Apz); 0 0 0 1 0 0
0 1 —(Alz) 0 10 —sin(Apy); 0 cos(Apy); O
0 0 1 0 01 0 0 0 1 7)
0 O 0 0 -1 0
cos(Apx); —sin Agox 0 01 0 O
sin(Apx);  cos(Apx); O 10 0 O
0 0 1 0 0 0 1
The sub-matrix of the 4 x 4 matrix (M;_¢); is derived by removing the final row and
column of (M;_¢); and can be represented as:
= (Lt g)l : (Lgfa)l ’ (La—b)l ’ (Lb—c)l Lo
[1 0 0 cos(Apz); —sin(Apz); 0 cos(Apy); 0 sin(Apy),
0 1 0 |-] sin(Apz); cos(Apz); 0 |- 0 1 0 :
L0 0 1 0 0 1 —sin(Apy); 0 cos(Apy); 8)
[ 1 0 0 00 -1
0 cos(Apx); —sin(Apx), 01 0
L 0 sin(Apx);  cos(Apx); 10 O
The rotation matrix My _¢ is given by
Mgff = (Mgfa)l : (Mufh)l : (bec)l 'Mcff (9)

In order to achieve the same normal vector, it is necessary to determine the rotational
angle (Ap)1=((Apx)1,(Apy)1,(A ©7)1)T, as well as the translation displacement (Al);=((Alz)1,

(Aly)1,(Alz)1)T.

To ensure a continuous gear transmission, it is imperative to maintain continuous
contact between the tooth surfaces of the pinion and gear [34]. This necessitates that their
position vectors and unit normal vectors consistently coincide. In other words, in this
contact state, which aligns with the principles of gearing theory, the following relationships

hold true:

Ry (VP/ 971/ ¢c1) = Rm» (Vgr eg/ (Pcz)

(10a)
(10b)
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N1 -v12 =0 (10c)

here, the v1; denotes the relative velocity of gear with respect to the pinion and can be
expressed as
V12 =01 — 02 (11)

Six nonlinear scalar equations having six independent parameters such as py,, 0p, ¢y1,
ty, By, and ¢y> can be identified through the above three vector equations. Finally, by
combining the above six nonlinear equations, six unknown variables can be identified by
using a nonlinear solver.

The calculation of the driven gear’s rotation angle requires the input of six variables
into the TCA equation for accurate computation. The initial step involves the creation of a
mathematical model for the tooth surface, based on the provided input data encompassing
blank geometry design and machine tool settings. Subsequently, TCA is executed by
solving Equation (10) to ascertain whether the contact state aligns with the stipulated
design criteria [20]. Finally, TCA evaluations, including the assessment of contact patterns
and transmission errors, are derived as part of this analytical process.

3.2. Curvature Analysis

In Euclidean space [1], the two surface X, (1=1,2) is represented by pi(¢, 6), where
(¢, 0) € A represents the fundamental design variable domain. With the modeling of the
tooth flank, n; is expressed as

ni(¢,0) = n; 5 X 19 with n; # 0 (12)
In light of the presumed regularity inherent in the modeling of X;, it can result in:

_ dlpi(9,0)] dlpi(e,0)] . dlp(¢,0)] dipi(¢,0)] . _dlpi(¢,0)] dip;i(9,6)]

E= dp  d¢ F= d¢ a '°T a do (13
The unit normal vector of it can be expressed as
1 (9,0) = mi(9,0)/ ni(p,0)] = mi(9,0)/VEG — 2 (14)
Then, the first type of basic homogeneous can be represented as
Lo 4@ dlpo)] A @0 dlpe)] _ _ di’90)] dipi(o)]
%(f) g7 dg ¢ do % (15)
N = 4" 00)]  dlp(00)]
= o de

In the course of discretizing and fitting the tooth flank, the tooth flank can be effectively
represented as X; (where i = 1,2). Consequently, the definition of Cj, located on X; (where
i = 1,2), can be established through the utilization of position vectors [2]

Ci(s) = pl9[01s), ¢ (5)] (16)

With regard to Cj, its unit tangent vector is denoted as

dcs)  {p99s),¢96) ) a[els)]  afpdpli(s),¢C(s)} o))
ds do T P S (17)

Furthermore, the derivative of the unit normal vector along C; is expressed as

an”  dn(p,0) 4[096)] a0 d[0C(6)]
ds — de s T dg ds

(18)
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In this context, the value of Ky[i] for X; (where i = 1,2) is obtained as
[U]
i dCGi(s) dm
K= ds ds (19)

4. Determining MOO Relations by NLTCA

Distinguishing the conventional SLTCA [37], the novel NLTCA adopts the widely
recognized Hertz contact theory to establish MOO functional relationships between evalua-
tions of the loaded meshing transmission performance and various machine tool settings.
Obviously, it is a data-driven design for loaded meshing transmission performances.

