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Abstract: With the rapid development of highly integrated electronic devices and high-frequency
microwave communication technology, the parasitic resistance–capacitance (RC) delay and propaga-
tion loss severely restrict the development of a high-frequency communication system. Benefiting
from its low dielectric constants (Dk) and low dielectric loss factor (Df), polyphenylene oxide (PPO)
has attracted widespread attention for its application in the dielectric layers of integrated circuits.
However, PPO suffers from a very high melting viscosity, a larger coefficient of thermal expansion
than copper wire and poor solvent resistance. Recently, many efforts have focused on the modification
of PPO by various means for communication applications. However, review articles focusing on PPO
are unexpectedly limited. In this article, the research progress concerning PPO materials in view of
the modification of PPO has been summarized. The following aspects are covered: polymerization
and design of special chemical structure, low molecular weight PPO and blending with thermoset-
ting resin, hyperbranched PPO, thermosetting PPO and incorporating with fillers. In addition, the
advantages and disadvantages of various types of modification methods and their applications are
compared, and the possible future development directions are also proposed. It is believed that this
review will arouse the interest of the electronics industry because of the detailed summary of the
cutting-edge modification technology for PPO.

Keywords: polyphenylene oxide; modification; dielectric properties; circuit substrate; high performance

1. Introduction

In recent years, with the continuous downsizing of electronic devices as well as the
rapid development of high-frequency communication technology, the parasitic resistance–
capacitance (RC) delay and propagation loss have become the bottlenecks that restrict the
development of electronic instruments [1–4]. The calculation formula for the RC delay is
shown in Formula (1) [5].

RC = 2ρDk

(
4l2

P2 +
l2

T2

)
(1)

The l, T and ρ represent the length, thickness and specific resistance of the conductor,
respectively. P is the distance between two conducting lines. To reduce the size of electronic
devices while enhancing their performance, it is necessary to shorten the distance between
two conducting lines (P). Therefore, this change leads to an increase in the RC delay.

Additionally, the signal propagation loss (L) is proportional to f, Df and the square
root of Dk, as shown in Formula (2) [6].

L = k × ( f /c)× D f ×
√

Dk (2)
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The c represents the light speed, f is frequency, Dk is dielectric constant and Df is the
dielectric loss factor of the interlayer dielectric materials, respectively.

It is obvious that the RC delay increases with the shrinking size of integrated circuits,
and the propagation loss increases with the increase in frequency. To reduce the signal
transmission delay and propagation loss, one of the most efficient ways is to use materials
with low Dk and low Df in communication devices, especially in military, aerospace,
artificial intelligence, autopilot, and internet of things [7,8].

A printed circuit board (PCB), as part of an integrated circuit, is composed of a poly-
meric matrix reinforced with glass fabrics and copper metal circuit. It has a significant
impact on signal transmission [9–11]. A PCB should have the characteristics of low Dk and
low Df to ensure high-speed, lossless signal transmission within the PCB [12]. Moreover,
the PCB serves the function of supporting and connecting circuit components. There-
fore, they also need to meet certain requirements for circuit component installation and
operation. On the one hand, more densely drilled holes and solder are required in the
high-density multilayer installation of electronic components on PCBs, which puts forward
a requirement that the polymeric matrix of PCBs must endure high-temperature lead-free
reflow soldering and chemical solvent washing to remove soldering residues [13]. On
the other hand, the ever-increasing power density of these devices generates heat during
operation, resulting in a mismatch of the coefficient of thermal expansion (CTE) values
between the polymeric matrix and copper conductor, which may cause thermal stress and
result in various defects [14]. To avoid that situation, the polymeric matrix should possess
low CTE values close to the copper conductor (18 ppm/◦C) and good heat dissipation per-
formance [15,16]. Overall, the polymeric matrix used in a high-frequency and high-speed
PCB should not only have the advantages of traditional materials, such as mechanical
strength, resistance to chemical corrosion, and electric insulation, but also satisfy some
new demands, including excellent dielectric performance, dimensional stability and heat
dissipation performance. The conventional resins, such as epoxy resin and phenolic, cannot
satisfy the demands of the current development of low Dk and low Df in high-frequency
and high-speed applications. Therefore, developing a material that meets the requirements
of high-frequency and high-speed applications becomes very important.

