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Abstract: In recent years, significant attention has been paid to the use of calcium sulfate whiskers
(CSWs) to enhance the performance of cement-based materials (CBM). This technology has attracted
widespread interest from researchers because it enhances the performance and sustainability of
CBM by modifying the crystal structure of calcium sulfate. This article summarizes the fundamental
properties and preparation methods of calcium sulfate whisker materials as well as their applications
in cement, potential advantages and disadvantages, and practical applications and prospects. The
introduction of CSWs has been demonstrated to enhance the strength, durability, and crack resistance
of CBM while also addressing concerns related to permeability and shrinkage. The application of this
technology is expected to improve the quality and lifespan of buildings, reduce maintenance costs,
and positively impact the environment. The use of CSWs in CBM represents a promising material
innovation that offers lasting and sustainable advancement in the construction industry.

Keywords: calcium sulfate whiskers; cement; preparation methods; mechanical properties; durability

1. Introduction

Ordinary Portland cement stands as one of the most crucial materials in the construc-
tion industry. However, its production and usage have substantial environmental impacts,
coupled with drawbacks such as low tensile strength, limited tensile strain, and susceptibil-
ity to cracking. To enhance the sustainability of cement-based materials (CBM), researchers
have actively explored various modification techniques to improve cement performance.
The use of fiber materials, including steel, carbon, glass, and polypropylene fibers, has been
explored to enhance the performance of CBM [1]. However, these fiber materials are not
without their drawbacks. The fibers are relatively thick in volume, which can lead to the
formation of large voids and present challenges in achieving effective interfacial bonding
with CBM. Additionally, steel fibers are prone to agglomeration during construction [2].
Consequently, the application of certain microfibers has gathered increasing attention from
researchers and has yielded promising results. Nevertheless, fibers such as carbon fibers,
renowned for their high tensile strength and elastic modulus, are expensive and exhibit
poor dispersion. Glass fibers are susceptible to silicate erosion and may be affected by
highly alkaline cement hydration products [2,3].
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Some researchers have observed an inverse relationship between the strength of fibers
and their diameter. In other words, micro/nanofiber materials with high strength, high elas-
tic modulus, and a large aspect ratio can effectively perform micro-reinforcement tasks [4].
Calcium sulfate whiskers (CSWs) have high aspect ratios. Compared to granular and short-
fiber fillers, they demonstrate advantages such as stable particle size, high strength, good
toughness, high-temperature resistance, and resistance to chemical corrosion. Currently,
several methods are available for preparing CSWs, including ion exchange, microemulsion,
ultrasonic, hydrothermal, atmospheric acidification, and microwave. Among these, hy-
drothermal and atmospheric acidification have been extensively investigated. The primary
raw material used for CSWs preparation is gypsum [5]. China currently has the world’s
largest proven gypsum reserve, estimated to be 100 billion tons. Furthermore, research
suggests that industrial byproducts such as phosphogypsum, calcium salts, sulfur salts,
converter slag, tin tailings, and rare-earth tailings can be utilized in the preparation of
CSWs. This approach contributes to environmental protection and fosters sustainable de-
velopment [6]. Therefore, CSWs are considered a nontoxic, environmentally friendly, and
cost-effective inorganic material with excellent reinforcing and toughening capabilities [7].

Wan et al. [8] confirmed the role of CSWs in refining the pore structures of cement
mortar. The results indicate that the addition of 5 wt.% to CSWs increased the flexural
and compressive strengths of the mortar specimens by 28.3% and 8.5%, respectively. It
was also observed that the CSWs effectively delayed the formation of microcracks and
restricted their propagation. Li et al. [9] found that the addition of 0–1.0% (mass fraction) of
CSWs had little impact on the fluidity, initial setting time, and final setting time of cement.
Additionally, compared to calcium carbonate whiskers, CSWs had a more significant effect
on the strength of Portland cement. Cao et al. [10] investigated the impact of CSWs on
the properties and microstructure of cement-based composite materials and compared
them with nano-silica. The results showed that the optimum effect was achieved with a
1% addition of CSWs, leading to increases in flexural strength, split tensile strength, and
fracture toughness of 79.7%, 34.8%, and 28.7%, respectively. Moreover, these properties,
as well as shrinkage deformation and the capillary water absorption coefficient, were
superior to those achieved with nano-silica. Zhang et al. [11] studied the combined effect
of CSWs and basalt fibers on chloride ion migration in concrete. The results indicated
that the addition of 3.0 kg/m3 of CSWs combined with 4.5 kg/m3 basalt fibers resulted
in a more significant improvement in concrete strength and resistance to chloride ion
penetration. Cheng et al. [12] investigated the influence of CSWs addition on the high-
temperature performance of calcium aluminate cement. When 0–5% of CSWs was added
to the cement paste, the performance of the cement paste remained stable. Moreover,
with a 4% addition of CSWs, the compressive strength of samples cured at 50 ◦C and
then subjected to high-temperature (500 ◦C) treatment increased by 25.93% on the 14th
day, and the tensile strength increased by 93.63%. In addition, CSWs are widely used as
reinforcing agents in rubber, plastics, adhesives, friction materials, papermaking, and for
environmental protection. Owing to its relevance beyond CBM, further elaboration of these
applications is not provided here [13].

In summary, as an additive for CBM, CSWs have garnered widespread research in-
terest and found industrial applications, presenting revolutionary prospects [14]. The
introduction of CSWs effectively enhances the strength, durability, and crack resistance of
CBM. This not only improves the quality of construction structures and extends their lifes-
pan, but also plays a positive role in environmental protection by reducing carbon emissions
associated with cement production [15]. However, most researchers have predominantly
focused on research-oriented discussions regarding the preparation and application of
CSWs without providing comprehensive and integrated summaries of various aspects.

This paper discusses the properties and preparation methods of CSWs, their applica-
tion and mechanisms in CBM, the advantages and disadvantages of their use in CBM, and
their practical applications and prospects. Through this review, we examine the applica-
bility of CSWs, optimal addition amounts, and potential technical challenges, providing
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readers with a comprehensive understanding of this intriguing field. This will facilitate a
better understanding of the application of CSWs in CBM, contribute to the advancement of
the construction industry, and offer robust, durable, and sustainable solutions for future
construction projects.

2. Preparation Methods and Basic Properties of Calcium Sulfate Whisker Materials
2.1. Preparation Methods of CSWs

CSWs preparation involves the conversion of granular gypsum (calcium sulfate di-
hydrate) into fibrous, anhydrous calcium sulfate. Equations (1)–(4) represent the process
of solution dissolution and dissociation equilibrium [16]. In the subcritical system, SO3

2−

undergoes oxidation by O2 in the suspension to form SO4
2− (Equation (5)). As the concen-

trations of Ca2+ and SO4
2− increase to reach saturation, CSWs spontaneously nucleates

and crystallizes (Equation (6)). The chemical reaction used for synthesizing CSWs is as
follows [17]:

CaSO3(S) → Ca2+ + SO3
2 (1)

H2O → H+ + OHX (2)

SO3
2− + H+ → HSO3− (3)

2HSO3− + 2H+→H2SO3 → SO2↑ + H2O (4)

2SO3
2− + O2 → 2SO4

2 (5)

Ca2+ + SO4
2− + nH2O → CaSO4·nH2O (6)

Whiskers are a special type of single crystal, and their growth exhibits distinct charac-
teristics similar to those of crystals. Whisker growth morphology is primarily influenced by
factors such as the relative growth rates of different crystal faces, surface energy, internal
crystal structure, and environmental conditions. In a freely growing system, variations in
the nucleation and growth rates occur because of differences in the various crystal faces.
After the growth of stable nuclei, the surface of each crystal nucleus exhibits anisotropy.
The methods for preparing CSWs include hydrothermal, atmospheric acidification, ion
exchange, microemulsion, and microwave methods [18]. Next, the different preparation
methods for CSWs are described.

