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Abstract: As a thermal interface material, diamond/GaInSn composites have wide-ranging applica-
tion prospects in the thermal management of chips. However, studies on systematic reliability that
can guide the practical application of diamond/GaInSn in the high-temperature, high-temperature
impact, or high-humidity service environments that are faced by chips remain lacking. In this study,
the performance evolution of diamond/GaInSn was studied under high-temperature storage (150 ◦C),
high- and low-temperature cycling (−50 ◦C to 125 ◦C), and high temperature and high humidity
(85 ◦C and 85% humidity). The experimental results reveal the failure mechanism of semi-solid
composites during high temperature oxidation. It is revealed that core oxidation is the key to the
degradation of liquid metal composites’ properties under high-temperature storage and high- and
low-temperature cycling conditions. Under the conditions of high temperature and high humidity,
the failure of Ga-based liquid metal and its composite materials is significant. Therefore, the material
should avoid high-temperature and high-humidity environments.

Keywords: thermal interface material; reliability; temperature and humidity stress test; high-
temperature storage; temperature cycling

1. Introduction

In the thermal management of chip packaging, components such as high-thermal
composite materials and heat pipes greatly improve the heat transfer speed and effectively
reduce the chip’s temperature [1–4]. As an important heat dissipation component in thermal
management systems, thermal interface materials (TIMs) assume the important function of
reducing the thermal resistance of the contact interface. TIMs can effectively fill the gap
between the heat source and the cooling component and reduce the service temperature of
the semiconductor by lowering the thermal resistance that is generated by the air between
the contact surfaces [5,6]. TIMs need not only excellent thermal conductivity but also
electrical insulation, good elastoplasticity, appropriate fluidity and viscosity, a low thermal
expansion coefficient, good cold and hot cycle stability, and wide applicability [7–9].

TIMs can be roughly divided into thermal gels, thermal greases, thermal gaskets, and
phase change materials according to their properties [10–13]. Thermal gels and thermal
greases are liquid thermal interface materials, which have the advantage of a low contact
thermal resistance, and their failure forms are easy to dry and cake. The advantages of
thermal shims and phase change materials are that they are easy to use, and their failure
forms are mainly stress cracks. As paste thermal conductivity materials, diamond/GaInSn
composites have the advantages of high thermal conductivity and high deformation; thus,
they can be used in electronic packaging as high-performance TIMs [14]. Compared with
the current commercial TIMs, namely, In and thermal grease, diamond/GaInSn composites
have outstanding advantages and excellent properties, including high thermal conductivity,
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low interfacial thermal resistance, and high viscosity; however, their reliability is rarely
studied [15–17].

The working environment of TIMs is consistent with that of chips. They face high-
frequency vibration [18], thermal cycling [19], thermal shock [20], and high-humidity
conditions [21], which can cause cracks, deformation, and other defects in TIMs, resulting
in reduced heat dissipation efficiency and a decreased service life of chips. The optimal
operating temperature of a chip is 70–80 ◦C, and a chip’s reliability decreases by 50% for
every 10 ◦C increase in the temperature of a single electronic component [22]. Roy C
K et al. [23,24] studied the thermal resistance of a Ga-based liquid metal after aging at
130 ◦C and cyclic heating and cooling at −40 ◦C to 80 ◦C. They found that the sample’s
thermal resistance showed a negligible (<5%) decrease after long-term aging. This finding
is instructive for our reliability study of diamond/GaInSn composites. Researchers tend to
assume that the change in the sample’s thermal resistance comes from the reaction between
the liquid metal and the packaging material [25]. This principle is reasonable but does not
reveal the change in the TIM itself.

We use a semi-solid-state diamond/GaInSn composite material for thermal load and
high humidity tests, mainly because this composite material has excellent comprehensive
properties, such as high thermal conductivity, low thermal resistance, and appropriate
viscosity and fluidity. It is also an excellent choice for high-performance TIMs. Therefore,
this study aims to investigate the effect of thermal load and high humidity on the mi-
crostructure, the surface state, and the properties of diamond/GaInSn composites and their
corrosion mechanism. Thus, this study can provide guidance for the future application of
such materials.