Polyphenylene oxide (PPO) possesses low Dk (2.5), low Df (0.002~0.003), and low
moisture absorption [17], and it has garnered more attention from academics and industry
in recent years. However, there are several drawbacks that hinder its application. First,
as a thermoplastic resin, PPO is unable to meet the requirements of the PCB manufac-
turing processes due to its low service temperature and poor solvent resistance. Second,
thermoplastic PPO has a much higher CTE value (76 ppm/◦C) than that of conductive
copper [18]. Moreover, PPO has a high melt viscosity, poor mobility, and poor processabil-
ity, which seriously impact the application of PPO [19]. Over the past few decades, many
researchers have focused on preparing PPO with outstanding comprehensive properties
via various modification strategies. These strategies include grafting PPO with reactive
groups to improve dimensional stability, designing PPO with a hyperbranched structure
to reduce melt viscosity, redistributing high molecular weight PPO into low molecular
weight to improve the compatibility between PPO and other resins, and preparing PPO
through special monomers or ameliorative methods. However, a comprehensive overview
of this area is rare. In this article, we review recent studies on the modification of PPO
for high-frequency communication devices. We begin by introducing the polymerization
mechanism and special structures of PPO. Then, we move to low-molecular-weight PPO
and its incorporation with thermosetting resin. Next, we delve into hyperbranched PPO
and thermosetting PPO. Subsequently, we focus on PPO-based composites modified by
inorganic fillers. Finally, we discuss the promise, issues and future directions of PPO as a
polymeric matrix for high-frequency and high-speed PCBs.
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2. Polymerization of PPO and Its Chemical Structure

In 1956, Hay found that when 2,6-dimethylphenol (DMP) was dissolved in pyridine
solution with oxygen and cuprous chloride at room temperature, an oxidative coupling
reaction occurred, resulting in the solution rapidly becoming very viscous [20]. After
separation, a linear polymer with high molecular weight, later called polyphenylene oxide
(PPO) or polyphenylene ether (PPE), was obtained, along with small amounts of the C–C
coupled diphenoquinone (DPQ) product. The synthetic route of PPO with regular chemical
structure is shown in Figure 1 [21].
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In addition to DMP, the oxidative coupling reaction was also applied to other 2,6-
disubstituted phenols, such as 2,6-diphenylphenol (DPP) and 2-allyl-6-methylphenol
(AMP), to obtain PPO with a nonregular chemical structure, as shown in Figure 2. Hay et al.
synthesized completely aromatic poly(phenyleneoxide)s (P3O) using DPP as raw material
and bidentate amines as the ligand for the copper salt through the oxidative coupling reac-
tion [22,23]. Different from PPO, which hardly crystallizes and behaves as an amorphous
polymer, P3O is easy to crystallize, resulting in a high glass transition temperature (Tg)
of 230 ◦C and melting point (Tm) of 480 ◦C (measured by DSC). Moreover, P3O has a low
Dk of 2.76, a low Df of 2.5 × 10−4 at 50 Hz, and excellent hydrolytic stability. However,
due to its crystallization behavior and high Tm, P3O requires high melt processing tem-
peratures, which makes it susceptible to thermal degradation reactions. For these reasons,
the commercialization of P3O was never carried out beyond the pilot plant stage [24].
Yang et al. developed partially aromatic crosslinked poly(2,6-dimethylphenol (95 mol%)-
co-2,6-diphenylphenol (5 mol %)) from DMP and DPP through an oxidative coupling
reaction, followed by curing with crosslinking agents. The crosslinked poly(DMP95-co-
DPP5) exhibited a high Tg of 250 ◦C (measured by DMA), a low Dk of 2.6 and a low Df of
4 × 10−3 at 10 GHz. Fukuhara prepared a thermosetting poly(2-allyl-6-methylphenol-co-
2,6-dimethylphenol)s (poly(DMP-co-AMP)) through oxidative coupling copolymerization
of AMP with DMP and followed by thermal curing at 300 ◦C [25]. The cured copolymers
exhibited excellent solvent resistance, high Tg (229~235 ◦C), low Dk (2.5~2.6), and the low
Df (1.5~1.9 × 10−3) at 1 MHz. Afterwards, Jun Nunoshige et al. blended poly(DMP-co-
AMP) with 1,2-bis(vinylphenyl)ethane (BVPE). BAPE accelerated the cross-linking reaction
of the allyl group in poly(DMP-co-AMP) and therefore reduced the curing temperature.
Moreover, the resulting polymer blend showed lower Dk (2.39~2.40) and Df (0.0013~0.0019)
as the BVPE content increased [26].