2.1.1. Preparation of CSWs by the Hydrothermal Method

The main process of the hydrothermal method is as follows: First, in a pressure vessel,
the gypsum suspension is transformed into fine, needle-like hemihydrate gypsum under
saturated vapor pressure. CSWs are obtained after crystal stabilization treatment [19,20].

The hydrothermal method involves transforming raw materials with a high calcium
content into calcium sulfate dihydrate and preparing them in a certain concentration of
suspension. This suspension is then placed into a high-pressure reaction vessel, where,
under certain pressure and temperature conditions, calcium sulfate dihydrate transforms
into needle-like hemihydrate calcium sulfate crystals. Finally, anhydrous CSWs are ob-
tained by high-temperature drying [21]. The advantages of this method are its high whisker
conversion rate and relatively simple processing.

In the hydrothermal method, water plays multiple roles, serving as a solvent, whisker
growth promoter, and medium for pressure transmission [22]. However, the hydrothermal
method faces some challenges, with primary issues including lower dissolution and crys-
tallization rates. This necessitates the use of high-pressure reaction vessels to accelerate
the infiltration reaction and control the physicochemical factors for the formation and
modification of CSWs. Liu et al. [23] used desulfurization gypsum as the raw material to
study the effects of desulfurization gypsum particle size, slurry concentration and additives
on the desulfurization effect. The effects of three different additives, magnesium chloride,
citric acid, and sodium dodecyl benzene sulfonate, on the synthesis of CSWs were explored.
The results show that magnesium chloride will reduce the average aspect ratio and aspect
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ratio of CSWs, and a small amount of citric acid or sodium dodecyl benzene sulfonate
can improve the morphology of CSWs. Moreover, when the citric acid concentration is
0.3% and the SDBS concentration is 0.2%, the average length of CSWs reaches 71 µm, and
the aspect ratio reaches 66, both of which are 20% higher than the CSWs prepared in the
additive-free test. Yang et al. [24] used purified flue gas desulfurization gypsum as raw
material to explore the influence of crystal modifier dosage, reaction temperature, pH and
other factors on the CSWs crystal morphology. The results show that the dosage of crystal
modifier (K2SO4) and reaction temperature have a significant impact on the morphology
and aspect ratio of CSWs, while pH and reaction time have less impact. When the dosage of
K2SO4 is 3 wt.% and the pH is 2, CSWs with excellent quality can be produced by reacting
at 130 ◦C for 60 min. This process increases the production costs. Another limiting factor is
the typically low raw-material concentration, which leads to longer reaction cycles. This
restricts the industrial application of the hydrothermal method. The specific steps for
synthesizing CSWs using the hydrothermal method include the introduction of a gypsum
suspension with a mass fraction of approximately 4–6 wt.% into a high-pressure reaction
vessel. Under saturated vapor pressure, calcium sulfate particles gradually transform into
fibrous hemihydrate gypsum with the assistance of crystal additives. Finally, through
evaporative water loss, it transforms into crystal-stabilized CSWs [25]. This process in-
creases the production costs. Another limiting factor is the typically low raw-material
concentration, which leads to longer reaction cycles. This restricts the industrial applica-
tion of the hydrothermal method. Under hydrothermal conditions, crystal growth occurs
freely but is influenced by various factors, including reaction temperature, heating rate,
pressure, and the pH value, type, and concentration of additives, among others. These
factors collectively affect the nucleation and growth of CSWs, as well as the morphology of
different crystal faces, necessitating fine adjustments in practical operations to meet specific
requirements [17]. Therefore, although the hydrothermal method has the advantage of pro-
viding a unique approach for preparing CSWs, technical and economic challenges must be
overcome. Luo et al. [26] studied the synthesis of CSWs using sodium sulfate and calcium
chloride as raw materials. In their experiment, a 0.6-mol/L calcium chloride solution was
slowly added dropwise into a sodium sulfate solution. The molar ratio of Na2SO4 to CaCl2
was 1:8, and the pH was maintained at 6.12. Under these conditions, they successfully
obtained CSWs with an aspect ratio of 97.5 and a well-defined morphology. Wang et al. [27]
used calcium carbide slag as a raw material and employed the hydrothermal method to
prepare different types of CSWs. They investigated the impact of preparation parameters
on the formation of CSWs and found that the optimal conditions for preparation were a
suspension concentration of 4%, hydrothermal reaction time of 10 h, reaction temperature
of 130 ◦C, and calcium–magnesium ratio of 12:1. Interestingly, at a very low solution pH,
nanoscale CSWs with an aspect ratio of approximately 60–80 were observed. As depicted
in Figure 1, the flow chart for preparing CSWs through hydrothermal synthesis involves
passing O2 into a suspension of SO3

2− in CaSO3 to oxidize CaSO3 into SO4
2−. Simulta-

neously, the concentration of Ca2+ is increased, inducing the spontaneous crystallization
of CSWs.
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Figure 1. One-step oxidation of CaSO3 to prepare CSWs [28].

2.1.2. Preparation of CSWs by Normal Pressure Acidification Method

The atmospheric acidification method is another process for preparing CSWs. The
main procedure involves adding an acidic solvent to gypsum raw materials; CSWs are
obtained by controlling parameters such as temperature, reaction time, and pH [29].

In atmospheric acidification, the typical practice involves reacting natural gypsum,
lime, or slaked lime with sulfuric acid or waste acid to synthesize calcium sulfate dihydrate.
Under specific temperatures and acidic conditions, calcium sulfate dihydrate transforms
into needle-shaped or fibrous hemihydrate CSWs. Finally, anhydrous CSWs are obtained
by high-temperature drying.

Compared to the hydrothermal method, the atmospheric acidification method has
some advantages due to its mild reaction conditions (atmospheric pressure and tempera-
tures below 90 ◦C) [30,31]. The atmospheric acidification method does not require the use
of a pressurized reactor, and the high concentration of calcium sulfate in the raw material
significantly reduces production costs. However, despite the advantages of simplicity in
recycling waste materials and straightforward manufacturing requirements, atmospheric
acidification has limiting factors that restrict its application in large-scale CSW production.
Possible limiting factors include the following: Typically, the solubility of raw gypsum in
water is extremely low, and its solubility increases significantly in acidic media. This is
not conducive to the formation of supersaturated solutions, affecting crystal nucleation
and growth, leading to a decrease in both product yield and quality. The atmospheric
acidification method for preparing CSWs is carried out in a strongly acidic environment,
which makes the acidity of the solution challenging to control. Additionally, the high
acidity of the mother liquor is corrosive to equipment and pipelines, which is not conducive
to subsequent operations [32]. The atmospheric acidification method for preparing CSWs
requires hot filtration, in which crystals grow in a hot solution. The reaction temperature
is difficult to control, with a significant heat loss during the reaction. Compared with
the hydrothermal method, the growth and aging times of CSWs are longer in the atmo-
spheric acidification method [33]. Sun et al. [33] synthesized CSWs using the atmospheric
acidification method and investigated the influence of hydrochloric acid concentration
and leaching temperature on the morphology of CSWs. The results showed that when
the HCl concentration was 3.7 mol/L and the leaching temperature was 70 ◦C, CSWs
with high purity and a high length-to-diameter ratio could be prepared. Ma et al. [34]
investigated a method for preparing CSWs using a concentrated calcium nitrate solution.
Experimental results showed that dripping a calcium sulfate solution into a concentrated
calcium nitrate solution at room temperature could directly synthesize CSWs with a high
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length-to-diameter ratio of 93.5. The study also compared the effects of microwave heat
treatment at 140 ◦C and 180 ◦C on the morphology of CSWs. Lei et al. [18] studied a method
for preparing CSWs using hydrochloric acid as a leaching solution to modify low-grade
manganese ore. This study explored the effects of pH and reaction time on the leaching of
manganese ore, as well as the influence of reaction temperature, stirring speed, precipita-
tion time, calcium ion concentration, and sulfuric acid concentration on the morphology of
CSWs. Figure 2 depicts a flow chart for preparing CSWs using the atmospheric pressure
acidification method. The results indicate that at lower concentrations of hydrochloric
acid, the crystallization of CaSO4·2H2O remains unaffected by variations in temperature
and time. However, as the concentration of hydrochloric acid increases, the crystallization
of CaSO4·2H2O correspondingly increases. A notable transition occurs at approximately
100 ◦C and after about six hours.
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2.1.3. Ion Exchange Method