2. Materials and Methods
2.1. Selection of Experimental Materials

The selected TIM is a diamond/GaInSn composite paste-like material. The scanning
electron microscope (SEM) photo of its morphology is shown in Figure 1. SEM images
were collected by using a HITACHI S4800 SEM at 20 kV (HITACHI, Tokyo, Japan). GaInSn
alloy is a liquid metal at room temperature, and the alloy composition is the eutectic
component of ternary alloy Ga67In20.5Sn12.5 [26]. Metal materials are purchased from
Grinm Advanced Materials Co., Ltd. (Beijing, China). Eutectic GaInSn’s melting point is
9 ◦C. The diamond particles in the GaInSn/diamond composite material were selected in
two sizes of 100 mesh (150 µm) and 500 mesh (13 µm), and the amount of the diamond that
was added was 35 wt% [7]. The diamond purchased from Henan Zhongyuan Superhard
Abrasiors Co., Ltd. (Luoyang, China). Dia/GaInSn composite material was prepared using
the mechanical stirring method [27]. After being ultrasonically cleaned with alcohol, the
diamond particles were mixed with GaInSn eutectic alloy by mechanical stirring to prepare
a uniform diamond/GaInSn composite material. The specific measured performance
parameters of liquid metals and composite materials are shown in Table 1.
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Figure 1. SEM photo of morphology of the diamond/GaInSn composite material: (a) 100 mesh (150 
µm) diamond/GaInSn SEM; (b) 500 mesh (13 µm) diamond/GaInSn SEM. 

Table 1. Properties of composite materials and liquid metals. 
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(150 µm) diamond/GaInSn SEM; (b) 500 mesh (13 µm) diamond/GaInSn SEM.
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Table 1. Properties of composite materials and liquid metals.

Material Property GaInSn Liquid Metal GaInSn/Diamond (13 µm) GaInSn/Diamond (150 µm)

Melting point (◦C) 9 9 9

Density (g/cm3) 6.17 4.36 4.83

Specific heat (J/gK) 0.38 0.42 0.50

Thermal conductivity (W/mK) 14.94 51.84 70.34

2.2. Experimental Scheme

The experiments under a high-temperature (150 ◦C) storage environment, a high-
temperature and low-temperature circulation (−50 ◦C to 125 ◦C) environment, and a
high-temperature and high-humidity (85 ◦C, 85% relative humidity) environment were
designed to explore the influence of the temperature and humidity environment on the
thermal conductivity of GaInSn/diamond composite by measuring the aging and failure
law of the composite.

The high-temperature storage aging test aimed to simulate the continuous high tem-
perature experienced by the TIM [28]. The experiments followed the JESD22-A103 [29]
standard. The experimental composite material was loaded into the Teflon crucible and
placed into a blast air oven at a constant temperature. The temperature was set at 150 ◦C.
Six aging cycles were set, including 0 (nonaging), 24, 48, 96, 240, and 480 h.

The temperature cycling (TC) tests aim to induce TIM failure/degradation associated
with the cyclic changes in temperature during operation. Accelerated TC tests should
adhere to a standard similar to JESD22-A104D [30] or JESD-A105C [31,32]. The tempera-
ture cycle aging experiment was conducted in the temperature cycle chamber. The time
dependence of the temperature cycle is shown in Figure 2. Six aging period comparison
groups were set to 0, 50, 100, 300, 500, and 1000 cycles. The morphology and the thermal
conductivity of the aging test sample were tested.
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Figure 2. Time dependence of temperature cycle.

The high-temperature and high-humidity aging test box was used to test the failure of
the material at high temperature and high humidity. The test conditions were 85 ◦C and
85% relative humidity [33–35]. Six experimental groups were set up: 0, 24, 48, 96, 240, and
480 h. The above aging test equipment was purchased from Guangdong LESTEST Co., Ltd.
(Dongguan, China).