4.1. Determination of Loaded Contact Ellipse
With tooth flank modeling, the surface curvature can be represented as

. d?r
kN = S o (20)
then, there is As = MPx = p, it yields
0 As? 1 5

As for the hypoid gear flank ¥; (where i = 1, 2), the normal curvatures Ky/[i], as well as
the principle curvatures K;[i] and Ky[i], adhere to a relation that satisfies the Euler equation.
The offset, denoted as A; (where i =1, 2), is ultimately determined as [2]

2 .
A= %(KIM cos? g + KI[}] cos? g;)(i = 1,2) (22)
where, g; (for i = 1, 2) denotes the angle between MPx and the unit vector ej[i] (fori=1, 2)
represents the principle curvature, as illustrated in Figure 4. To define the instantaneous
ellipse, a coordinate system (P*;T, 1) is established within the tangent plane I'1. The direction
of the vector MPx in the (7, #) plane is represented as Ocp.

Contact pattern
boundary

Instantancous
\ ' contact ellipse

dcp M \

Instantancous
contact ellipse

Contact pattern

Figure 4. The loaded tooth contact pattern of aerospace spiral bevel gears.

Within the boundaries of the loaded tooth contact pattern, wherein the elastic defor-
mation of the loaded tooth flank wgp is taken into account, a set of discernible phenom-
ena emerge

/\1 - )\2 = :I:wED (23)
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In order to ascertain the properties of the instantaneous ellipse, the following relations
are taken into accounts

qm = Oc[l] + GCP/QZ = DC[Z] + Qcp,pz =72 + 172,COS Ocp = %,sin Ocp = % (24)

Through the application of geometric transformations, the following expression is
derived [1]

TZ(KI[” cos? all) + Km sin? ol — Kl[z] cos? a2 — Kl[f] sin? w12 4 UZ(KI[” sin? ol 4 KI[%] cos? a1l

25
—KI[Z] sin? a2 — [2] cos? w12y — TU[(KID] — KI[%]) sin(2a1)) — (Klm - KI[IZ]) sin(2a2)] = £25 =

The angle «/!l, denoting the angle between the coordinate axis T and the unit vector
erlll, is subject to arbitrarily selection. For instance, «f!l may be determined by ensuring
adherence to the subsequent relation

1 1y . 2 2
(kI — k) sin(2a1) — (2 — kfZ)
lx[zl = DC[H + 0

(KI[Z] - KI[IZ]) sino
(KIM - KI[Il]) - (KI[Z] — KI[IZ]) cos o
Equations (25) and (26) illustrate that the projection of the loaded contact pattern onto

the tangent plane I'T manifests itself as an instantaneous ellipse [1], the equation of which
can be deduced as

(26)

} s tan 2«1 =

Bt? 4 An* = +wgp (27)

The lengths of major and minor semi-axes of the contact ellipse are denoted as acp
and bcp, and their expressions are as follows

acp = ‘ 7 ’ (283)
. o
where,
A= }L <1<[” KB — /g2 —2g192 cos 20 + g2> (29a)
B= i(K“] K+ \/¢ — 29192 cos 20 + g2> (29b)
KU — g 4kl (29¢)
g =K' —Kj (29d)

With the determination of the data-driven functional relationship, loaded contact
performance evaluations are related to the basic design parameters, namely machine tool
settings (i, 8, ¢)[P/Cl, where P represents the pinion and G represents the gear. It is crucial to
emphasize that in the research conducted in [2,21], the machine tool settings were delineated
as fundamental design variables, forming the basis for the data-driven optimization of
evaluations pertaining to loaded contact performance [34]. Within the framework of
MOO focused on improving loaded contact performance, certain constraints [33,34] have
been defined. These constraints have been established by drawing upon the overarching
prerequisites that are integral to the real-world manufacturing processes of aerospace spiral
bevel gears.

Recently, the assessment of the loaded contact pattern has emerged as a crucial evalu-
ation criterion in V-H rolling tests conducted post actual manufacturing, as documented
in [28,29]. Generally, the size, direction, and position of the whole loaded contact pat-
tern [30] must conform to specified criteria. It is imperative to avoid loaded edge contact
extending beyond the geometric boundary of the entire tooth surface. In light of these
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stipulations, the loaded contact pattern, denoted as LCP, is subject to constraints imposed
through innovative boundary conditions, as delineated in the following relationships:

fo: (1 6,¢)" G]NH LCP(, 0, ¢)
st Qb <y b < QY (30)

ot < a4i—Pyip <Y

Within the given face width direction, QF and QU denote the lower and upper bound-
aries. In the context of the instantaneous contact ellipses, the cumulative sum of the short
semi-axis lengths is regarded as a size parameter along the face width direction. In the tooth
height direction, the criterion for constraint selection entails opting for the larger semi-axis
length associated with the central tooth contact points. This choice is substantiated by its
typical representation as the largest dimension among all the instantaneous contact ellipses.
The boundaries for these constraints are denoted as U" and UV, respectively.