The CSWs ion exchange method is a water treatment technique based on the principle
of an ion exchange resin. The ion exchange resin serves as a template, and sulfate acts as a
precipitant. The CSWs are prepared by simple mechanical stirring and heating in a water
bath. This method has advantages such as simple equipment, low energy consumption,
no need to wash the obtained product, and the ability to recycle the ion exchange resin
template [35]. Ion-exchange resins, as a type of polymer material, possess exchangeable ion
characteristics. In this process, calcium sulfate acts as a regenerator and is used cyclically
to regenerate the resin, enabling it to regain its cation adsorption capacity. The key lies
in selecting an ion exchange resin suitable for the target cations in water, especially those
with a high affinity for metal ions such as calcium and magnesium. The operating steps
include passing water-containing cations through an ion exchange resin bed containing
CSWs. In this process, calcium ions in the CSWs undergo ion exchange with metal ions
in the water, adsorbing metal ions onto the resin. Over time, the resin gradually becomes
saturated and loses its ability to adsorb metal ions. To restore the adsorption capacity of the
resin, a regeneration operation is performed, wherein calcium sulfate is used to wash the
resin, release the metal ions adsorbed on the resin, and render the resin reusable. The CSWs
ion exchange method is widely used in the field of water treatment, particularly for water
softening and removing calcium and magnesium ions from hard water. Its advantages
include simplicity, low cost, and stable effectiveness, making it a popular water treatment
method [36,37].

2.1.4. Microemulsion Method

The microemulsion method uses surfactants to form emulsions of two immiscible
solvents. This method has been employed to prepare nanoparticles through nucleation,
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coagulation, aggregation, and heat treatment [38]. Its most significant advantage is its
ability to achieve precise control over the size of nanoparticles. Moreover, in microemulsion
systems used to synthesize nanomaterials, reagents can be recovered for recycling [30,39,40].
However, current research on the preparation of nanoparticles using the microemulsion
method mainly focuses on size control, with relatively less emphasis on controlling the
monodispersity of the particles [31,41]. Additionally, the yield of nanoparticles prepared
using the microemulsion method is relatively low. Currently, this method is mainly in the
laboratory research stage. Application of this approach to large-scale production remains a
long-term goal.

Several factors play significant roles in the preparation of nanometer-sized particles
using the microemulsion method, influencing the crystal morphology, particle size, and
particle size distribution. Some important factors are as follows: (1) The ratio of water to
surfactant is one of the key factors influencing the properties of microemulsions. This ratio
impacts the stability of the microemulsion and the properties of the formed nanoparticles.
(2) Different types of surfactants possess varying properties, such as hydrophilicity and
lipophilicity. Their selection and concentration directly influence the formation of mi-
croemulsions and the properties of nanoparticles [42]. (3) The addition of other chemicals,
such as catalysts and stabilizers, can regulate the reaction process within the microemulsion,
thus affecting the preparation process and the properties of nanoparticles. (4) Temperature
serves as a crucial operating parameter in the microemulsion method. Varied temperatures
can alter the reaction rate, microemulsion stability, and the final morphology and size of
nanoparticles [31,41].

Chen et al. [31] utilized a high-concentration calcium acetate solution and dilute sulfu-
ric acid as raw materials and employed a microemulsion solution to prepare anhydrous
gypsum calcium sulfate nanowhiskers at room temperature. To further investigate surface
modification, organic silicon quaternary ammonium salts and fatty acid methyl ester sul-
fonates were used to modify calcium sulfate. The surface structure and crystalline evolution
of calcium sulfate during the modification process were studied. Figure 3 illustrates a flow
chart detailing the preparation of anhydrous CSWs through the direct mixture of calcium
carbonate with a solution of mixed acids (glacial acetic acid and dilute sulfuric acid). This
method involves creating an acid solution of specific concentration by blending glacial
acetic acid and dilute sulfuric acid at room temperature. Subsequently, calcium carbonate
is mixed directly with the acid solution to produce calcium sulfate and carbon dioxide.
Simultaneously, carbon dioxide escapes into the air, while calcium sulfate crystallizes
into CSWs.
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2.1.5. Microwave Method

CSWs are prepared using a microwave method using microwave radiation heating to
form CSWs using appropriate precursors and conditions. Generally, selecting appropriate
precursors is the key to successfully preparing CSWs using the microwave method. This
can include compounds containing calcium and sulfate groups, such as calcium sulfate,
and other organic or inorganic substances. The selected precursor is dissolved in an
appropriate solvent to form a reaction solution. This can include water or other organic
solvents, depending on the nature of the precursors and the reaction conditions. The
reaction mixture is then heated in a microwave radiator. Microwave radiation can rapidly
increase the temperature of a solution, prompting the precursor to react and form CSWs.
Under the action of microwave radiation, the precursor undergoes a chemical reaction to
generate CSWs. The specific mechanism of the reaction and the product formation pathway
may vary depending on the precursor [42]. After preparing the CSWs using the microwave
method, the product is separated and purified. The process typically involves filtration,
washing, and drying to obtain the final CSWs product. Washing steps can be conducted
using various methods, such as repeatedly rinsing with pure water or employing suitable
solvents like ethanol or acetone. Drying conditions must ensure thorough drying of the
product. Common drying techniques include vacuum drying or heat drying. Temperature
and duration should be adjusted according to the specific circumstances to prevent product
degradation or loss. Microwave irradiation is an efficient heating method. Compared with
conventional heating methods, microwave radiation is an integral heating method that has
the advantages of rapid heating, small heat loss, low energy consumption, cleanliness, and
no pollution.

Additionally, phosphogypsum, a bulk solid waste, contains a large amount of cal-
cium sulfate, which makes it a rich source of calcium for CSWs synthesis. Furthermore,
combining phosphogypsum with microwaves can effectively enhance the crystallization
conversion rate of CSWs. Therefore, the use of phosphogypsum to synthesize CSWs is ben-
eficial for optimizing phosphogypsum utilization. Feng et al. [43] utilized phosphogypsum
as the raw material and succinic acid and aluminum sulfate as crystallization converters.
They mixed it with a 10% mass fraction of a calcium chloride solution at a solid–liquid
ratio of 1:20. CSWs were prepared under microwave conditions, and their crystallization
conversion rate reached 96%. The study also found that the microstructure of the CSWs
could be well regulated by controlling the microwave radiation time and temperature.
This is mainly due to the strong electromagnetic waves generated by microwaves, which
cause polarized molecules to experience rotational torque in the electric field, leading to the
rearrangement and friction of dipoles, thereby generating a thermal effect and accelerating
the formation of the CSWs [44].

