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Abstract: The environmental impact of non-biodegradable rubber waste can be severe if they are
buried in moist landfill soils or remain unused forever. This study deals with a sustainable approach
for reusing discarded tires in construction materials. Replacing ordinary Portland cement (OPC) with
an environmentally friendly geopolymer binder and integrating crumb rubber into pre-treated or
non-treated geopolymer concrete as a partial replacement of natural aggregate is a great alternative
to utilise tire waste and reduce CO2 emissions. Considering this, two sets of geopolymer concrete
(GPC) mixes were manufactured, referred to as core mixes. Fine aggregates of the core geopolymer
mixes were partially replaced with pre-treated and non-treated rubber crumbs to produce crumb
rubber geopolymer concrete (CRGPC). The mechanical properties, such as compressive strength,
stress–strain relationship, and elastic modulus of a rubberised geopolymer concrete of the reference
GPC mix and the CRGPC were examined thoroughly to determine the performance of the products.
Also, the mechanical properties of the CRGPC were compared with the existing material models.
The result shows that the compressive strength and modulus of elasticity of CRGPC decrease with
the increase of rubber content; for instance, a 33% reduction of the compressive strength is observed
when 25% natural fine aggregate is replaced with crumb rubber. However, the strength and elasticity
reduction can be minimised using pre-treated rubber particles. Based on the experimental results,
stress–strain models for GPC and CRGPC are developed and proposed. The proposed models can
accurately predict the properties of GPC and CRGPC.

Keywords: crumb rubber; geopolymer concrete; rubber treatment; stress–strain curve; modulus of
elasticity; rubberised concrete

1. Introduction

Due to a growing demand, the production of automobile tires is continually increasing
globally. However, it creates the widespread issue of disposing of worn tires in landfills [1].
The yearly buildup of discarded tires is currently estimated at 1000 million and will
potentially be increased to 1200 million by 2030 [2]. The environmental risks caused
by heavy metals and contaminants in tires when they are buried in moist landfill soils,
leading to the release of poisons into groundwater, further aggravate this problem [3]. In
response to the growing environmental risk, rubberised concrete is gaining popularity as
a choice for structural applications [4,5]. This involves integrating crumb rubber, which
is obtained from discarded tires of trucks and automobiles, into concrete mixes. In recent
years, there has been a visible trend in exploring the use of waste rubber, particularly
after undergoing crushing treatment, as a substitute for natural aggregates like river sand
in concrete preparation [6]. River sand is one of the key ingredients of concrete and a
non-renewable natural resource. Therefore, using crumb rubber in concrete offers an eco-
friendly solution to reduce the environmental impact associated with tire disposal along
with minimising the depletion of natural resources [7].

Some studies have extensively investigated the incorporation of crumb rubber in
concrete, focusing primarily on the mechanical behaviours [2,8–13]. The quantity, dimen-
sions, and form of rubber aggregate used in concrete have an impact on its mechanical
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properties. Based on an experimental study, Osama et al. [14] reported that the compressive
strength can drop 9% to 20% when 20% of sand is replaced with the rubber particles.
Khaloo et al. [15] stated that rubberised concrete with fine rubber particles has accept-
able workability, and the replacement of up to 25% mineral aggregates can maintain the
acceptable compressive strength of the concrete.

Additionally, the modulus of elasticity (MoE) of rubber-modified concrete is still
evolving as a great research interest among researchers. MoE of crumb rubber concrete
is observed to be decreased with the increase of rubber content [15–22]. In the past,
Zheng et al. [18] stated that a decrease of 5.7% to 28.6% in MoE of ground rubber concrete
occurred for a 15% to 45% replacement of coarse aggregates with rubber crumbs. For the
crushed rubberised concrete, a decrease in MoE was found at 16.5% to 25.0% compared
to the plain concrete. Li et al. [21] reported that a 41.9% decrease in the MoE value was
observed with 10% rubber crumb content. Another study by Xie et al. [20] highlighted
a 56.3% decrease in MoE when 16% of fine aggregates were replaced with rubber, using
recycled concrete aggregates as coarse aggregate. Given the variation in research outcomes,
establishing an accurate relationship between MoE and rubber content in the concrete is
challenging.