The 2,6-disubstituted phenols with different substituents indeed exhibit a wide range
of material properties. However, as the substituents become larger and bulkier, the resulting
molecular weight and yield of linear polymers decrease. Consequently, the C–C coupled
DPQ becomes the predominant product. For example, when the substituents are t-butyl
groups, only the DPQ compound is formed.
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3. Low-Molecular-Weight PPO

PPO possesses several desirable properties, including low Dk, low Df, and low mois-
ture uptake. These characteristics make it an excellent additive for reducing the Dk and
Df of polymers commonly used in electronic substrates, such as epoxy resin and cyanate
resin. However, high-molecular-weight PPO resin has some drawbacks, including low
reactivity and poor miscibility with other resins, such as epoxy and cyanate resin, primarily
because of the lack of adequate phenolic end groups. There are some reasons for the lack of
phenolic end groups. First, the phenolic end group functionality of high-molecular-weight
PPO should be equal to one in theory. However, in practice, it is lower than one due to the
presence of Mannich base-type end groups generated during the oxidative polymerization
of DMP. These Mannich base groups exhibit lower reactivity compared to normal phenolic
end groups. In addition, the higher the molecular weight, the lower the phenolic end group
content. Based on the above analysis, reducing the molecular weight of PPO and increasing
the phenolic end group functionality would be beneficial for improving the reactivity and
compatibility between the PPO and these resins.

Redistribution of PPO is a preferable method to obtain low-molecular-weight PPO
with the desired end groups. Redistribution of PPO was discovered during the study of
the polymerization mechanism of PPO, which is a side reaction in the synthesis of PPO.
Hay et al. found that the polymerization degree was very low in the initial stage of the
polymerization reaction of PPO, but the polymerization degree suddenly increased in the
later stage, which is significantly different from chain polymerization initiated by free
radicals [20]. Except for the chain-extending reaction, they speculated that there exists an
equilibrium reaction that maintains PPO oligomers at a low polymerization degree between
PPO oligomers and monomers, and then PPO oligomers convert to high-molecular-weight
PPO suddenly in the later stage. Bolon et al. have confirmed this speculation through
experiments, showing that the PPO oligomers can polymerize to high-molecular-weight
PPO in the presence of initiators [27]. The reaction mechanism is shown in Figure 3.
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According to above realization, upon the addition of phenolic compounds to a high-
molecular-weight PPO, the redistribution reaction can occur and yield low-molecular-
weight PPO (r-PPO). The mechanism of the redistribution reaction of PPO is well-studied.
Actually, the type of phenolic compound has an effect on the redistribution reaction.
White et al. compared the redistribution activity of various phenolic compounds based
on the molecular weight of r-PPO and found that phenols containing strong electron
withdrawing or high steric hindrance groups, such as p-nitrophenol, p-hydroxyphenyl
acetonitrile and 2,6-diphenylphenol, had low redistribution activity [28]. Afterwards, Bolon
et al. systemically summarized the relative redistribution activity of phenols (as shown in
Figure 4) and drew the conclusion that phenols containing electron-donating substituents
have higher redistribution activity [27].
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Figure 4. Redistribution activity of phenols compared to 4-methoxy-2,6-dimethylphenol.

The content of phenolic groups increases as the molecular weight decreases, but the
phenolic end groups’ functionality cannot increase unless the phenols with a bisphenol
hydroxyl group are selected to react with PPO. Krijgsman [29] prepared bifunctional PPO-
2OH by the redistribution of high-molecular-weight commercial PPO (Mn = 11,000 g/mol)
with tetramethyl bisphenol A (TMPBA) in the presence of tetramethyl DPQ. The GPC results
showed that the product has a bimodal molecular weight distribution, and only 70–80% of
high-molecular-weight PPO is depolymerized to low molecular weight (2000 g/mol), as
shown in Figure 5. This is because partial PPO has Mannich base-type end groups, which
exhibit lower reactivity and fail to react with phenolic compounds. Similar phenomena
also have been reported in other studies [29–32].

Materials 2024, 17, x FOR PEER REVIEW 6 of 18 

Figure 5. GPC molecular weight distribution of the PPE-2OH products made with different amounts 
of TMBPA [29]. 

Apart from the redistribution method, the low-molecular-weight PPO can also be 
prepared through the bottom-up method. Wilhelm et al. proposed a method that simulta-
neously involves oxidative coupling of DMP and tetramethyl bisphenol A to prepare low-
molecular-weight PPO with double terminated hydroxy in the presence of a copper–am-
monium catalyst [33]. NORYL SA90 (Mn = 1600 g/mol, the structure is shown in Figure 6), 
a commercially available PPO, was prepared through this method. 