Yang et al. [45] successfully synthesized CSWs from wastewater using a microwave-
assisted method. The experimental results clearly showed that the introduction of CSWs
provided an effective thermal barrier to heat transfer. Compared with the case without
adding CSWs, the temperature difference when CSWs are added to the coating exceeds
13 ◦C, showing excellent thermal insulation performance. The study found that the pres-
ence of CSWs can provide a fire barrier in flames up to a temperature of 900 ◦C. This
outstanding performance enhancement is attributed to the endothermic nature of CSWs
and their extremely high melting temperature of 1460 ◦C. Figure 4 depicts a flow chart
illustrating the controlled growth of CSWs through microwave radiation. The diagram
demonstrates the utilization of microwave heating to expedite the nucleation and crystal-
lization of CaSO4, resulting in the formation of numerous monoclinic crystals. Subsequently,
NaHPO2 serves as an inhibitor, restricting the growth direction of CaSO4, thereby facilitat-
ing the growth of CSWs in a specific direction and enhancing the aspect ratio.
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2.1.6. Comparison of Methods

In general, the most common method for preparing CSWs in the laboratory is the
hydrothermal method; however, its industrial application is limited because of its high
production cost. Factors affecting the preparation of CSWs by the hydrothermal method in-
clude slurry concentration, raw material particle size, initial pH value of the slurry, reaction
temperature, reaction time, crystal seeds, crystal form promoters, and crystal stabilizers.

In contrast, the atmospheric-pressure acidification method does not require an auto-
clave, has a higher mass fraction of raw materials, and significantly reduces production
costs. The main factors influencing the preparation of CSWs by this method include the
amount of sulfuric acid, reaction time, reaction temperature, type of raw materials, and
their ratio with water.

The ion exchange method offers the advantages of simple equipment, low energy
consumption, and no need for washing. The ion exchange resin template is then recycled.
The main influencing factors for preparing CSWs using this method are the sulfate solution
concentration, reaction temperature, reaction time, and stirring rate.

The microemulsion method has the advantages of simple operation and mild condi-
tions. The synthesized product has more advantages in terms of structure and performance
than the general physical and chemical methods. It can produce nanoscale CSWs and is,
therefore, widely used. The factors influencing the morphology of the CSW synthesized by
this method mainly include the reactant concentration, surfactant type, its ratio with water,
and aging time.

The microwave method is an efficient and rapid method for preparing CSWs. Whiskers
can be formed in a short time using microwave radiation heating. This method has the
advantages of simple operation, low energy consumption, and a fast reaction rate and
is expected to be widely used in industrial production. The key factors affecting the
preparation of CSWs by the microwave method include microwave power, reaction time,
reaction temperature, and solution concentration. The microwave method can not only
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achieve efficient synthesis of CSWs but can also be expected to control the morphology
and size of the crystal, allowing it to exhibit superior performance in various application
fields. Overall, the microwave method, an emerging CSW preparation method, provides
a powerful technical means to improve production efficiency, reduce costs, and optimize
product performance.

Table 1 summarizes the advantages, disadvantages, and influencing factors of different
CSWs preparation methods. As depicted in the table, the hydrothermal method and the
microemulsion method offer higher yields, while the calcium sulfate whisker products
obtained from the ion exchange method and the microwave method are of high quality.
Furthermore, all preparation methods require consideration of the effects of reaction time
and reaction temperature.

Table 1. Comparison of the advantages, disadvantages and influencing factors of different CSWs
preparation methods.

Preparation Method Advantage Disadvantages Influencing Factors References

Hydrothermal
High yield, good

controllability, wide
application range, etc.

High energy
consumption, high
reaction condition
requirements, poor

product dispersion, etc.

Reaction temperature, reaction
time, reactant concentration,

additives, reaction pressure, etc.
[5,22,25,28]

Normal pressure
acidification method

Low cost,
environmentally

friendly, wide
applicability, etc.

The reaction time is
long, the output rate is
low, and the product

morphology is difficult
to control, etc.

Acidifying agent concentration,
reaction temperature, reaction

time, selection of calcium source
and calcium sulfate source,

stirring rate, reaction vessel and
equipment, etc.

[17,46,47]

Ion exchange method
High product quality,

simple operation, wide
application range, etc.

Higher cost, longer
response time, high

equipment
requirements, etc.

Ion exchange medium, reaction
temperature, reaction time,

reactant concentration, stirring
rate, pH value, etc.

[35,36,48]

microemulsion method
Simple operation, high

yield, good product
dispersion, etc.

The preparation
conditions are high, the

cost is high, and it is
affected by the

environment, etc.

Surfactant selection, ratio of oil
phase to water phase, reaction

temperature, reaction time,
stability regulator, etc.

[30,31,41,49]

microwave method

High efficiency and
energy saving, high

product quality, easy
operation, wide

application range, etc.

It is difficult to control
reaction conditions,

high equipment costs,
and limited selection of

reaction systems, etc.

Microwave power, reaction time,
reaction temperature, reaction
solvent, reaction container, etc.

[43,45]

2.1.7. Factors That May Affect the CSWs Preparation Process

CSWs are usually grown under specific experimental conditions or from saturated
calcium sulfate solutions, and their synthesis is affected by multiple factors. The following
factors may affect the calcium sulfate whisker preparation process:

(1) Temperature is a key parameter in whisker growth. Lower temperatures typically
facilitate the growth of elongated whiskers, whereas higher temperatures may cause
changes in the crystal shape. Controlling the temperature is crucial for adjusting the
whisker shape.

(2) The pH of the solution plays a crucial role in the formation and growth of CSWs.
Different pH conditions can either promote or inhibit whisker growth.

(3) Solution concentration: CSWs typically grow in supersaturated solutions. Alter-
ing the concentration of calcium sulfate in the solution affects the growth rate and
whisker morphology.
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(4) Ion concentration: The concentrations of other ions dissolved in the solution, such as
calcium and sulfate ions, also affect the formation of CSWs. The relative concentrations
and ratios of these ions can alter the appearance of whiskers.

(5) Stirring speed: The stirring speed can influence the quality and uniformity of crystal
growth during the process. Adequate stirring promotes uniform crystal growth.

(6) Substrate and crystal seeds: Using an appropriate substrate or crystal seed can aid the
growth of CSWs.

(7) Time: CSWs growth requires a certain amount of time, and the duration of this process
can affect the whisker length and morphology.

(8) Impurities and modifiers: Occasionally, the addition of specific modifiers or im-
purities can be employed to adjust the morphology of whiskers to better meet
specific requirements.

(9) Atmospheric conditions: In certain cases, atmospheric conditions, such as oxygen and
carbon dioxide, may influence the formation of CSWs.

2.2. Basic Properties and Morphology of CSWs

CSWs (CaSO4·× H2O) are a distinctive type of calcium sulfate crystals, typically
exhibiting a slender, needle-like, or fibrous form, and they usually appear white or trans-
parent. They possess a stable particle size, high strength, good toughness, resistance to
high temperatures, chemical corrosion, excellent heat resistance, a high elastic modulus,
and favorable processability [50]. The chemical composition of CSWs is similar to that
of gypsum and consists of calcium sulfate (CaSO4). Their density and melting point are
comparable to those of ordinary sulfuric acid. However, unlike typical hydrated calcium
sulfate compounds such as gypsum, CSWs predominantly appear in crystalline form. The
structure of CSWs includes two water molecules (H2O), which exist in the crystal lattice as
crystalline water. This sets CSWs apart from common calcium sulfate hydrates, such as gyp-
sum, which usually contain more water molecules in their crystal structures. Furthermore,
CSWs themselves have a certain degree of hardness, providing better filler performance
than calcium sulfate compounds such as gypsum. However, CSWs are more brittle than
other fibers, making them prone to brittle fracture under certain conditions [51]. A compre-
hensive analysis reveals that CSWs possess the advantages of both fibers and inorganic
fillers while sharing the same chemical composition as the gypsum matrix, thus exhibiting
excellent compatibility. This unique combination effectively addresses interfacial bonding
issues encountered by other fibers in CBM and mitigates common internal defects in fiber-
reinforced cementitious composites. The chemical composition and morphology of CSWs
are depicted in Figure 5, wherein CSWs predominantly appear as elongated strips primarily
composed of calcium, sulfur, and oxygen. The surface of crystallized CSWs exhibits slight
irregularities, including a few microcracks and defects, potentially enhancing the interface
bonding between CSWs whiskers and CBM [52]. The subsequent section will delve into
the differences in mechanical properties between CSWs and calcium sulfate compounds
(such as gypsum), ordinary fibers, and provide a discussion on mechanism analysis.