To reduce the strength loss of crumb rubber concrete (CRC), pre-treatment of rubber
particles has emerged as an effective approach, and researchers have explored various
methods to enhance the compressive strength of rubber concrete [10,23–25]. The chemical
pre-treatment of rubber, as reported in an experimental study [16], has shown improved
adherence and mechanical resistance compared to rubber concrete without pre-treatment.
Pham et al. [26] identified that pre-treatment of rubber with NaOH was a key factor
contributing to improved adhesion of rubber particles to other ingredients in the concrete
mix. Hence, pre-treatment is an essential phase in producing CRGPC, as it significantly
affects the bonding of rubber particles with cement paste [26–33]. Khalid Battal Najim [34]
experimentally studied the effect of different CR pre-treatment methods, such as water
washing, NaOH pre-treatment, cement paste and mortar pre-coating, etc. Raghavan [35]
produced high-strength concrete using NaOH solution with favourable results.

Geopolymer binder is considered an environmentally friendly alternative to OPC, as
it generates 70% less greenhouse gas [36,37]. Even though geopolymer concrete is a viable
building material, research on rubberised geopolymer concrete is still limited compared to
that on rubberised OPC concrete. Like plain concrete, the compressive strength of GPC is an
important design parameter. Studies shows that the increase in the concentration of sodium
hydroxide (NaOH) in terms of molarity increases the compressive strength of GPC [38,39].
Therefore, employing NaOH in the pre-treatment of crumb rubber to CRGPC not only
increases strength, but also holds the potential for minimising chemical waste. Recent
research by Giri et al. [39] shows that the compressive strength of CRGPC can be increased
by 49% after increasing the NaOH concentration from 10 M to 14 M. Luhar et al. [40]
reported that only an 11.66% reduction in compressive strength is observed when 10% of
fine aggregate is replaced with crumb rubber treated with NaOH. Moghaddam et al. [41]
studied CRGPC by partially replacing fly ash with ordinary Portland cement. The study
reported an 8% compressive strength gain for 20% fly ash replacement with OPC and 10%
rubber content as a partial replacement of fine aggregate. The modulus of elasticity of
CRGPC is rarely studied; Luhar et al. [40] reported that the modulus of elasticity decreased
with the increase of rubber content in CRGPC. A similar finding was also reported by
Dong et al. [30]. Moreover, the stress–strain behaviour model of GPC focusing on the effect
of rubber content is not revealed yet.

Based on the literature review, the compressive strength of concrete generally reduces
with the increase of rubber content. However, pre-treating crumb rubber can significantly
reduce the amount of strength loss. To characterise the behaviour of any concrete type,
compressive strength, modulus of elasticity, and stress–strain properties are important.
Often, the compressive strength of standard concrete is used to calculate most of the other
parameters of concrete. However, the current experimental results have not sufficiently
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validated the method of obtaining the material parameters of crumb rubber concrete,
geopolymer concrete, and geopolymer rubber concrete. Hence, an extensive experimental
investigation is required. Moreover, there is an insignificant amount of research available
on the CRGPC, which is not enough to apply CRGPC in real-life. To date, no material
model has yet been able to accurately anticipate the behaviour of CRGPC while being
loaded under axial compression.

To achieve the objective of this study, mechanical characteristics, such as compressive
strength, stress–strain correlations, and the elastic modulus of rubberised geopolymer
concrete were investigated extensively. Results were compared with the existing material
models to investigate the models’ suitability in predicting the mechanical properties of
CRGPC. Finally, some material models are proposed to predict the properties of CRGPC
accurately.

2. Materials and Methods

Due to a lack of GPC mix design in existing codes, two GPC mixes were produced
using the trial-and-error method. Mix 1 and Mix 2 had an ultimate compressive strength
of 44 ± 2 MPa and 26 ± 2 MPa, respectively. These two strength groups of concrete
are commonly known as N40 and N25 [42]. For each GPC mix, at least three batches of
geopolymer concrete were produced. Each batch contained at least three specimens. After
the casting, GPC specimens were kept at room temperature for 24 h before moving into
the heat curing phase in an oven at 80 ◦C for 48 h. After heat curing, specimens were
unmoulded and kept at room temperature until the test. In addition to the core mixes
(control), geopolymer samples were prepared by replacing 5%, 15%, and 25% of natural
fine aggregates with crumb rubber. Specimens were prepared with treated crumb rubber
(denoted as TC) and non-treated crumb rubber (denoted as C) to understand the effect of
rubber pre-treatment on the mechanical properties. Details of the specimens are shown in
Table 1.

Table 1. Specimen details of GPC and CRGPC mixes.