In the above experiments, three groups of parallel samples were set for each experi-
mental group, with 20(±0.2) g for each group. The thermal conductivity test was conducted
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within 24 h after the samples were taken out of the test box. The test results were taken as
the average of the three groups of parallel samples.

The density of the GaInSn composite TIM was measured via the drainage method.
The specific heat capacity of the material was measured using a Differential Scanning
Calorimetry (DSC, Netzsch 214Polyma, Netzsch, Selb, Germany) thermal analyzer, and the
thermal diffusion coefficient was measured using the laser flash method (Netzsch LFA 467
HyperFlash). A 3D profilometer and scanning electron microscope (SEM HITACHI S4800)
were used to characterize the surface morphology and its structure.

3. Results and Discussion
3.1. Experimental Analysis of the High-Temperature Storage Environment

Figure 3 shows the SEM morphology in the high-temperature storage experiment. The
diamond in the GaInSn/diamond composite is an inorganic carbon material with poor
wettability with a liquid metal. However, the diamond can form a “diamond–Ga2O3–liquid
metal” wettability interface structure by adhering to the oxide of Ga on the surface as
an auxiliary wetting method. In the preparation, the doped oxide Ga2O3 in GaInSn is
used as the interface layer to assist wetting through the micro-oxidation of GaInSn. In
the high-temperature storage experiment, the oxygen content in the composite material
slowly increased with the extension of the high-temperature storage time. Thus, the oxide
content in the liquid metal increased, thereby improving wettability, reducing the number
of exposed diamond particles, and increasing liquid film folds on the liquid metal surface.
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Figure 3. Morphology analysis of the high-temperature storage experiment. GaInSn/150 µm dia-
mond: (a) 0 h; (b) 24 h; (c) 48 h; (d) 96 h; (e) 240 h; (f) 480 h. GaInSn/13 µm diamond: (g) 0 h; (h) 24 h;
(i) 48 h; (j) 96 h; (k) 240 h; (l) 480 h.

Due to the formation of an oxide film on the surface of the liquid phase, when the
semi-solid composite was spread on the SEM sample table, the oxide film was subjected
to tensile stress from the diamond, so the radial wrinkles centered around the diamond
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appeared on the sample surface [36]. The deeper the degree of oxidation was, the more
obvious the film formation was, and the more wrinkles appeared (see Figure 3).

As shown in Figure 4, the performance of the material in the high-temperature en-
vironment from 24 h to 96 h was not only not reduced but abnormally increased. This
phenomenon occurred because the preliminary oxidation generated a trace amount of
gallium oxide in the high-temperature storage experiment. Moreover, the presence of
gallium oxide promotes the wetting of the thermal conductivity-enhanced phase with the
matrix. However, the material’s thermal conductivity is increased. A high-temperature
storage time of more than 100 h deepens the material’s oxidation degree, changes the
material’s surface from bright silver to dark gray, and decreases the composite’s thermal
conductivity. Figure 4 shows that the material’s thermal conductivity begins to decline
after 100 h with the extension of high-temperature storage time. Moreover, the material’s
thermal conductivity tends to stabilize after 240–480 h of high-temperature storage.
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Figure 4. Experimental thermal performance in the high-temperature storage experiment.