4.2. Loaded Contact Pressure Distribution

The assessment of the loaded contact pressure distribution on the tooth surface stands
as a primary criterion for gauging the loaded contact strength of the gear [38]. Conse-
quently, its maximum magnitude holds paramount significance in the evaluation of the
gear transmission performance, exerting a direct influence on the meshing stability of spiral
bevel gears and their fatigue life [4]. To accurately calculate the loaded contact pressure
distribution, it is imperative to consider the load distribution in the gear meshing process
under various applied conditions.

(1) CASE I: when a single pair of gear teeth engages in loaded tooth contact, the input
torque MNpyT is predominantly applied to one specific pair of tooth flanks within
the transmission system.

The contact force for aerospace spiral bevel gears can be expressed in terms of the
input torque as follows:

F_ |MinpuT || (31)
Tk COS &y COS By
where
i = /Ryt 2(%) + Ry (y) (32a)
sin By = % [R’ + %(% sin — R) (32b)
R' = \/le2(x) + lez(y) + lez(z) (32C)
R=Ry— g (32d)

where, Mnpur signifies the input torque applied to the driven gear; ry represents the
distance from the contact point K to the gear axis; o, denotes the gear profile angle of the
contact point K; B represents the spiral angle at the contact point K; r is cutter radius; R’
corresponds the cone distance of the contact point K; R stands for the cone distance of the
midpoint of the tooth surface; B signifies the mean spiral angle; Ry represents the mean
cone distance; B denotes the face width.

(2) CASE II: During the simultaneous engagement of two pairs of gear teeth in a loaded
tooth contact process, the input torque Mynpyt predominantly applies to two distinct
pairs of tooth flanks within the gear transmission system.
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It is noteworthy that the total input Mnpyr is simultaneously distributed into the gear
and pinion flanks, which can be yielded as

Minput = My + My = Fi7jq €0s g €08 By + Fargp cos ayg cos Bro = |[Mmnput|  (33)

In the case of loaded tooth contact, it should be that two sides of a certain gear are
matched to the respective sides of the other gear. Thus, as the driving gear undergoes a
specific rotational angle, it results in the middle gear having an actual rotation angle that
aligns with that of its neighboring tooth flanks. It means that, for the driven middle gear,
there exist two of the same unloaded transmission errors. Here, a transmission error is
defined as the discrepancy between the actual positions of the output gear [28]. If the pinion
and gear are not perfectly rigid and conjugate, the loaded transmission error function is

N
AP(¢1) = da (1) — ﬁ;% (34)
It can be transformed as
AP(Fy, ¢1) — Ap(Fr, ¢ + ?\,—7:) =0 (35)

where, ¢; represents the rotation angle of the driving gear; ¢, denotes the rotation angle of
the driven gear; N; is the number of teeth on the driving gear; N, is the number of teeth
on the driven gear. Equations (34) and (35) are combined and solved to determine the
rotation angle at the critical position where a single pair and two pairs of tooth contact
occut, denoted as Al Finally, the load distribution throughout the entire gear meshing
process is described as

A, 0 < Ap < A
F={ F, @A <Ap < — ol (36)
2 2
B, F-oll<rp<i

All of the individual instantaneous loaded contact ellipses collectively form the entire
contact pattern [34]. This ellipse is defined within a plane coordinate system denoted as
I'(t, h), with its center situated at the determined contact point IT *(‘ler O, bx2, 0r). Here,
It is worth noting that this assumption holds, considering that the dimensions acp and bcp
are relatively small in comparison to the tooth dimensions and the tooth surfaces approach
flatness. When considering an ellipse with its center at point P*, its axes precisely align
with the coordinate axes /i and t. The representation of the contact pressure distribution
within the tooth contact pattern can be succinctly expressed as

3F 2 12 e 2 2
—3E__ [1— - ,if <1
Dcp(y,T) = Znucpbcp\/ ol B Naa? T Gl (37)
0 else

With the determined functional relationships, loaded meshing transmission perfor-
mance evaluations are related to basic design parameters, namely machine tool settings
(u, 0, ¢)[P/ G], where P represents the pinion and G represents the gear. It is worth noting
that, in some studies [2,28-30], the machine tool settings were set as design variables for
the optimization of the loaded contact performance evaluations. Within the framework
of this MOO aimed at enhancing loaded contact performance, various constraints have
been imposed. These constraints have been formulated with reference to the overarching
requirements governing the actual manufacturing of tooth flanks.
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When determining the distribution of loaded contact pressure, the primary constraint
imposed is mainly on the amplitude, which is limited to:

fio (w0, ‘P)[P/G] — Dcp (1,0, ¢) (38)
s.t. DY < |Dcp| < DY

where, D' and DV represent the lower and upper boundaries of the absolute value on
loaded contact pressure | Dcp |, respectively. In this optimization process, the constraint on
their loaded contact pressure can be imposed by taking into account both the initial tooth
contact points and the overall loaded contact pattern throughout the entire meshing process.