Mix ID Number of
Specimens Mix ID Number of

Specimens

Mix 1 9 Mix 2 9
M1 TC25 9 M2 TC25 9
M1 TC15 9 M2 TC15 9
M1 TC05 9 M2 TC05 9
M1 C25 9 M2 C25 9
M1 C15 9 M2 C15 9
M1 C05 9 M2 C05 9

TC = Treated Crumb Rubber; C = Crumb Rubber.

Standard compression tests and deformation-controlled compression tests were car-
ried out to investigate compressive strength, stress–strain relationship, and the modu-
lus of elasticity of CRGPC specimens. Two specimens from each batch went through a
deformation-controlled compression test, and one of them was subjected to a standard com-
pression test. The failure (cracking pattern) of the cylinder specimens was also observed to
have a better understanding of mode of failure of CRGPC.

2.1. Raw Materials and Treatment
2.1.1. Materials

In this study, fly ash and alkaline solutions, such as sodium hydroxide and sodium
silicate, riverbed sand as fine aggregate, crushed stone as coarse aggregate, crumb rubber,
ground granulate blast furnace slag (GGBFS), super plasticising admixture (ADVA 650),
and tape water were used to prepare GPC and CRGPC.

ADVA 650 is a poly carboxylic ether polymer that is widely used in premix and pre-
cast industries for maximising concrete strength at an early age. ADVA 650 used in this
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experiment complies with AS 1478.1 [43] and is compatible with fly ash and blast furnace
slag. Admixtures were first mixed with water and then poured into the mixture to ensure
uniformity in the mix.

Fly ash used in this study had a fineness of 87% and complied with AS 3582.1 [44].
The chemical composition of the FA is presented in Table 2.

Table 2. Chemical composition of fly ash.

Element Content (%)

Al2O3 24.00
CaO 1.59

Fe2O3 2.87
K2O 1.44
MgO 0.42
MnO 0.06
Na2O 0.49
P2O5 0.19
SiO2 65.9
TiO2 0.915
LOI 1.53

Commercially available mechanically shredded waste tire particles (sizes < 1 mm,
1–3 mm, and 2–4 mm) were used in this study. A volumetric replacement method was
applied to replace natural sand with crumb rubber. Three different particle sizes of CR were
mixed to obtain a well-graded blending of fine aggregate. The mix ratio of < 1 mm, 1–3 mm,
and 2–4 mm CR particles was 8:7:5 (by volume). Figure 1 represents the CR particles used in
this experimental research. Sieve analysis was carried out as per AS 1141.0-1999, 1974 [45].
The produced particle size distribution curve is presented in Figure 2. The figure also
demonstrates the particle size distribution curve of riverbed sand while showing the upper
and lower limits of well-graded fine aggregates. Upper and lower limits for the particle
gradation requirements were set by AS 2758.1 [46].
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2.1.2. Crumb Rubber Pre-Treatment

Mechanically shredded rubber particles usually have a smooth surface, which is not
ideal for a good interfacial bond between aggregate and cement paste in concrete. NaOH
pre-treatment was adopted in the study as the method of crumb rubber pre-treatment.
The molarity effect of sodium hydroxide on gaining compressive strength of geopolymer
concrete was experimentally studied by Hardjito and Rangan [47]. In this study, 16M
sodium hydroxide solution was used for the pre-treatment of crumb rubber. A 16M NaOH
solution was prepared by adding NaOH flakes to water, as shown in Table 3 [48,49].

Table 3. Mix design of molarity for NaOH [49].

NaOH Solution Molarity Weight of NaOH Flakes (g/kg)

8 262
10 314
12 361
16 444

CR was soaked into the sodium hydroxide solution for 24 h and air-dried before
being used in the concrete mix. Pre-treatment allowed adequate surface roughness, which
is essential for better bonding in concrete. As crumb rubber tends to float on a sodium
hydroxide solution, a stainless-steel gauze was used all the time to keep the crumb rubbers
submerged in the solution, as shown in Figure 3.

The importance of rubber surface pre-treatment can be more understandable from
the microscopic analysis, shown in Figures 4 and 5. Figure 4a,b clearly shows that the
surface of non-treated rubber particles is not rough enough to produce a better bond with
cement paste in concrete. However, Figure 5a,b shows that the pre-treated CR particles
are well bonded with the cement paste of rubberised concrete. A NaOH treatment process
cleans the surface of rubber particles and removes other foreign chemicals from the rubber
particles. Therefore, to improve the bond between cement paste and crumb rubber, the
pre-treatment of rubber particles is imperative.
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2.2. GPC and CRGPC Mixing