Figure 6. Chemical structure of SA90. 

Due to a decrease in the molecular weight, the Tg of r-PPO was decreased. According 
to the Fox and Flory Formula (3) [34]: 𝑇௚ = 𝑇௚ஶ − 𝐶𝑀௡ (3)

where Tg is the glass transition temperature of a polymer of infinite chain length (equal to 
490 K), Mn is the number-average molar mass, and C is a constant related to the volume of 
the chain ends (equal to 12.73 × 104 g K/mol) [35]. 

The molecular weight of commercialized PPO is about 20,000~30,000 g/mol, with Tg 
ranging from 208 to 212 °C. After the redistribution reaction, the molecular weight of PPO 
is reduced to 2000~5000 g/mol, with Tg ranging from 152 to 190 °C. Moreover, PPO with a 
low molecular weight is quite brittle. Therefore, low-molecular-weight PPO is rarely used 
alone but blended with other thermosetting resins. Ling et al. synthesized r-PPO via the 
reaction of commercial PPO with BPA [36]. Subsequently, this r-PPO was blended with 
cyanate resin (CE). The results showed that the redistribution reaction not only affects the 
molecular weight distribution of r-PPO, but also increases the phenolic groups, which can 
react with cyanate resin to produce cured r-PPO/CE mixed resin systems. The cured r-
PPO/CE mixed resin systems exhibited a low Dk of 3.85 and a low Df of 2.64 × 10−3 at 10 
MHz. To reduce the Dk, Zhou et al. synthesized a fluorinated redistributed PPO (F-rPPO) 
with a number-average molecular weight of 3.0~6.2 × 103 g/mol via the redistribution re-
action of commercial PPO with 4,4′-(hexafluoroisopropylidene) diphenol (BPAF) using 
benzoyl peroxide (BPO) as an initiator. F-rPPO was further used to modify epoxy resin 
[32]. The results showed that the cured EP/F-rPPO resins exhibited improved thermal sta-
bility and lower moisture absorption compared to the pristine epoxy resin. Moreover, the 
Dk and Df of the cured EP/F-rPPO resins decreased with an increase in the F-rPPO content 

Figure 5. GPC molecular weight distribution of the PPE-2OH products made with different amounts
of TMBPA [29].

Apart from the redistribution method, the low-molecular-weight PPO can also be
prepared through the bottom-up method. Wilhelm et al. proposed a method that simul-
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taneously involves oxidative coupling of DMP and tetramethyl bisphenol A to prepare
low-molecular-weight PPO with double terminated hydroxy in the presence of a copper–
ammonium catalyst [33]. NORYL SA90 (Mn = 1600 g/mol, the structure is shown in
Figure 6), a commercially available PPO, was prepared through this method.
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Due to a decrease in the molecular weight, the Tg of r-PPO was decreased. According
to the Fox and Flory Formula (3) [34]:

Tg = Tg∞ − C
Mn

(3)

where Tg is the glass transition temperature of a polymer of infinite chain length (equal to
490 K), Mn is the number-average molar mass, and C is a constant related to the volume of
the chain ends (equal to 12.73 × 104 g K/mol) [35].

The molecular weight of commercialized PPO is about 20,000~30,000 g/mol, with
Tg ranging from 208 to 212 ◦C. After the redistribution reaction, the molecular weight of
PPO is reduced to 2000~5000 g/mol, with Tg ranging from 152 to 190 ◦C. Moreover, PPO
with a low molecular weight is quite brittle. Therefore, low-molecular-weight PPO is rarely
used alone but blended with other thermosetting resins. Ling et al. synthesized r-PPO
via the reaction of commercial PPO with BPA [36]. Subsequently, this r-PPO was blended
with cyanate resin (CE). The results showed that the redistribution reaction not only affects
the molecular weight distribution of r-PPO, but also increases the phenolic groups, which
can react with cyanate resin to produce cured r-PPO/CE mixed resin systems. The cured
r-PPO/CE mixed resin systems exhibited a low Dk of 3.85 and a low Df of 2.64 × 10−3 at 10
MHz. To reduce the Dk, Zhou et al. synthesized a fluorinated redistributed PPO (F-rPPO)
with a number-average molecular weight of 3.0~6.2 × 103 g/mol via the redistribution
reaction of commercial PPO with 4,4′-(hexafluoroisopropylidene) diphenol (BPAF) using
benzoyl peroxide (BPO) as an initiator. F-rPPO was further used to modify epoxy resin [32].
The results showed that the cured EP/F-rPPO resins exhibited improved thermal stability
and lower moisture absorption compared to the pristine epoxy resin. Moreover, the Dk and
Df of the cured EP/F-rPPO resins decreased with an increase in the F-rPPO content (see
Figure 7) due to the low polarizability of F-rPPO and the large free volume introduced by
-CF3 groups.