4.3. Elastic Contact Deformation

The elastic deformation of the loaded tooth surface provides a direct reflection of
the impact of the load on the deflection of the tooth surface in aerospace spiral bevel
gears [2,37-40]. This deformation can lead to changes in both geometric and physical
performance, making it imperative to enhance the contact strength and transmission
accuracy, particularly in aerospace industrial applications [41-43]. Therefore, to reduce the
elastic contact deformation [36] as much as possible for excellent meshing performance, it
is very necessary to obtain a clear relation between elastic contact deformation and some
factors regarding contact ellipse geometry [35]. Ultimately, the elastic contact deformation
of the tooth surface is determined based on the contact force F and the dimension of the
contact ellipse, represented as

3F
— _ 9
WED = S s Jo (39)
where there exists the following relation expressions [44]
1 1—u?  1—up? /2 1
e+ 2 = [ — s (40)
1 2 0 (sin®§ + A2 cos? )

where, E* represents the equivalent elastic modulus of the gear material, { denotes the
basic phase angle of the point on the ellipse to the long semi-axis; E; and E; correspond to
the elastic moduli of the pinion and gear materials, respectively; u; and u, represent the
Poisson’s ratios of the pinion and gear materials. |y represents the first kind of complete
ellipse integral.

In consideration of the elastic contact deformation, by referring to the expression in
Equation (39), its amplitude is mainly constrained as

o (10,07 s wpp (1,6, ¢)
L U (41)
s.t. (wgp)~ < wgp < (Wgp)

where, (wgp)* and (wgp)Y represent the lower and upper boundaries. When the elastic
contact deformation falls below the minimum prescribed threshold, it indicates that no
contact has taken place. Conversely, if the elastic contact deformation exceeds the maximum
prescribed threshold, it implies that the contact deformation is too significant to meet the
geometric accuracy requirements of tooth surface manufacturing.

4.4. Loaded Transmission Error

Loaded transmission error stands as a well-recognized factor significantly contribut-
ing to noise and vibration during the meshing process of spiral bevel gears [2,38]. This
heightened concern regarding noise and vibration arises not solely from environmental con-
siderations but is also driven by customer expectations [29,30]. This concern is particularly
pronounced in the design of aerospace spiral bevel gears, where complex conditions such as
heavy loads, intricate operating requirements, and high rotational speeds are encountered.
In such scenarios, tooth contact deformation and load distribution can wield considerable
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influence over meshing characteristics, leading to additional transmission errors [39,40].
The foremost objective, without a doubt, revolves around the minimization of transmission
error, thereby not only achieving diminished noise levels but also heightened strength. To
pursue this objective, the transmission error A¢; under no load conditions for aerospace
spiral bevel gears is determined, guided by the rotational angles of the driving and driven
gears. To comprehensively account for the influence of elastic deformation caused by the
applied load on the transmission error, the loaded transmission error must be meticulously
computed. This necessitates presenting the loaded transmission error while taking into
consideration the elastic deformation occurring at the contact point position.

WED
App)' = ——————— 42
(Aep) Tk COS & COS S 42)

Therefore, the comprehensive transmission error is designated as

o¢1 = Ap(¢1) + (Aep)” (43)

Finally, the comprehensive transmission error can be ascertained through the integra-
tion of a collection of data concerning loaded contact deformation and load distribution.

The loaded transmission error, serving as a primary contributor to gear noise and
vibration, carries substantial significance in practical gear transmission systems. Here, by
referring to Equation (43), there exists the following optimization

fa:(p, 9/¢)[P/G] = 01 (1, 0,9) (44)
s.t. 68 < 8¢y < 6V

where, w" and wV represent the lower and upper boundaries, respectively. While the
primary aim is typically to minimize the magnitude of the loaded transmission error as
much as possible, the lower boundary is also set as w" by considering the actual manufac-
turing requirements.

5. Data-Driven MOO of Loaded Meshing Transmission Performances

In recent collaborative performance optimizations [21,38,39], the data-driven relations
based on the SLTCA solution could directly affect the efficiency of MOO computation.
Using the NLTCA-based Hertz contact method, there are data-driven determinations of
the loaded meshing transmission performances relating to machine tool settings. To be
different from the conventional separate performance optimization [39,40], this represents
a significant and innovative effort in MOO design for aerospace spiral bevel gears, par-
ticularly when striving to achieve superior loaded meshing transmission performance.
Furthermore, this approach has the potential to markedly enhance the efficiency of the
current collaborative optimization processes [22,29]. Moreover, an innovative data-driven
MOQO is proposed to make the automatic and collaborative optimization of loaded meshing
transmission performances a reality for aerospace spiral bevel gears.