Samples were taken from the surface and core of the tested material, respectively, and
the oxygen content of the sample was measured using an Energy-Dispersive Spectrometer
(EDS). Figure 5 shows that the oxygen content of the core did not change after 240 h of
storage at a high temperature, but the oxygen content of the surface was increasing. The
oxygen content of the material’s surface was higher than that of the material’s core, and the
oxidation products were limited to the material’s surface, resulting in a small change in
the material’s overall thermal conductivity. It can be seen that the liquid GaInSn phase on
the surface of the composite reacted with oxygen at high temperatures, and the generated
surface oxide protected the composite and prevented the further oxidation of the core
material, so the oxygen content in the core remained unchanged. The thermal conductivity
degradation of the material is also affected by the diamond particle size. The thermal
conductivity of the diamond/GaInSn composite made with a 150 µm diamond particle size
only decreased by 3% after 480 h of high-temperature storage. The thermal conductivity
of the composite made with a 25 µm diamond particle size decreased by 7% after 480 h of
high-temperature storage. The 25 µm diamond/GaInSn composite had a lower density
and higher porosity than the 150 µm diamond/GaInSn composite, and the oxidation
reaction spread more easily from the surface to the core. In the high-temperature storage
environment, the high-temperature oxidation products oxidized easily on the surface and
could not cause the deterioration of material properties. The key to the degradation of
material properties lies in the oxidation inside the material.
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Figure 5. Oxygen content of materials analyzed via EDS.

3.2. Experimental Analysis of the High- and Low-Temperature Circulation Environment

In the experiment using high- and low-temperature cycling, the oxygen content in the
composite increased with the increase in the number of cycles. Thus, the oxide content in the
liquid metal increased, and its wettability was enhanced. We can observe the improvement
in wettability using SEM, which demonstrates that the bare diamond particles are reduced,
and the liquid film folds appear on the liquid metal surface (Figure 6a–e,g–k). However,
excessive oxidation will cause a large number of lamellar gallium oxide to accumulate
towards the interface [37], resulting in exposed diamond particles and destroying the
wettability of the liquid phase and diamond (Figure 6f,l). Macroscopic photographs show
that the entire surface of the material is tarnished. At the same time, the increase in
oxygen content in the high- and low-temperature cycling was higher than that in the
high-temperature storage experiment. This phenomenon shows not only wrinkles but
also a scaly oxide film in the liquid phase, observed by SEM. The oxygen content of the
experimental group with 100 cycles (250 h) was compared with that of the experimental
group with 240 h high-temperature storage. The atomic ratio of the oxygen content after
100 cycles was 2.94%, which is slightly higher than the oxidation content of the experiment
with high-temperature storage at the same duration.

The high- and low-temperature cycle aging pattern of the diamond/GaInSn composite
is similar to the high-temperature storage aging pattern, as shown in Figure 7. At the begin-
ning of the aging experiment, the material’s thermal conductivity increased, because the
gallium oxide generated by oxidation promotes wetting. However, the material’s thermal
conductivity did not show a stable trend after a long period of high- and low-temperature
cycle aging. In particular, it consistently exhibited a decreasing trend. The thermal conduc-
tivity of the material decreased by 18.6% after 1000 cycles. Experimental studies indicate
that the material undergoes a melting–crystallization–solidification–melting process in the
high–low temperature cycle. The voids in the particle–liquid phase composite continue
to move, disappear, and appear in the high–low temperature cycle because of the volume
change in the material, which is caused by melting and solidification. As a result, the
oxidation products that were originally concentrated on the surface spread to the core of
the material, making the whole material fully oxidized (Figure 8). Thus, the material’s
thermal conductivity continuously declined.
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Figure 7. Thermal performance of the high- and low-temperature cycle experiment.
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Figure 8. EDS analysis of material oxygen content after the high- and low-temperature cycling.

3.3. Experimental Analysis of the High-Temperature and High-Humidity Environment

Figure 9 shows the weight gain curve and corrosion rate curve of the diamond/GaInSn
composite material at different times in a hot and humid environment. The mass of the com-
posite material before the humid and thermal environment experiment was 20 g, as shown
in Figure 9a. After the high-temperature and high-humidity experiment had been con-
ducted for 480 h, the weight of the material increased by 4.9 g (150 µm diamond/GaInSn)
and 5.8 g (25 µm diamond/GaInSn). At the beginning of the 24 h hot and humid envi-
ronment experiment, uniform dark corrosion products appeared on the surface of the
composite material, and these products were produced only on the material’s surface.
Compared with the high-temperature storage experiment, the high-temperature and dry
environment experiment did not lead to any change in the gloss of the material.