The phenolic groups of r-PPO can be further modified by reacting with acyl chloride,
anhydride, phenyl ester, and halogenated hydrocarbon to extend its application range. For
example, SABIC company (Riyadh, Saudi Arabia) prepared a methacrylate-terminated
PPO, named NORYL SA9000, by the esterification reaction of low-molecular-weight PPO
(a commercial product, SA 90) with methacrylic anhydride. As shown in Figure 8, SA9000
contains vinyl end groups, which make it more suitable for blending with other unsaturated
resins, including styrene, acrylic acid, maleimide, methacrylic acid and epoxy resins. Chen
et al. [37] used two commercialized epoxy resins (DGEBA and HP7200) to copolymerize
with SA9000. The SA9000/epoxy thermosets show flexibility, high glass transition tem-
peratures of 218~220 ◦C, low Dk of 2.8~2.9, and extremely low Df of 3.1~3.2 × 10−3 at
1 GHz. However, the CTE increased from 56 ppm/◦C (cured SA9000) to 66~67 ppm/◦C
(SA9000/epoxy), and the Tg values of the SA9000/epoxy are slightly lower than that of
cured SA9000, as shown in Figure 8.
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In addition, they prepared an amine end-capped PPO (APPO) via a nucleophilic substi-
tution between phenol-end capped oligo PPO (SA90) and fluoronitrobenzene, followed by
catalytic hydrogenation [38]. The amine of the APPO was converted into benzoxazinewere
to prepare the PPO containing benzoxazinewere, including telechelic oligomer-type ben-
zoxazine (P-APPO) and the main-chain-type benzoxazine polymer (BPA-APPO). These
chemical structures are shown in Figure 9. After that, P-APPO and BPA-APPO were incor-
porated into dicyclopentadiene-phenol epoxy, respectively, to give the thermoset E-P-APPO
and E-BPA-APPO. The thermoset E-P-APPO and E-BPA-APPO show higher Tg (227 and
232 ◦C) and lower Df (0.0053 and 0.0050 at 1 GHz) than the SA90/EP (207 ◦C and 0.006).
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Different from high-molecular-weight PPO, low-molecular-weight PPO exhibits low
Tg and poor mechanical strength, while it possesses a lot of end phenolic groups. These
phenolic groups can be further converted into various reactive groups. Consequently,
low-molecular-weight PPO displays good compatibility with various resins. Especially in
the field of circuit substrate, it is often copolymerized with thermosetting resins such as EP
and CE to decrease the Dk and Df of these resins.

4. Hyperbranched PPO

Hyperbranched polymers, as a class of three-dimensional semispherical dendritic
polymer, possess considerably lower viscosity and offer great possibilities for chemical
modification due to the abundance terminal functional groups.

Zhang et al. [39] prepared hyperbranched PPO (HPPO) with terminal phenolic groups
by a one-pot polymerization of an AB2 monomer, 4-bromo-4′,4”-dihydroxytriphenylmethane,
using the modified Ullmann reaction in the presence of DMSO/K2CO3 or sulfolane/NaOH
(as shown in Figure 10). They found that the Tg of the obtained HPPO has no direct
connection with the molecular weight but mainly depends on the degree of branching. A
high degree of branching (DB) in the molecular architecture reduces the mobility of the
chain segments. Moreover, the large number of phenolic terminal groups enhances the
polarity and the intermolecular interactions, resulting in increased Tg values for HPPO.
These hyperbranched PPOs contain a large amount of phenolic end groups, making them
amenable to facile grafting with various functional chain ends, such as methoxy, 1-butoxy,
and diethyleneoxy units.
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Figure 10. Synthesis of hyperbranched PPO from phenol and p-bromobenzaldehyde [39].

Huang et al. [40] synthesized epoxy-functionalized hyperbranched poly(phenylene
oxide) (coded as eHBPPO) by converting the peripheral hydroxyl groups of the hyper-
branched PPO into epoxy groups. The eHBPPO was then used to modify cyanate resin
(CE). The results showed that the cured CE/eHBPPO resins display a lower Dk and Df than
CE resin. Moreover, the dielectric properties of CE/eHBPPO resins were stable in a wide
frequency range (1–109 Hz), as shown in Figure 11.
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Figure 11. Dependence of the dielectric constant on the frequency for cured CE, p-CE, and
CE/eHBPPO resins [40].