5.1. MOO Model

To this end, by integrating the optimization of each of the above sub-objectives, the
MOO problem on the loaded meshing transmission performances of aerospace spiral bevel
gears is represented as

f{MOO] = [f11f21f3rf4} — (]116/4))[1\/[00]
s.t. DY < |Dcp| < DY
N
Qb <Y b < QY0 < ap_p,, < OV #5)
i

(wgp)" < wep < (wgp)Y;0L < 8¢y < 8Y
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In the collaborative optimization of the multiple performance evaluations, Equation
(45) is solved to determine the qualified gear design parameters (, 6, ¢)IMOO! that fulfill the
specified conditions. Along with the determined design variables, it can be used to obtain a
solid model, which is a basic input for SLTCA. It is notable that, in the unknown design vari-
able (i, 8, $)™MOO] in consideration of product cost and efficiency, the machine tool settings
relating to the basic motion parameter ¢ are selected to execute the machine kinematics,
and the other parameters (y, ) are generally used to control the cutter kinematics.

5.2. MOO Solution

In recent MOO algorithms for spiral bevel gear tooth flank design [44,45], evolu-
tionary methods, particularly those rooted in genetic algorithms, have been commonly
employed [38] to ensure the attainment of stable numerical solutions for MOO problem:s.
However, collaborative performance optimization is always achieved at a cost of serious
computational burden [21,39]. Here, the achievement function approach, a classical MOO
solution [38], was chosen due to its computational efficiency.

4

4
min(W(w; (1,0,9)) = Y wf M (11,6, ¢) :; wifi(1,0,9)). (46)
f

MEF =

where w = (w1, .. ., wy) is selected with the condition that wj >0 (forj=1,...,4), and their
collective sum equals 1. The detailed setup can be referred to in [21,39].

It is presumed that all objective functions and their corresponding values, denoted
as P, 0,9) (j=1,2,...,4), associated with the decision vector (y, 8, ¢) € S, commonly
referred to as the Prato solution, have been normalized to a relative scale through the
utilization of a transformation method [41].

XREL = fREL (4,6, 9) = x 100%. (47)

where X represents the constrained condition, characterized by its lower and upper bound-
aries, namely X" and XV. SIl is applied to minimize the designated achievement function
S(F—R)as
min S(f,,) — SPI(f, (1,6,9);p, 48
in_ (i) V(fr (16, 9); 0, ) (48)
In this context, where p > 1, the detailed expression of Sl as provided by Wierzbicki [42]
leads to the final representation of the MOO problem as.

k

SISy (1, 0,9); 0, Z w;j(f;(1, 0, ¢) = f7)) +P2max (0, w; (fi(1,6,¢) = £))? (49)

j=1 j=

where, f;* represents the optimization objective onto the Pareto front. All maximums of
the achievement function, as indicated by Equation (49), correspond to the set of solutions
denoted as (i, 8, ¢)* € Ps. These solutions are identified as Pareto optimal due to their
inherent monotonicity with respect to the partial order within the objective domain. Subse-
quently, the optimization process for the MOO of the aerospace spiral bevel gears’ loaded
meshing transmission performance involves the application of an interactive reference
point method, as described in Refs. [38,39]. This method employs the achievement function
to guide and refine the optimization procedure [46—48]. Figure 5 illustrates a basic com-
putation flowchart for the MOO solution using the iterative reference point approach. In
recent gear design and manufacturing [49-51], the nonlinearity and robustness of the MOO
solution and its detailed operation can be referred to in Refs. [38,39].
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Figure 5. A basic flowchart for the MOO solution using the iterative reference point approach.

6. Numerical Instances

Today, high-performance aerospace spiral bevel gears in the transmission systems of
high-power helicopters are exercised to obtain a collaborative MOO design for the required
loaded meshing transmission performance evaluations [50,52-54]. Moreover, the recent
SLTCA based on economical software packages is used to verify the numerical results [43].
To assess the robustness of the presented methodology, various gear and pinion tooth
flanks and their loaded meshing transmission performances are determined by using the
proposed MOO method.