Materials 2024, 17, 1138 12 of 27Materials 2024, 17, x FOR PEER REVIEW 12 of 27 
 

 

 

Figure 5. (a,b,d) are the 1000× and 5000× SEM images and energy spectra of CSWs, respectively; (c) 

is the XRD pattern of CSWs; (e) is the structural diagram of CSWs. 

3. The Application of CSWs to Cement and the Difference from Gypsum and Fiber 

3.1. The Role of CSWs in Cement 

The utilization of CSWs in cement is a prevalent method for enhancing cement ma-

terial properties. It is frequently employed to improve the performance of concrete and 

reduce its dependence on traditional cement. CSWs, which are microfibers derived from 

calcium sulfate crystals, enhance the mechanical properties, durability, and specific func-

tions of concrete when incorporated into cement [8,53]. 

CSWs can create a fibrous structure within the cement matrix, resulting in denser and 

more compact concrete. They effectively absorb and disperse stress within concrete, 

thereby enhancing its toughness. The presence of CSWs when concrete is under stress 

mitigates crack expansion, thereby improving the overall toughness and reducing the like-

lihood of brittle failure [54]. This contributes to an increase in the compressive strength of 

the concrete, enhancing its durability under stress. Cao et al. [10] demonstrated a 10.3% 

increase in compressive strength and a 10.2% improvement in the fracture toughness in 

cement-based composites with the addition of 2% of CSWs. When the CSWs content was 

1%, the flexural strength and fracture toughness increased by 10.3% and 10.2%, respec-

tively. The tensile strength and fracture energy increased by 79.7%, 34.8%, and 28.7%, re-

spectively. Wan et al. [8] applied a new type of microfiber material, CSWs to the cement 

matrix to enhance the strength of cement-based composite materials. CSWs were found to 

effectively delay the formation of microcracks and limit their expansion. The interaction 

mechanisms between the CSWs and steel bars were similar and primarily manifested in 

three aspects: whisker pullout, crack deflection, and crack bridging. Moreover, they could 

significantly optimize the pore size, increasing harmless pores from 9.33% to 10.62% and 

reducing harmful pores from 2.08% to 1.90%. The fiber structure formed by CSWs in con-

crete bridges microscopic cracks, preventing further expansion in the CBM. The bridging 

effect contributes to preserving the integrity of the concrete and enhancing its tensile and 

flexural strengths, particularly when subjected to tensile stress. Li et al. [9] compared 

CSWs with calcium carbonate whiskers, and the results indicated strength increases of 

19.54% and 35.84% upon the incorporation of 0.4% and 1.0% CSWs, respectively. 

Figure 5. (a,b,d) are the 1000× and 5000× SEM images and energy spectra of CSWs, respectively;
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3. The Application of CSWs to Cement and the Difference from Gypsum and Fiber
3.1. The Role of CSWs in Cement

The utilization of CSWs in cement is a prevalent method for enhancing cement material
properties. It is frequently employed to improve the performance of concrete and reduce
its dependence on traditional cement. CSWs, which are microfibers derived from calcium
sulfate crystals, enhance the mechanical properties, durability, and specific functions of
concrete when incorporated into cement [8,53].

CSWs can create a fibrous structure within the cement matrix, resulting in denser
and more compact concrete. They effectively absorb and disperse stress within concrete,
thereby enhancing its toughness. The presence of CSWs when concrete is under stress
mitigates crack expansion, thereby improving the overall toughness and reducing the
likelihood of brittle failure [54]. This contributes to an increase in the compressive strength
of the concrete, enhancing its durability under stress. Cao et al. [10] demonstrated a 10.3%
increase in compressive strength and a 10.2% improvement in the fracture toughness in
cement-based composites with the addition of 2% of CSWs. When the CSWs content was
1%, the flexural strength and fracture toughness increased by 10.3% and 10.2%, respectively.
The tensile strength and fracture energy increased by 79.7%, 34.8%, and 28.7%, respectively.
Wan et al. [8] applied a new type of microfiber material, CSWs to the cement matrix to
enhance the strength of cement-based composite materials. CSWs were found to effectively
delay the formation of microcracks and limit their expansion. The interaction mechanisms
between the CSWs and steel bars were similar and primarily manifested in three aspects:
whisker pullout, crack deflection, and crack bridging. Moreover, they could significantly
optimize the pore size, increasing harmless pores from 9.33% to 10.62% and reducing
harmful pores from 2.08% to 1.90%. The fiber structure formed by CSWs in concrete
bridges microscopic cracks, preventing further expansion in the CBM. The bridging effect
contributes to preserving the integrity of the concrete and enhancing its tensile and flexural
strengths, particularly when subjected to tensile stress. Li et al. [9] compared CSWs with
calcium carbonate whiskers, and the results indicated strength increases of 19.54% and
35.84% upon the incorporation of 0.4% and 1.0% CSWs, respectively. Furthermore, CSWs
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exhibited a greater ability to enhance the strength of ordinary Portland cement compared to
calcium carbonate whiskers. The incorporation of CSWs not only retards the aging process
of concrete but also extends the service life of the structure. Moreover, the addition of an
appropriate amount of CSWs enhances the mechanical properties of concrete by facilitating
cement hydration reactions and promoting the formation of additional hydration products.
The CSWs may serve as a catalyst to enhance the hydration of cement particles, leading to
the formation of a stronger gelling system. However, excessive CSWs addition decelerated
the hydration reaction of cement, thereby prolonging the setting time of the concrete.
Figure 6 presents the microscopic mechanism diagram following the substitution of silica
fume with CSWs. The illustration demonstrates that the incorporation of CSWs yields
both physical and chemical benefits. Given the chemical resemblance between CSWs and
gypsum, their addition enables dissolution and reaction with C3A to generate monosulfates
or ettringite. Furthermore, the distinctive fiber characteristics of CSWs serve as nucleation
sites for cement hydration, thereby facilitating hydration reactions.
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mixed with SF, and cement mortar in which CSWs partially replaces SF [55].

The incorporation of CSWs effectively enhances the crack resistance of concrete and
prevents crack expansion. This is attributed to the network structure formed by CSWs
in concrete, which effectively withstands cracks induced by temperature changes and
shrinkage, thereby reinforcing the overall structural stability of the concrete [56]. Moreover,
in the event of microcracks occurring in concrete, CSWs impede further propagation of
cracks through their fiber network structure, thereby preserving the overall strength and
durability of the concrete. Wu et al. [57] demonstrated that, as a result of the hydration
reaction triggered by CSWs, more hydration products were produced, which enhanced
the interfacial bonding effect of CSWs compared to basalt fibers. This, in turn, led to a
more effective refinement of the pore size and an overall improvement in durability. CSWs
enhance the durability of concrete, rendering it resistant to chemical and environmental
attacks. This heightened durability is predominantly manifested in the ability of concrete
to withstand corrosive substances, such as sulfates, chloride ions, and acids. The incorpora-
tion of CSWs aids in controlling the shrinkage of concrete and mitigating the shrinkage
resulting from cement hydration. This has a positive impact on enhancing the overall
stability of concrete, minimizing internal stress, and reducing the occurrence of cracks.
CSWs can be employed to formulate high-performance concrete with superior engineering
properties [58]. This type of concrete offers more pronounced advantages for projects that
require high structural performance, such as bridges, tunnels, and other buildings. The
incorporation of CSWs into cement plays a crucial role in controlling temperature-induced
cracks in concrete. During high-temperature seasons or large-volume concrete pours, CSWs
can attenuate the temperature changes in concrete, effectively mitigating the occurrence of
temperature-induced cracks and enhancing the overall stability of the structure [59]. The
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incorporation of CSWs has a substantial impact on the freeze–thaw resistance of concrete.
CSWs improve the microstructure of concrete and reduce water penetration, thereby mini-
mizing damage during freeze–thaw cycles and enhancing durability, particularly in cold
regions. Zhang et al. [60] employed ethyl orthosilicate to modify CSWs and harnessed its
retarding properties for incorporation into oil-well cement to achieve favorable mechanical
properties. Figure 7 illustrates the comparison of surface modification techniques using
ethyl orthosilicate to enhance the distribution of CSWs and improve the interface bonding
with CBM, subsequently enhancing the mechanical properties of the CBM. The findings
indicate that after modification with ethyl orthosilicate, the surface of CSWs exhibits in-
creased generation of C-S-H chains, thereby enhancing the interfacial adhesion between
CSWs and the cement matrix.
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Owing to their diverse properties, CSWs can find broad applications in various sce-
narios, including extending the concrete pumping time, producing crack-resistant concrete,
formulating high-performance concrete, reducing cement consumption, and minimizing
environmental pollutant emissions. In summary, the incorporation of CSWs in cement
not only enhances the mechanical properties, durability, and crack resistance of concrete
but also addresses the demand for high-performance concrete, providing a more reliable
and stable foundation for building structures. However, in practical applications, scientific
and judicious proportioning based on the specific engineering requirements and concrete
properties must be performed.