Considering the low polarizability and large molar volume of C–F bonds, fluo-
rinated polymers may help to reduce the Dk and Df. Li et al. [41] prepared fluoro-
terminated hyperbranched PPO (FHPPO) from a new AB2 monomer, 4-hydroxyl-4′,4”-
difluorotriphenylmethane, as shown in Figure 12. The molecular weight (Mw), DB and Tg
values of these hyperbranched polymers prepared under different conditions are listed in
Table 1. The Tg of the FHPPO increased with the molecular weight and tended to level off
at high molecular weights. This can be explained by the coupled effects of two factors. On
the one hand, the proportion of rigid triphenyl groups increased with increasing molecular
weight, resulting in a limitation of the segments’ mobility. On the other hand, the DB
decreased with increasing molecular weight, indicating that more linear structures exist
in FHPPOs, leading to a decrease in the Tg. FHPPO was used as a modifier and added to
diglycidyl ether of bisphenol A in different ratios to form cured hybrid DGEBA/FHPPO
resins. They found that the addition of FHPPO could increase the free volume, reduce
moisture absorption, and decrease the Dk and Df of the cured hybrid materials, as shown
in Figure 13a–c.
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Presently, studies of HPPO are mainly concentrated on using HPPO to modify other
thermosetting resins, such as cyanate resin, epoxy resin and bismaleimide resin, to improve
the thermal stability and dielectric properties of these resins. However, there is no report
about the dielectric properties of neat HPPO and its relationship with the DB, molecular
weight and the type of terminal group. In addition, the method for synthetizing HPPO has
suffered the disadvantages of high temperature and long time-consuming nature, which
limits its large-scale industrial applications.
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Table 1. Properties of hyperbranched PPO in the literature.

Samples Reaction
Conditions Tg (◦C) Mw (Da) Polydispersity

Index
Degree of
Branching References

HPPO DMSO/K2CO3
170 ◦C for 32 h 153 2230 1.39 0.71 [39]

HPPO sulfolane/NaOH
200–210 ◦C for 6 h 130 5530 2.04 0.48 [39]

FHPPO
NMP/ K2CO3

202 ◦C for 2–5 days

135 2000 1.7 0.63

[41]
147 2500 2.2 0.60
156 5400 3.2 0.56
163 5800 3.7 0.55
164 6800 4.8 0.53
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5. Thermosetting PPO