6.1. MOO Performance Evaluations

In recent industrial applications of aerospace spiral bevel gears, especially aerospace
engine reducers, the predominant gear type employed is the zero-degree spiral bevel gear,
characterized by a spiral bevel angle typically ranging below 8 degrees [5]. Table 1 describes
the fundamental geometric gear blank data in real-world manufacturing. Moreover, they
are the basic data for three-dimensional solid modeling. To assess the loaded meshing
transmission performance parameters, encompassing elements such as the distribution of
loaded contact pressure, the configuration of the loaded contact pattern, elastic contact de-
formation, and loaded transmission error, an authentic industrial application’s face-milled
spiral bevel gear is employed. This specific gear specimen, generated via a cradle-based
generator, serves as the validating reference for the proposed MOO problem. To ensure the
validity of the designated tooth contact mechanical performance parameters, numerical
results are obtained using the SLTCA approach via finite element analysis. Subsequently,
a comprehensive comparison and analysis of the obtained results are performed [54,55].
Here, with the given basic tooth surface geometric design parameters, data-driven tooth
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surface modeling is performed. Then, the MOO solution is performed and the performance
evaluations from the above two design schemes are given.

Table 1. Gear blank geometric design parameters of aerospace spiral bevel gears.

Design Parameters Pinion Gear
Number of teeth 19 32
Mean normal module (mm) 3.15 3.15
Face width (mm) 20 20
Pressure angle (deg) 21.5 20.5
Root angle (deg) 38.48 47.23
Pitch angle (deg) 40.31 49.29
Face angle (deg) 42.37 51.12
Spiral angle (deg) 7 7
Hand of spiral LH RH
Addendum (mm) 3.37 2.63
Dedendum (mm) 324 3.99

With the given basic design data on the gear blank, head-cutter, and hypoid generator,
data-driven tooth flank modeling is performed. Utilizing the provided foundational design
data pertaining to the gear blank, head-cutter, and hypoid generator, a data-driven approach
is employed for tooth flank modeling. As depicted in Figure 6, this modeling encompasses a
three-dimensional solid model created through computer-aided design (CAD) software and
a finite element model established using the ABAQUS software [43]. To ensure precision
in our calculations, the tooth profiles are discretized with solid elements, employing the
hexahedral reduced integral element C3D8R. The material properties within the finite
element model are configured in accordance with the prescribed material parameters [44],
which stipulate a Young’s modulus of 2.09 x 10° MPa and a Poisson’s ratio of 0.3. In the
context of the finite element model for aerospace spiral bevel gears, the total count of finite
elements encompasses 360,656, with 430,576 nodes. The applied torque is 250 N-M for
the gear axis. To optimize computational efficiency, the boundary conditions dictate that
the shell bottom is clamped along the circular edge, while the tooth tip, concave, convex,
heel, and toe regions remain unrestricted. For comprehensive insights into the design data
and procedures, readers are encouraged to refer to the detailed specifications presented in
Ref. [43].

a)

Figure 6. Spiral bevel gear model: (a) finite element model; (b) 3D solid model.

Figure 7a illustrates the distribution of tooth contact pressures at loaded contact points
within an aerospace spiral bevel gear transmission system. This presentation facilitates
a comparative analysis between the outcomes obtained through the proposed numerical
approach and the results generated using conventional simulation methods. In Figure 8,
the elastic contact deformation is observed on the tooth surface at distinct contact points
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within the assembly. Specifically, the analysis encompasses the examination of 27 loaded
tooth contact points, comprising the selection of the central point of each instantaneous
contact ellipse. Subsequently, the elastic contact deformations at these selected points
are individually computed and presented for evaluation. In the numerical operation of
the SLTCA results, elastic deformation amounts of the whole nodes in instantaneously
loaded contact ellipse are respectively extracted and their mean value is considered as
the referenced one. Then, SLTCA results are compared with the sampled points from the
proposed method. Referring to the time-varying meshing trend in Figure 7b, they can show
a similar result. In the proposed numerical approach, it is noteworthy that the maximum
observed elastic contact deformation measures 0.060847 mm at the 27th sampled contact
point and the minimum is 0.058913 mm. However, in the comparison results, the 16th and
17th contact points have the biggest differences in that the former is less, 0.6571%, and
the latter is larger, 0.5427%, than the simulated numerical results, and the other points are
basically the same.
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Figure 7. Comparison of MOO results for aerospace spiral bevel gears: (a) Tooth contact pressure
distribution at contact points; (b) The elastic deformation at the contact point of aerospace spiral
bevel gear.

Figure 8 shows the loaded contact pattern observed on the tooth surface. In the
proposed method in Figure 8a, loaded tooth contact points are first computed and the
respective instantaneous contact ellipses are determined. The culmination of this process
involves utilizing these instantaneous contact ellipses to construct the loaded contact
pattern, conforming to the specified geometric boundaries and the desired scope. The
comprehensive loaded contact pattern is primarily situated within the central region of the
tooth surface and exhibits an elongated strip-like distribution. This configuration effectively
conveys that both the size and orientation of the loaded contact pattern align with the
prescribed gear design criteria, encompassing considerations related to noise mitigation
and structural strength [28-30]. Notably, the presence of loaded edge contact phenomena
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is conspicuously absent within this pattern. Moreover, by comparisons with the loaded
contact pattern from the SLTCA method in Figure 8b, it is obvious that, not only in terms
of size but also the direction of the loaded contact pattern, most of them are similar. Here,
in the given SLTCA method, the process of determining the loaded contact pattern for
the entire tooth contact sequence is notably intricate and the details can be referred to in

Ref. [21].
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Figure 8. The contact pattern of the tooth surface: (a) proposed analytical method, (b) SLTCA method.