Based on the trials, the final mix designs used in this study are shown in Tables 4 and 5.
GPC Mix 1 and GPC Mix 2 are considered core mixes in this study. Based on the core mixes,
further samples were prepared by replacing 25%, 15%, and 5% of sand with non-treated
rubber crumb, while other materials remained the same as the developed core mixes.
Pre-treated crumb rubber specimens were prepared, maintaining the same fine aggregate
replacement percentages as their non-treated counterparts. When calculating the weight
of rubber that is required to replace the fine aggregates in concrete, the specific gravity of
both materials was taken into consideration. The specific gravity of crumb rubber and fine
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aggregate used in this research was 1.15 and 2.6, respectively. Figure 6 shows prepared
specimens with different rubber content. Cylinders from left to right contain 25%, 15%, and
5% crumb rubber, respectively.

Table 4. Mix design of GPC Mix 1.

Mix Design of Mix 1 (kg/m3)

Materials Detail M1 M1-R25 M1-R15 M1-R05

Fly Ash 365.00 365.00 365.00 365.00

Sodium Hydroxide 49.00 49.00 49.00 49.00

Sodium Silicate 122.50 122.50 122.50 122.50

Water 50.38 50.38 50.38 50.38

Fine aggregate Sand 535.00 401.25 454.75 508.25
Rubber 0.00 59.16 35.50 11.83

Coarse aggregate 7 mm 245.00 245.00 245.00 245.00
10 mm 430.00 430.00 430.00 430.00
14 mm 555.00 555.00 555.00 555.00

GGBFS 40.00 40.00 40.00 40.00

Super Plasticiser 3.80 3.80 3.80 3.80

Table 5. Mix design of GPC Mix 2.

Mix Design of Mix 2 (kg/m3)

Materials Detail M2 M2-R25 M2-R15 M2-R05

Fly Ash 445.76 445.76 445.76 445.76

Sodium Hydroxide 63.68 63.68 63.68 63.68

Sodium Silicate 159.20 159.20 159.20 159.20

Water 48.28 48.28 48.28 48.28

Fine aggregate Sand 571.18 428.39 485.50 542.62
Rubber 0.00 63.16 37.90 12.63

Coarse Aggregate 10 mm 1243.10 1243.10 1243.10 1243.10

Super Plasticiser 6.73 6.73 6.73 6.73
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2.3. Curing

Curing methods significantly affect the compressive strength of GPCs even though
they are made from the same mix proportions [50]. In this study, all the samples were
cured at 80 ◦C in an oven for 48 h. After casting, all specimens were kept at ambient/room
temperature for 24 h before transferring them to the curing oven. After heat curing, the
specimens were transferred to a chamber at room temperature.

2.4. Experimental Setup

All the tests were conducted at the main civil engineering lab located at the University
of New South Wales at the Australian Defence Force Academy. A standard compressive
strength test was carried out following the Australian standard AS 1012.9 [51]. Standard
cylinders of 200 mm height and 100 mm diameter were used for all tests. Stress–strain
behaviour of the test specimens was recorded with a careful setup of two Linear Variable
Displacement Transducers (LVDT) on both sides of the specimen. An average strain of
these two LVDTs was used as the strain of the specimen, and the gauge length was 100 mm.
LVDTs used in these experiments were able to record a movement of 0.001 mm. A third
LVDT was used to control the movement of the loading plate. The experimental setup
unconfined specimen is shown in Figure 7.
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3. Experimental Results and Discussion
3.1. Compressive Strength

The compressive strengths of all mixes are presented in Table 6. The average of three-
cylinder strength results was used to define the compressive strength of a mix. Test results
of Mix 1 are graphically presented in Figure 8, and Figure 9 presents the compressive
strengths of Mix 2. Here, fcm denotes the mean compressive strength of the samples.
The figures show that the compressive strength of both mixes reduces with the increase
of rubber content in the mixes. As rubber particles have a lower compressive strength
compared to that of natural sand, they reduced the compressive strength of the product.
Additionally, the higher the percentage of replacement of natural sand with the rubber
particles, the higher the strength loss. It is also observed that the reduction of strength in
the pre-treated rubber mixes is lower compared to the counterpart (without treatment). The
GPCRC with the treated rubber particles showed better compressive strength compared
to that with the untreated rubber particles because of the better bond between the treated
rubber and geopolymer paste.
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Table 6. Compressive strengths of GPC and CRGPC mixes.