Thermosetting resins are more commonly utilized as the polymer matrix of PCBs due
to their excellent dimensional stability, solvent resistance, and thermostability compared
with thermoplastic resins. However, PPO is a linear amorphous polymer with a highly
symmetrical main chain composed of rigid phenolic aromatic rings and methyl groups,
without crosslinkable groups. Therefore, many efforts have been made to introduce PPO
with reactive groups based on methyl groups. As shown in Figure 14, the modification of
PPO via methyl groups mainly involves the following process: (1) brominating of methyl
groups; and (2) introducing of a reactive group via various chemical reactions, including
nucleophilic substitution, Grignard reaction and so on.
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Huang et al. [43] prepared a new epoxidized PPO through the brominating of PPO
in halogenated aromatic hydrocarbons, followed by a Wittig reaction, yielding a vinyl-
substituted PPO. The vinyl-substituted PPO was then treated with m-chloroperbenzoic acid
to form epoxidized PPO with variable pendant ratios. The results showed that both the Tg
and the thermal stability were improved with the increase in the epoxide molar content, and
the Tg exceeded 300 ◦C (measured by DSC) when the degree of functionalization was above
30%. Wang et al. [44] have introduced allyl groups into PPO to prepare thermosetting
modified PPO (Allyl-PPO) via the reaction between brominated PPO and a Grignard
reagent. The cured Allyl-PPO exhibits excellent solvent resistance and a high Tg of 217 ◦C
(determined by DMA loss peak), the Dk of cured Allyl-PPO was 2.84 at 1 MHz. However,
the Grignard reagent is inconvenient to operate because of its high sensitivity to moisture.
Fang et al. [45] synthesized thermosetting PPO (P(APO-co-PO)) by treating brominated PPO
with anethole rather than Grignard reagent, followed by hot-pressing at a high temperature
in the presence of a peroxide. The DSC curves indicated that these thermosetting PPO
formed crosslinked structures when the temperature was around 168~178 ◦C (Figure 15a).
As a matter of fact, they carried out the curing process at 300 ◦C. The crosslinked PPO
displayed a low Dk of less than 2.74 at 30 MHz, high Tg (more than 220 ◦C, determined
by DSC) and excellent dimensional stability. It is noteworthy that although thermosetting
modification of PPO has improved the Tg and dimensional stability, the dielectric properties
of thermosetting PPO are worse than those of thermoplastic PPO. This is because grafting
of crosslinkable groups in methyl groups inevitably disrupts the symmetrical nature of PPO
and increases the dipole moment. Considering the contradiction between improving the
dielectric properties and thermosetting of polymer materials, our research group proposed
a method to balance thermosetting and dielectric properties by introducing a crosslinking
agent with both trifluoromethyl groups and allyl groups to PPO. In situ Fourier transform
infrared spectra indicated the resulting PPO with different contents of trifluoromethyl
groups was cured at 250 ◦C to obtain the cured PPO-allyl-F (Figure 15b) [46]. These
cured PPO-allyl-F materials exhibited a Dk value in the range of 2.56–2.67 at 10 GHz
and a Dk value in the range of 2.57~2.68 at 1 MHz, which were lower than the above-
mentioned thermosetting PPO. The density functional theory calculation indicated that
though trifluoromethyl slightly increases the polarizability, it provides a large free volume
for cured PPO-allyl-F. Therefore, the polarizability per unit volume was decreased, which
is beneficial for reducing Dk.
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The CTE is also important for the polymer matrix of PCBs. The CTE values of polymers
can vary significantly based on their chemical structure, molecular arrangement, and
physical state. For instance, highly extended and oriented polymers exhibit low or even
negative thermal expansion along the chain axes [47]. Amorphous polymers lack long-
range order in their molecular arrangement, so they expand as the temperature rises due to
increased molecular vibrations. Moreover, the CTE in thin polymer films is different from
that of their bulk counterparts, the anisotropy in CTE stems from the in-plane orientation
of polymer main chains generated during film-forming process [48]. PPO is an amorphous
polymer, and its polymer chains are not oriented. Additionally, it is not used in the form
of thin films. Therefore, researchers seldom consider anisotropy in the CTE of PPO. In
the previous literature reports, P(APO-co-PO) and PPO-allyl-F exhibit a lower CTE as the
crosslinking density increases [45,46]. This indicates that covalent connections between
polymer chains are beneficial for restricting segment movement and free volume expansion.

Thermosetting modification of PPO based on the methyl group on the main chain has
the advantage of grafting a large amount of reactive functional groups without reducing
the molecular weight of PPO. The thermosetting PPO displays dimensional stability and
solvent resistance. However, grafting of crosslinked groups inevitably breaks the symmet-
rical structure of the PPO, thus increasing the dipole moment, which leads to an increase
in the Dk. Although introducing a low polarity and bulk crosslinking group is beneficial
for alleviating the adverse effects, it is not resolved completely. How to develop PPO
with high-performance, including excellent dielectric properties, dimensional stability, and
solvent resistance, remains an open issue.

6. PPO-Based Composites

As an effective modification method, incorporating inorganic fillers with certain func-
tionality into the polymer matrix plays a significant role in enhancing polymer performance.
Diverse fillers, including carbon material, ceramic material, and metal/metal oxide, have
been added into polymers for various purposes, such as electrically conductive, thermal
conductive, dielectric properties, electromagnetic interference shielding, and mechanical
properties [49,50].

To improve the reliability of electronic equipment, it is crucial that the CTE of the
polymer used in electronic equipment closely matches that of the other materials, such
as silicon (0.5 ppm/◦C) and copper wire (18 ppm/◦C) [2,51]. The CTE of the material is
decided by its composition. Theoretically, the combination of a material with a negative
CTE and a material with a positive CTE is expected to obtain composites with a low
CTE. Based on this, Zhu et al. [52] incorporated different volume fractions of negative
thermal expansion (−3 to −5 ppm/◦C) Zr2WP2O12 (ZWP) particles into PPO. To prevent
the agglomeration of inorganic fillers and enhance the interaction between the fillers and
matrix, KH-570 (3-(Trimethoxysilyl) propyl methacrylate) was used to modify the ZWP.