Figure 9 shows the loaded transmission error within the aerospace spiral bevel gear
transmission system. In Figure 9a, the numerical method effectively captures the loaded
transmission error dynamics over three complete meshing cycles. It is observed that
the temporal evolution of this error remains generally stable, albeit with a notable point
of volatility encountered during the mid-phase of each meshing cycle. The maximum
recorded loaded transmission error stands at 51.246 prad, under an applied input torque of
250 Nm, while the minimum value registers at 26.473 urad. Consequently, the amplitude
of the entire loaded transmission error fluctuation amounts to 26.473 pyrad. This amplitude
signifies a favorable vibration performance, aligning with the requisite noise and structural
integrity criteria governing gear transmission systems. Furthermore, when a specific
meshing cycle is selected, as illustrated in Figure 9b, a comparative analysis is presented
between the outcomes derived from the proposed numerical approach and simulations.
The results demonstrate a substantial degree of consistency in both trend and amplitude,
with the exception of a conspicuous disparity at a particular juncture during the mid-stage
of the meshing cycle. Notably, the amplitude discrepancy, as provided by the numerical
method, amounts to a reduction of 4.076 prad when contrasted with the simulation results.
Additionally, it is worth highlighting that the discrepancies observed in other loaded tooth
contact points remain within the margin of 2.53%.
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Figure 9. The loaded transmission error: (a) proposed analytical method in three meshing cycles,
(b) result in one cycle by comparison with SLTCA method.

6.2. MOO Output Result

The gear tooth surfaces are concurrently generated employing identical machine
tool settings, courtesy of the integrated approach afforded by the proposed MOO method.
However, it is important to note that the convex and concave surfaces of the pinion tooth are
separately manufactured, each undergoing the face-milling process with distinct machine
tool settings. In the case of tooth flank grinding, the gear flank’s concave and convex
aspects are simultaneously addressed through a designated set of machine tool settings,
while the pinion’s concave and convex flanks are each treated with two distinct sets of
machine tool configurations, as elaborated in references [56,57]. Crucially, the proposed
methodology constitutes an adaptive, data-driven optimization procedure, driven by a
collaborative consideration of the mechanical performance evaluations concerning loaded
tooth surface contact [40]. It is pertinent to underscore that this approach, to a considerable
extent, underscores an intelligent control paradigm by optimizing the pivotal machine tool
settings involved in the manufacturing process.

Within the context of data-driven MOO for enhancing the loaded meshing trans-
mission performances of aerospace spiral bevel gears, Figure 10a,b provides an MOO
Pareto front solution for gear machine tool settings. It can show good convergence, itera-
tive quality, and computational efficiency. Moreover, before and after the MOO solution,
the corresponding evaluations are significantly improved. The gear MOO output ma-
chine tool settings based on a Gleason hypoid generator [56,57] are represented in Table 2.
Figure 10c—d showcases the MOO Pareto front solutions for pinion machine tool settings,
taking into account the mechanical performance evaluations related to loaded tooth surface
contact. The computational results show that the MOO solution, not only for the pinion
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concave side, but also for the pinion convex side, can attain fast convergence, high iterative
quality, and good computational efficiency. Table 3 comprehensively enumerates the MOO-
derived machine tool settings for the pinion component, as furnished by the proposed
MOO methodology. In conclusion, armed with the determined machine tool settings de-
noted as (y, 0, ¢>)[MOO], these settings can be seamlessly translated into actionable directives
for the numerical control machine tools, thereby facilitating the precise manufacturing of
aerospace spiral bevel gears. This manufacturing process yields gears that unequivocally
meet the stringent requirements stipulated for loaded meshing transmission performances.
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Figure 10. MOO result comparisons: (a) Pareto front solution; (b) numerical result comparisons
before and after MOO; (c) MOO Pareto front solution for machine tool settings considering loaded
meshing transmission performances for pinion concave side; (d) MOO Pareto front solution for
machine tool settings considering loaded meshing transmission performances for pinion convex side.

Table 2. Gear MOO output machine tool settings.