3.2. Hydration Mechanism of CSWs

The hydration mechanism of CSWs in cement is a complex and crucial process that
directly affects their physical and engineering properties. Hydration is a process in which
the primary ingredients in cement react with water to form silicate gels and other hy-
dration products that are responsible for the hardening and strength development of
concrete [61,62]. As a control agent and additive, CSWs play a crucial role in hydration [63].
Research indicates that sulfate ions have a dual effect on cement hydration, both promot-
ing and retarding it. The presence of a substantial amount of sulfate ions in the solution
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increases the solubility of calcium silicate and delays the hydration of aluminate [64]. How-
ever, it also accelerates the hydration of silicate [62,65,66]. The hydration mechanism of
CSWs in cement involves several key processes.

Dissolution of CSWs:
When CSWs (CaSO4·× H2O) are added to the cement slurry, they initially dissolve,

releasing calcium ions, sulfate ions, and H2O [67]. This reaction can be expressed as:

CaSO4·2H2O + 2H2O → Ca2+ + SO4
2− + 2H2O

Hydration of CSWs:
The dissolved CSWs actively participate in the cement hydration process. The sulfate

ions (SO4
2−) in the CSWs react with tricalcium aluminate (C3A) in cement to form ettringite,

which is a crucial step in concrete hydration [68]. The formation of ettringite refines the pore
size, leading to improved strength. However, this may also hinder early cement hydration,
thereby delaying the setting of cement to a certain extent, particularly when higher amounts
of CSWs are added [69,70]. The chemical formula for this reaction is as follows:

3CaO·Al2O3 + 3(CaSO4·2H2O) + 26H2O → Ca6(Al(OH)6)2·(SO4)2·26H2O

Post-hydration of CSWs:
In cement concrete, the hydration process of the CSWs does not stop during ettringite

production. Over time, ettringite will rehydrate to form monosulfoaluminate [64,71]. This
hydration reaction enhances the strength and durability of concrete [72,73]. The chemical
formula for this reaction is as follows:

[Al(OH)4]− + SO4
2− + 4Ca2+ + aq. → C4ASH18

Effect of CSWs on cement hydration:
The addition of CSWs influences the cement hydration process. Initially, the presence

of CSWs delays the setting time of the cement, particularly when a large amount of CSWs
is added [74]. This is advantageous for projects that require longer setting times, such
as concrete pumping. Additionally, the hydration process of CSWs enhances the crack
resistance of concrete, diminishes shrinkage stress, and lowers the risk of cracking. Finally,
the incorporation of CSWs enhances the durability of concrete, reduces its permeability,
and consequently extends the life of the structure.

However, the addition of excess CSWs can lead to reduced durability [75]. Specifi-
cally, during the later stages, the undissolved CSWs will further dissolve, resulting in the
complex chemical and physical problem of sulfate corrosion, which ultimately leads to
the deterioration and damage of building components [76–78]. The main phenomena that
may occur include: (1) Further dissolution of CSWs reducing the pH value in concrete and
causing corrosion of steel bars [79,80]; (2) The dissolved sulfate undergoing a secondary
hydration reaction with C3A, among other compounds, resulting in the production of
more ettringite, leading to expansion and cracking of the structure [73,81,82]. Therefore,
while CSWs have a beneficial effect on the hydration of CBM, the amount added needs to
be optimized and strictly controlled to prevent poor stability and reduced durability in
later stages.

The heat of hydration experiment showed that the addition of varying amounts
of CSWs has varying effects on the hydration process of calcined limestone clay. As
shown in Figure 8, the initial hydration exothermic peak is primarily attributed to ion
dissolution [71,83]. After the induction period, two distinct exothermic peaks were evident
during the acceleration period, corresponding to the hydration reactions of C3S and C3A.
The former primarily produces C-S-H, whereas the latter mainly forms ettringite and mono-
sulfide salts [70,84]. As the amount of added CSWs increased, the C3A exothermic peak
was delayed, occurring at 10, 14, and 26 h, respectively. This delay is mainly attributed to
the increase in the concentration of sulfate ions dissolved by the CSW [85,86]. Additionally,
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when the CSWs content reached 3%, the cumulative heat of hydration was the highest. This
is primarily attributed to the increased presence of calcium sulfate ions, which promote
the hydration of the C3A component and the formation of greater amounts of ettringite
and monosulfate [87,88]. The hydration heat results indicate that the judicious addition of
CSWs contributed to the complete hydration of C3A, thereby enhancing the performance
of the material.
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3.3. Effect of CSWs on Mechanical Properties

Figure 9 shows the splitting and compressive strengths with different amounts of
added CSWs. Table 2 displays the percentage increase in strength for various CSWs
amounts compared with ordinary Portland cement. The data were obtained from the
literature [8]. As shown in Figure 9, the addition of 0–7 wt.% of CSWs significantly
enhanced both the splitting and compressive strengths. Notably, the improvement in
splitting strength was particularly pronounced. After 28 d of curing, the inclusion of
5% CaSO4 resulted in a 28.3% increase in strength compared to the control group. This
enhancement may be attributed to the formation of a fibrous network structure in the
CSWs cement that bridges various components. Furthermore, the dissolution of CSWs can
increase the sulfate content and react with C3A to generate greater amounts of ettringite
and monosulfide salts [89,90]. When the addition amount was increased to 7%, both the
flexural and compressive strengths of the sample decreased compared to those of the 5%
sample. This may be because (1) as the amount of CSWs increased, the overall consistency
improved, and the interface defects between the whiskers and cement paste tended to
agglomerate or aggregate; (2) the amount of dissolved sulfate increased, and an excess
of sulfate inhibited C3S hydration. The results indicated that when the amount of added
CSWs was 5%, the mechanical effect was maximized.

Table 2. Improvement of mechanical properties [8].

CaSO4
Content/wt.% Curing Time/d Flexural Strength

Improvement/%
Compressive Strength

Improvement/%

3 6.9 2.8
3 7 7.7 3.7

28 8.4 4.2

3 14.4 3.2
5 7 22.2 4.1

28 28.3 8.5
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Table 2. Cont.