Materials 2024, 17, 1086 13 of 17

The resulting PPO/ZWP composites, obtained by hot press, exhibited a decreased CTE
with increasing filler content. Moreover, these PPO/ZWP composites exhibited a lower
CTE than that of PPO/silica composites with the same filler content, as shown in Figure 16.
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Adding high thermal conductivity fillers into polymers is a common approach to
elevate the heat dissipation capability and service life of electronic equipment. Zhang
et al. [53] blended gradation-mixed Al2O3, which was modified by silane coupling agent,
into PPO to prepare an insulative layer in copper-clad laminates. They found that the Al2O3
fillers modified with the silane coupling agent displayed better dispersibility in composites
and a lower water absorption rate than that of composites loaded with unmodified Al2O3
(see Figure 17a). In addition, the gradation-mixed Al2O3 displayed a better improvement
in thermal conductivity (see Figure 17b). This improvement is attributed to the small-size
Al2O3 particles that filled the interval space between the larger ones, thus establishing a
more complete heat conduction network.
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Hexagonal boron nitride (h-BN) also received attention due to its unique properties,
including its mechanical strength, high thermal conductivity (600 W/(m•K)), low Df
(0.0002), and excellent insulation [54–58]. Ge et al. [59] introduced h-BN into the PPO to
prepare an insulative layer of copper-clad laminates used in high-frequency applications.
SiO2 was coated on the surface of h-BN to improve the fluidity of the lamellar h-BN filler,
as shown in Figure 18. The resulting CCLs exhibited a high thermal conductivity up to
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1 W/(m•K) and a low dielectric loss of 4 × 10−3 at 48 wt% h-BN loading, validating the
high potential of this composite for use in high-frequency PCBs. However, the thermal
conductivity of amorphous silica was much lower than that of h-BN. The h-BN coated with
silica displayed a lesser improvement in thermal conductivity compared to uncoated h-BN.
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Incorporating fillers into PPO endows composites with specific functions. Notably,
the properties of composites were extremely determined by the types of the fillers, the
dispersion or orientation of the fillers, and the interfacial interactions between the fillers
and polymer [60,61]. Moreover, excessive filler addition to composite tends to decrease
the performance, affecting the strength, toughness and dielectric properties. This effect is
particularly pronounced in high-frequency and high-power circuit substrates, where the
trade-off between low Dk and high thermal conductivity presents a challenge. The tailoring
of polymer/filler interfaces, inducing filler orientation and building thermal conductivity
pathways play a key role in achieving high-performance materials with desirable dielectric
and thermal properties.

7. Conclusions

In summary, this review systematically focuses on the modification of PPO for appli-
cation in a circuit substrate. This includes the structure design of PPO, copolymerization or
blending with thermosetting resins, and PPO-based composites. Low-molecular-weight
PPO and hyperbranched PPO contain many phenolic groups, which can be converted into
various reactive groups. These PPO are used as modifiers and added into multiple ther-
mosetting resins to improve the dielectric performance and thermal stability. By grafting
reactive groups into the methyl groups of the main chain, the thermoplastic PPO can be
converted into thermosetting PPO, thus improving its solvent resistance, dimensional sta-
bility, and thermal stability. Incorporating fillers with specific properties, such as negative
thermal expansion, high thermal conductivity, or low Df, further improves the performance
of PPO-based composites.

With the rapid development of integrated, high-power microelectronic devices and
5G technology, PPO has attracted more and more attention for its outstanding properties,
thermal stability, and moisture absorption. However, there remain a lot of issues that must
be resolved to comply with the development trend of future electronic devices.

(1) The contradiction between reducing the Dk and improving the dimensional stability
of polymer materials due to their different requirements for the molecular structure.
The relationship between the molecule structure, dielectric, and dimensional stability
should be further revealed by subtly structural design.
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(2) Another contradiction arises between reducing the Dk and improving the high thermal
conductivity of PPO base composites. This is because the Dk of thermal-conducting
fillers is usually higher than PPO. Therefore, the pivotal problem is how to improve
thermal conductivity at low filler loading. Several approaches can help resolve this
issue, such as improving intrinsic thermal conductivity of PPO through designing
chemical structure or regulating the condensed state of PPO, building the thermal
conduction pathway in composites, improving interface interactions, and reducing
phonon scattering at the interface.

(3) High-frequency bands, ranging at 5 GHz or even millimeter waves frequencies (>30
GHz), are used in 5G communication technology. However, many studies provide
dielectric properties at low-frequency bands (<1 GHz) by the parallel plate capacitance
method. Moreover, the parallel plate capacitance method can be challenging to
measure accurately, especially for low-loss materials [62]. Therefore, adopting a high-
accuracy method to measure the dielectric properties of materials at high-frequency
bands (~GHz) is necessary.
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