Machine Tool Settings Pinion
Cutter diameter (mm) 152.4
Outer tool profile angle (deg) 19
Inside tool profile angle (deg) 21
Cutter point width (mm) 2
Root fillet radius (mm) 0.76
Machine root angle (deg) 47.23
Machine center to back (mm) 0.0058
Sliding base (mm) 0
Blank offset (mm) 0.0045
Radial distance (mm) 119.56625
Velocity ratio 1.3145

Basic cradle angle 40.2541
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Table 3. Pinion MOO output machine tool settings.

Machine Tool Settings Concave Side Convex Side
Cutter diameter (mm) 168.07 140.05
Tool profile angle (deg) 19 21
Root fillet radius (mm) 0.54 0.54
Machine root angle (deg) 38.48 38.48
Machine center to back (mm) 0.52 0.43
Sliding base (mm) —0.32 —-0.27
Blank offset (mm) —0.36 0.15
Radial distance (mm) 124.73455 116.13233
Basic cradle angle (deg) 43.97462 37.69636
Velocity ratio 1.56117 1.52784

6.3. Numerical Verification

In the literature regarding MOO for enhancing the geometric and physical perfor-
mances of spiral bevel gear tooth flanks [44,45], there predominantly exists three prevailing
algorithmic approaches: (i) the achievement function method [38]; (ii) the nonlinear in-
terval number method [39]; (iii) the Kriging method [11]. Here, the proposed iterative
reference point approach is used to achieve a numerical comparison with the above main
methods. Table 4 shows the computation efficiency comparison with the recent main MOO
algorithms. In terms of the iteration number, the achievement function is at least 1 and 2
less iterations than the proposed method; the largest is 248 for the Kriging method [11]. In
terms of iteration time, the proposed iterative reference point method can attain the fastest
speed. For the iteration convergence accuracy assessment, the proposed method is still the
best. Thus, the computation efficiency evaluations, including iteration number, iteration
time, and convergence accuracy, show that the most optimal is the proposed method in
this work.

Table 4. Computation efficiency comparison with the recent main MOO algorithms.

Iteration Number Iteration Time Convergence Accuracy

Iterative reference point 84 1.35678 s 6.542 x 1077
Achievement function [38] 82 1.35681 s 2.367 x 1078
Nonlinear interval number [39] 135 12.5437 s 8.645 x 1078
Kriging [11] 248 8.6869 s 9.686 x 1077

Focusing on the given loaded meshing transmission performance evaluations, espe-
cially for their maximum values, Figure 11 shows the numerical comparisons with the
recent main MOO algorithms. First, the sub-objective evaluation results of various MOO
methods do not have many differences and they can verify the optimization accuracy of the
proposed method. Where, the maximum dmax is 64.838 pm from the nonlinear interval num-
ber method, while the minimum is 56.786 um from the Kriging method [11]. The maximum
LTEmax is 57.216 urad from the nonlinear interval number method, while the minimum is
51.246 prad from the proposed method. The maximum (Dcp)max is 1209.844 MPa from the
nonlinear interval number method, while the minimum is 1183.225 MPa from the proposed
method. It shows that the most optimal MOO design for the spiral bevel gear transmission
is the one under consideration.
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Figure 11. Comparison of the given loaded meshing transmission performance with the recent main
MOQO algorithms [11,38,39].

7. Conclusions

In the scope of this research, a data-driven MOO approach, emphasizing the opti-

mization of loaded meshing transmission performance, is proposed for aerospace spiral
bevel gears. This optimization is achieved through a systematic adjustment of machine tool
settings. The principal findings of this study can be succinctly summarized as follows:

)

(i)

(i)

Distinguished from the traditional SLTCA method using economical finite element
software [38], the proposed NLTCA offers a reliable and time-efficient avenue for
optimizing the performance of loaded meshing transmissions. Furthermore, this
numerical approach introduces opportunities for collaborative optimization, encom-
passing considerations of both geometric and physical performance attributes.

A data-driven, accurate model of the loaded meshing transmission performance MOO
in collaborative consideration of the loaded contact pressure distribution, contact
elastic deformation, loaded contact pattern, and loaded transmission error is provided.
Its inherent versatility empowers gear designers to practically apply these findings
in future advanced gear designs by specifying appropriate objective functions. It is
noteworthy that the optimization process extends its purview to encompass the tooth
flank’s contact fatigue performance, inclusive of factors such as residual stress [57,58],
microsurface topography [59], and surface roughness [60]. This approach represents a
vital step toward achieving high-performance tooth flank manufacturing for aerospace
spiral bevel gears.

The proposed methodology lays a foundational framework for future high-performance
design considerations, accounting for complex operational conditions such as high-
speed operation, the intricate coupling effects of multiple fields, and lubrication
dynamics. It demonstrates the potential to optimize loaded meshing transmission
performance within predetermined parameters by fine-tuning machine tool settings.
In addition to accounting for various manufacturing errors, the validation of MOO
results through enhancements to the employed algorithm [61,62] emerges as a primary
focus for future research endeavors [63,64].
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