CaSO4
Content/wt.% Curing Time/d Flexural Strength

Improvement/%
Compressive Strength

Improvement/%

3 11.3 4.1
7 7 17.5 4.7

28 21.8 5.6
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3.4. Changes in Mechanical Properties of CSWs at High Temperatures

Figure 10 depicts the compressive and splitting strengths at different temperatures
using data sourced from [10]. Figure 10a,b show that the mechanical properties improved
at 200 and 400 ◦C. This improvement may be attributed to the secondary hydration of
unhydrated cement particles in a high-temperature steam environment. At temperatures of
400 and 600 ◦C, the mechanical properties deteriorated, primarily due to the decomposition
of hydration products. Since the decomposition temperature of calcium sulfate at high
temperatures generally ranges between 1300 ◦C and 1600 ◦C, the strength change at elevated
temperatures is mainly controlled by the hydration products generated [91]. In addition,
between the temperatures of 200 and 400 ◦C, the mechanical properties of the sample with
added CSWs were weaker than those of the control sample. This may be due to: (1) a
dehydration reaction occurring in the CSWs (CaSO4·× H2O); (2) the partially dissolved
sulfate in the CSWs reacting with C3A to generate greater amounts of ettringite and
monosulfide salts, which undergo decomposition between 200 and 300 ◦C.
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Figure 10. (a,b) represent the high-temperature splitting strength and compressive strength of
undoped CSWs and doped with 2 wt.% of CSW, respectively [10].

3.5. Comparison of CSWs with Gypsum and Fiber

C3S and C3A are crucial phases in cement, with C3A undergoing rapid early hydration
reactions. In instances where no gypsum is added or only a minimal amount is included,
C3A swiftly reacts with water to produce hexagonal sheets of calcium aluminate hydrate,
resulting in instantaneous bonding and leading to “Flash setting”. “Flash setting” refers
to rapid hardening within a short timeframe, causing a loss of workability. Importantly,
the strength of the formed components tends to be low. To prevent flash condensation,
it is essential to add an appropriate amount of sulfate [71]. Studies have shown that the
dissolved CSWs can also serve as a calcium source for the matrix and influence the setting
time of cement. In addition, they hydrate with C3A to form ettringite and monosulfide salts,
thereby contributing to an overall improvement in strength. From a hydration perspective,
the CSWs have an effect similar to that of gypsum. In addition, the incompletely dissolved
CSWs provide more nucleation sites and promote hydration reactions. In terms of physical
effects, the incompletely dissolved CSWs can fill detrimental pores. The aspect ratio of
the CSWs can create a staggered network structure in the CBM, enhancing its mechanical
properties. Furthermore, the whisker pulling out, crack deflection, and crack bridging
effects of CSWs can effectively delay the formation of microcracks and limit the expansion
of such cracks. As shown in Figure 11, after 28 days of curing, the compressive strength
of the CSWs sample was significantly higher than that of the gypsum sample when the
amount of gypsum added was the same as that of the CSWs.
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Figure 11. Comparison between the compressive strength of sulfate-added concrete and CSWs-added
concrete after 28 days of curing [8,71].
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As shown in Figure 12, these are the NMR T2 spectra of CSWs concrete and BF concrete,
with data sourced from [11]. BF denotes basalt fiber. The addition of an appropriate amount
of CSWs exhibited a significantly superior pore size refinement effect compared to that of
basalt fiber addition. This may be because (1) the volume of the CSWs was smaller than
that of the basalt fibers. At the same volume, the number of CSWs is greater than that of
basalt fibers. (2) The dissolution of an appropriate amount of CSWs can increase the sulfate
content, generate more ettringite and monosulfide salts, and refine the pore size.
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In summary, CSWs not only inherit some of the advantages of gypsum but also exhibit
a fiber-enhancing effect. On the one hand, the dissolution of CSWs can provide Ca2+ and
SO4

2− ions for the hydration reaction, which react with C3A to form ettringite, filling gaps
and improving the strength of the specimen. On the other hand, the high aspect ratio
and specific surface area of CSWs can effectively reduce the expansion of cracks and the
generation of microcracks [92]. Therefore, the addition of an appropriate amount of CSWs
can effectively achieve a reinforcing effect. However, the CSWs will not be completely
dissolved. The CSWs, which are completely wrapped by the hydration products, may
continue to dissolve in the later stage. The continued dissolution of the CSWs will cause
the pH value in the concrete to decrease and increase the risk of reinforcement corrosion.
At the same time, as the Ca2+ and SO4

2− ions continue to increase, they may react with
C3A to generate more ettringite in the later stage, which may increase the risk of expansion
and cracking of concrete. Additionally, compared with fibers, CSWs themselves have poor
dispersion, and their high specific surface area may also reduce the fluidity of concrete and
increase the difficulty of construction. Therefore, further study is needed to optimize and
enhance the durability of CSWs.

4. Potential Benefits of CSWs

The development and application of CSWs as an inorganic whisker material are cur-
rently in a vibrant and active phase. Their outstanding physicochemical properties and
relatively low manufacturing costs have garnered widespread attention from the indus-
trial sector. CSWs are fibrous monocrystals of anhydrous calcium sulfate with a refined
structure, perfect morphology, specific cross-section, and stable dimensions. Typically, their
average aspect ratio (The ratio of the length of a whisker to its diameter) ranges from 50 to
80 [26]. Compared to other short fibers, CSWs have several advantages, including high-
temperature resistance, resistance to chemical corrosion, good toughness, high strength,
ease of surface treatment, compatibility with polymers such as rubber and plastic, and low
toxicity [93]. In addition, the cost of CSWs is relatively low, usually priced at only US$1−3
per kilogram, providing unparalleled cost-effectiveness in the whisker market. Because
of their outstanding performance and cost-effectiveness, CSWs have widespread applica-
tions in various industrial production fields. This extensive use has solidified the position
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of CSWs in the industrial sector, offering reliable solutions for material requirements in
various fields [94].

4.1. Optimal Utilization in the Construction Industry

Controlling the setting time of cement: CSWs can be employed to retard the set-
ting time of cement. The addition of an appropriate amount of CSWs can extend the
setting time of the cement, which is particularly useful for large-scale projects and concrete
transportation [67,74].

Enhancing the crack resistance of cement: The application of CSWs improves the crack
resistance of cement. This can reduce the shrinkage stress in the cement, thereby lowering
the risk of cracking, particularly in concrete structures. This is crucial for maintaining
structural stability [95].

Reducing the environmental impact of cement production: CSWs can serve as a sub-
stitute for cement clinker, thereby reducing the demand for natural resources. Additionally,
they can help decrease sulfur dioxide emissions, making a significant contribution to
environmental protection.

Extending the concrete pumping time: In large-scale concrete construction projects,
transporting concrete to the construction site by pumping is a common practice. How-
ever, prolonged transportation may cause concrete to set, thereby impacting construc-
tion progress [56,67,96]. Engineers can incorporate CSWs into concrete to extend the
pumping time.

The role of CSWs is to slow the hydration reaction of cement, thereby extending the
setting time of the concrete and ensuring smooth pumping and pouring. This application
ensures that the concrete maintains its fluidity during transportation and pouring, thereby
reducing the problems and delays in the construction process.

Cracking is a common problem in concrete structures, particularly in dry and high-
temperature environments. Engineers can use CSWs to enhance the crack resistance of
concrete. The presence of CSWs in concrete can reduce shrinkage stress and decrease
the risk of cracking. The result of this application is an improvement in the durability of
concrete structures, thereby reducing maintenance costs and the need for repair.

One of the approaches for enhancing the properties of high-performance concrete
with the aim of improving its durability and resistance to permeability while maintaining
its strength is the addition of CSWs. They can be used as a control agent to enhance the
properties of high-performance concrete. The addition of CSWs improves the engineering
properties of concrete, reduces its permeability, and extends its life. The result of this
application is the production of more durable and reliable high-performance concrete that
is suitable for long-term and demanding engineering projects [97].

Reducing cement usage: To diminish the dependence on natural resources and de-
crease carbon emissions, some engineering projects have adopted strategies to reduce
cement usage. CSWs can be used as a replacement material to reduce cement requirements.
This not only reduces project costs but also benefits the environment. The results of this
application are a reduction in cement usage, a lower carbon footprint, and the promotion
of sustainable construction.