The distribution of corrosion products in the composite deepened. Moreover, the
separation of the liquid metal matrix phase and the diamond reinforcement phase occurred
during the 240 h test in a humid and hot environment. After the 240 h test in the hot and
humid environment, the liquid metal content decreased, and most of the liquid phase reac-
tions produced solid corrosion products. The macroscopic morphologies of the composite
material at the same time were compared. The results show that the corrosion phenomenon
of the composite material is more obvious in the humid and hot environment than in
high-temperature storage conditions. Moreover, there were more corrosion products in the
former than in the latter. The calculation of the corrosion rate shows (Figure 9b) that the
corrosion rate of the material was lower than 50 g/m2h from 0 h to 96 h. The corrosion
rate was the highest at 360 h and decreased after 360 h. In practical applications, the
material fails when the solid–liquid phase of the composite material is separated and the
material loses its paste shape, as shown in Figure 10. In the thermal conductivity test, the
diamond/GaInSn composite failed at a longer duration than 240 h under hot and humid
conditions. However, the diamond particles in the 25 µm diamond/GaInSn material cannot
bear the effect of thermal enhancement after 48 h.
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Figure 10. Variation in Dia/GaInSn thermal conductivity under high-temperature and high-humidity
conditions.
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The diamond particles were extracted and screened after the wet and thermal environ-
ment experiments to explore the composition and the formation mechanism of the corrosion
products. After the experiments, the composite materials were centrifuged and screened,
and the diamond particles were selected for further analysis. Figure 11 shows the micro-
scopic morphology of the surface of diamond particles in the 150 µm diamond/GaInSn
composite and 13 µm diamond/composite after 240 h of humidity and heat. As shown in
Figure 11a,d, many honeycomb-like structures were generated on the diamond surface.
These structures are corrosion products, produced by composite materials in a hot and
humid environment. Figure 11c,f show that the black contrast is diamond, and the gray
contrast is a corrosion product. The diamond’s flat surface indicates that the corrosion
product is not a reaction product of the diamond. However, the liquid metal adheres to
the diamond surface after corrosion. The amount of corrosion products that combine on
the diamond surface of different particle sizes is different. Most of the diamond crystal
surface of the large-particle diamond is exposed. However, the surface of the small-particle
diamond is completely wrapped by honeycomb corrosion products.
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Figure 11. SEM images of the diamond/GaInSn composite material after 240 h of humid heat:
(a) 150 µm diamond 100×; (b) 150 µm diamond 1000×; (c) 150 µm diamond 2000×; (d) 13 µm
diamond 100×; (e) 13 µm diamond 1000×; (f) 13 µm diamond 2000×.

Figure 12 shows the EDS analysis of the diamond surface. The results show that the
main chemical components of the corrosion products that are attached to the diamond
surface are Ga and O. The contents of In and Sn are insignificant. However, the corrosion
product is tightly bound to the surface of the diamond crystal but cannot uniformly cover
the diamond surface. Thus, the EDS shows a large area of the exposed C signal. An
XRD analysis of the screened diamond powder was performed. The results are shown in
Figure 13. The results show that the main components of the honeycomb structure on the
surface of the screened diamond particles are GaOOH and a small amount of SnO2. The
main peak at 43.9◦ is consistent with the diffraction peak of the diamond (111) crystal face,
and the main peak at 75.3◦ is consistent with the diffraction peak of the diamond (220)
crystal face, so it can be concluded that the main component of the material is diamond.
The diffraction peaks and other peaks at 33◦ indicate small amounts of SnO2 in the material.
The other small diffraction peaks in the spectra are consistent with the diffraction spectra
of GaOOH; in particular, the high 21◦, 33◦, and 37◦ spectral peaks are consistent with the
(110), (130), and (111) crystal planes of GaOOH, and here, there is no correlation in the
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diffraction peak signals of Ga and Ga2O3 in the XRD pattern. This shows that the Ga and
the oxide of Ga attached to the diamond surface are all transformed into GaOOH.
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The failure mechanism of the composite in a hot and humid environment was further
studied. The doped oxide powder in the liquid metal that was obtained after screening
was collected. The solid-phase products were separated from the oxidation products and
analyzed via EDS and XRD. The EDS analysis results of the corrosion products are shown in
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Figure 14. The figure shows that large particles of solid powder are generated by corrosion,
and a small amount of GaInSn liquid metal is adhered to by the solid powder. The oxygen
content in the liquid metal is minimal, and the main components of the solid particles are
Ga and O. The XRD analysis of the corrosion product powder shows (Figure 15) that a
small amount of liquid dopant exists in the powder, and a mantou peak can be found in
the XRD spectrum. The solid crystal particles are GaOOH and a small amount of diamond.
Based on the corrosion products, the chemical reactions resulting from the analysis are
as follows:

Ga3+ + 3OH− −→ Ga(OH)3,

Ga(OH)3 −→ GaOOH + H2O.
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When the liquid metal is immersed in the liquid metal droplet in the electrolyte
solution, the surface of the liquid metal forms a net charge, and the reaction with water
leads to the formation of a honeycomb crystalline layer on the surface of the diamond.

The reaction mechanism is shown in Figure 16. In the wet and thermal environment ex-
periment, the Ga in the GaInSn liquid metal reacts with H2O in air under high-temperature
and high-humidity conditions to generate Ga(OH)2, which is only confined to the com-
posite surface at the beginning of the reaction. Thus, the reaction speed is slow. When
the reaction occurs, only the corrosion products on the surface of the composite cause
the bright silver diamond/GaInSn to lose luster. As the reaction progresses, Ga(OH)2 is
enriched to the wetting interface of Dia and GaInSn and is dehydrated to form GaOOH.
GaOOH and diamond are tightly combined to form a honeycomb structure. Thus, the wet-
tability of diamond and GaInSn is seriously reduced, and the solid and liquid phases of the
composite separate and overflow. Moreover, the H2O generated by hydrolysis reacts with
Ga to continue to produce corrosion products. Thus, the diamond is connected through
GaOOH, forming a complete solid-phase product. GaInSn reacts with water in the air to
form GaOOH until the Ga is completely consumed.
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Under the conditions of high temperature and high humidity, the failure of the Ga-
based liquid metal and its composite materials is significant. Therefore, using the material
in high-temperature and high-humidity environments should be avoided.

4. Conclusions

1. In the high-temperature (150 ◦C) storage environment, diamond/GaInSn reacts with
oxygen in the air to form Ga2O3. Moreover, the material’s thermal conductivity
improves in 24–96 h. The porosity of the 25 µm diamond composite is higher than
that of the 150 µm diamond/GaInSn composite, and the oxidation reaction spreads
more easily from the surface to the core. At 480 h, the 25 µm diamond composite’s
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thermal conductivity decreases by up to 7%. The key to the degradation of material
properties lies in the oxidation that occurs inside the material.

2. In the high- and low-temperature cycle experiment, the preliminary oxidation pro-
motes the wetting of the thermal conductivity-enhanced phase and the matrix, and
the material’s thermal conductivity is increased. The material undergoes a melting–
crystallization–solidification–melting process. The voids in the particle–liquid phase
composite continue to move, disappear, and appear in high- and low-temperature
cycling. Thus, the oxidation products that originally concentrated on the surface
spread to the inner part of the material, resulting in a continuous decrease in the
material’s thermal conductivity.

3. Under high-temperature and high-humidity conditions, the Ga2O3 in the GaInSn
liquid metal reacts with H2O in the air to generate Ga(OH)2. Ga(OH)2 is enriched at
the wetting interface between Dia and GaInSn and is dehydrated to generate GaOOH.
GaOOH and diamond are tightly combined to form a honeycomb structure. Thus,
the wettability of diamond and GaInSn is seriously reduced, and the solid and liquid
phases of the composite separate. The liquid phase overflow leads to material failure.
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