Reducing the emission of environmental pollutants: In the flue gas desulfurization
process of some coal-fired power plants, waste containing CSWs is produced [98]. By
recycling these wastes and incorporating them into cement, not only can waste treatment
costs be reduced but sulfur dioxide emissions can also be minimized, contributing to
environmental protection. The result of this application is a reduction in air pollutant
emissions, which contributes to improved environmental quality.

4.2. In the Field of Environmental Protection

Waste recycling: The application of CSWs promotes waste recycling and reuse. In
particular, in the treatment of coal mine waste and flue gas desulfurization in coal-fired
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power plants, the generated calcium sulfate waste can reduce the cost of waste treatment
and minimize environmental pollution [99].

Reducing carbon dioxide gas emissions: The application of CSWs can also mitigate
carbon dioxide gas emissions in industrial processes, thereby improving air quality and
the environment.

4.3. Advantages and Disadvantages in the Field of Building Materials

The application of CSWs contributes to sustainable construction, reducing dependence
on limited natural resources, lowering the carbon footprint, and promoting environmentally
friendly architecture and construction. Compared with traditional concrete additives, the
preparation process of CSWs is generally more environmentally friendly, reducing the
negative impact on the environment. Additionally, by improving the properties of concrete,
a building’s energy consumption can be reduced, thus lowering carbon emissions. Adding
an appropriate amount of CSWs can effectively reduce the internal pore structure of
concrete materials and refine the pore size [10]. This reduction minimizes the penetration of
moisture, pollutants, and ion erosion, thereby enhancing the indoor environmental quality
and living comfort of the building. The addition of CSWs may help to slow down the
hardening process of CBM, providing longer construction times, which could be beneficial
for certain projects [85,86]. CSWs can also be utilized to enhance the properties of building
materials, including improving the strength, durability, and crack resistance of concrete. It
can enhance the resistance of CBM to certain chemical corrosion and improve performance
in acidic or alkaline environments. Additionally, it aids in the hydration reaction of CBM,
leading to the formation of a denser and more uniform structure. Moreover, the addition of
an appropriate amount of CSWs to concrete can enhance its durability and strength, thus
extending the service life of the building. This helps to reduce the building’s maintenance
needs and frequency of renewal, ultimately increasing its sustainability [56,57].

In actual engineering applications, the addition of CSWs may pose challenges to certain
engineering implementations, such as concrete mixing and pouring. The inclusion of CSWs
could potentially lead to settling issues, necessitating the use of special dispersants to ensure
uniform dispersion within CBM. In some instances, the presence of CSWs may result in a
decrease in the short-term strength of CBM, necessitating comprehensive consideration
of engineering requirements [86,87]. Additionally, the addition of CSWs may introduce
complexity to the preparation of CBM and require stricter production controls. The addition
of CSWs may indeed affect the wear resistance of CBM, and it is essential to balance various
performance requirements in the design. Moreover, adding CSWs can impact the fluidity
of cement, potentially making the concrete more challenging to handle during construction.
This could adversely affect construction efficiency and the uniformity of the concrete.

Concerning durability and stability issues, the addition of CSWs to cement may indeed
lead to expansion problems. This is due to the moisture absorption and expansion of CSWs
within the cement matrix, potentially negatively impacting the stability of the structural
material. Furthermore, it is correct that the presence of excess CSWs may trigger a post-
hydration reaction, exacerbating these concerns. In the later stages, undissolved CSWs
may continue to dissolve, leading to the complex chemical and physical issue of sulfate
corrosion [100]. This can result in the deterioration and damage of building components.
Possible phenomena mainly include: (1) Further dissolution of CSWs will cause corrosion
of steel bars; (2) Additional sulfates may react with compounds like C3A to produce more
ettringite, leading to expansion and cracking of the components [101,102]. Therefore, while
CSWs have a beneficial effect on the hydration of CBM, the amount of addition needs to be
carefully optimized and strictly controlled to prevent compromised stability and reduced
durability in the later stages [103–105].

Although CSWs can enhance the sulfate attack resistance of cement, it may have a
negative impact on the strength of concrete in some cases. This may depend on the CSWa
content and the specific formulation of the concrete [106].
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5. Practical Applications and Prospects

CSWs have numerous advantages, including high strength, high modulus, high
toughness, high insulation, wear resistance, high-temperature resistance, acid and alkali
resistance, corrosion resistance, good infrared reflectivity, easy surface treatment, easy
compounding with polymers, and nontoxicity. Their physical and chemical properties
have found wide applications. Currently, the raw materials used for the preparation of
CSWs are inexpensive and readily available, for example, industrial waste. However, most
processes require heating and pressurization and have high energy consumption. Therefore,
exploring and developing new and simpler processes with low energy consumption is a
direction for future research. Moreover, the preparation of CSWs with higher aspect ratios
should be studied.

5.1. Applications in the Construction and Cement Industries

CSWs have been widely utilized in the cement industry as a control, anticracking,
and retardant. They can be employed to control cement setting time, enhance cement
crack resistance, reduce environmental pollution, and improve concrete properties. The
application of CSWs is likely to become widespread, particularly in the field of sustainable
construction. They can be used to reduce cement usage and carbon emissions and promote
green buildings and construction.

5.2. Applications in the Field of Environmental Protection

CSWs have been employed in environmental fields to reduce carbon dioxide emissions
from industrial processes, improve air quality, and reduce waste disposal costs. Environ-
mentally friendly applications of CSWs may extend beyond contributing to the reduction
of pollutant emissions, improving air quality, and mitigating the impact of industrial waste.

5.3. Applications in the Field of Building Materials

CSWs have been widely utilized in construction materials to enhance concrete proper-
ties, such as strength, durability, and crack resistance.

The applications of CSWs are likely to expand further, including in the develop-
ment of new building materials, contributing to the development of more durable and
environmentally friendly buildings.

Overall, CSWs have achieved significant success in practical applications and have
broad development prospects. As sustainability and environmental protection awareness
continue to increase, CSWs will play a greater role in various fields, aiming to reduce
resource wastage, minimize environmental impacts, and promote sustainable development.

In addition, despite a certain research basis for the application of CSWs in CBM, there
are relatively few studies on it in some emerging fields, such as sustainable construction
and biomaterials. This may be attributed to the evolving demands in these areas and the
fact that the potential applications of CSWs in these fields have not yet been fully explored.

Furthermore, while the advantages of CSWs in CBM have been widely discussed,
their disadvantages and limitations have received comparatively less attention. Research
on potential issues that may arise in engineering practice, such as compatibility with other
materials and long-term performance stability, still requires in-depth investigation.

Therefore, introducing research on CSWs in emerging fields and conducting an in-
depth exploration of their advantages, disadvantages, and potential applications will help
expand their application scope in the field of building materials and promote innovative
development in related fields.

6. Conclusions

The application of CSWs in the CBM is an area of extensive research, with the main
purpose of improving the performance and properties of these materials. This article
discusses different preparation methods for CSWs, hydration mechanisms, reinforcement
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mechanisms in the CBM, and prospects for the application of CSWs in the CBM. The
relevant summary is as follows:

(1) CSWs are primarily produced by hydrothermal and atmospheric-pressure acidifi-
cation, ion exchange, microemulsion, and microwave methods. The raw materials
required include high-calcium industrial solid waste.

(2) As a reinforcing material, CSWs can significantly enhance the tensile strength, compres-
sive strength, and durability of the CBM, thereby improving their load-bearing capacity.

(3) The judicious use of CSWs can effectively reduce the shrinkage of the CBM, enhance
the volume stability of its materials, and mitigate the occurrence of cracks. This
improves material durability and reduces structural maintenance costs. The optimal
amount for achieving the best improvement in the mechanical properties is typically
in the range of 4 to 6 wt.%.

(4) The presence of CSWs affects the microstructure of the CBM, forming a dense lattice
structure and enhancing the overall performance of the material.

(5) The use of CSWs helps decrease dependence on natural resources and enhances the
environmental friendliness of the CBM.
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