Mix ID Strength
(MPa)

Batch Strength
(MPa) Mix ID Strength

(MPa)
Batch Strength

(MPa)

Mix 1
41.53

41.91 Mix 2
25.06

24.1841.51 23.47
42.69 24.01

M1 TC05
36.05

35.09 M2 TC05
20.95

20.4134.07 20.97
35.15 19.31

M1 TC15
32.92

33.2 M2 TC15
19.73

19.1531.51 19.16
32.17 18.56

M1 TC25
31.49

31.08 M2 TC25
18.66

18.7230.9 17.58
30.85 19.92

M1 C05
33.42

33.53 M2 C05
20.01

19.133.66 18.28
33.51 19.02

M1 C15
28.98

29.78 M2 C15
16.53

17.1929.77 17.91
30.58 17.12

M1 C25
26.67

27.72 M2 C25
16.57

16.5528.93 16.51
27.56 16.58

TC = Treated Crumb Rubber; C = Crumb Rubber.
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Figure 9. Compressive strengths of Geopolymer concrete Mix 2.

In Figure 10, it is evident that CRGPC with treated rubber provides 4% to 9% higher
compressive strength than that of CRGPC with non-treated rubber. An approximately 20%
and 16% drop in compressive strength is noticed when 5% non-treated and treated crumb
rubber are added to the mixes, respectively.
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Figure 10. Compressive strength reduction of GPC Mix 1 and CRGPC mixes.

The reduction in the compressive strength is not observed to be linear. For a 25%
replacement of aggregate with non-treated rubber, 34% and 32% strength reductions are
observed, whereas a 20% and 21% strength reduction were noticed for only 5% replacement
of aggregates in Mix 1 and Mix 2, respectively.

This indicates that 5% replacement of fine aggregates with rubber has a significant
impact on the compressive strength reduction of GPC. However, the rate of reduction of
the compressive strength is not the same for higher doses of the crumb rubber.

Figure 11 shows that pre-treatment of rubber has a relatively consistent effect on the
strength reduction of both GPC Mix 1 and Mix 2. All CRGPC mixes show a consistent
difference in the reduction of their compressive strength for pre-treated and non-treated
rubber. Here, fnT denotes the compressive strength of non-treated rubber GPC, and fpT
denotes the compressive strength of pre-treated rubber GPC.
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Figure 11. Strength reduction ratio comparison between GPC mixes for rubber treatment.

3.2. Density of Concrete

A summary of the density of various GPC and CRGPC mixes used in this research is
presented in Table 7 and Figure 12. The test was conducted following AS 1012.5 [52]. It is
observed that with the increase of rubber content in the mix, the density of the concrete
decreases. As rubber particles possess a lower unit weight compared to that of the natural
sand, CRGPC exhibits a decreasing trend in density with the increase of the percentage of
rubber particles.



Materials 2024, 17, 1031 11 of 25

Table 7. Density of concrete GPC and CRGPC.

Mix ID Density (N/m3) Mix ID Density (N/m3)

M1 21,600 M2 21,700
M1 TC05 21,500 M2 TC05 21,500
M1 TC15 21,200 M2 TC15 21,450
M1 TC25 21,100 M2 TC25 21,350
M1 C05 21,400 M2 C05 21,550
M1 C15 21,300 M2 C15 21,400
M1 C25 21,200 M2 C25 21,300

TC = Treated Crumb Rubber; C = Crumb Rubber.
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3.3. Modulus of Elasticity

The stiffness of a material depends on the elastic modulus, EC, of that material. It is a
crucial parameter for concrete/geopolymer. The Modulus of Elasticity (MoE) is required
to analyse the deflection and seismic performance of concrete structures. In this study,
MoE is determined as the secant modulus measured at the 40% stress level of the average
compressive strength of a concrete specimen. The MoE of the specimens were obtained
from stress–strain curves of the representative samples and presented in Figure 13, which
clearly shows that MoE (Ec) of the GPC and CRGPC concrete has a trending relationship
with the compressive strength (fcm) of the concrete. The MoE of GPC mixes is determined
based on the average MoE of three specimens of the same batch of concrete from the same
mix. The MoE values of the different mixes are presented in Table 8.
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Table 8. The Modulus of Elasticity of GPC and CRGPC mixes.

Mix ID MoE (GPa) Batch MoE (GPa) Mix ID MoE (GPa) Batch MoE (GPa)

Mix 1
18.44

18.40 Mix 2
11.42

11.3718.75 11.67
18.01 11.03

M1 TC05
18.54

19.09 M2 TC05
9.9

9.9519.69 9.42
19.03 10.52

M1 TC15
17.28

17.24 M2 TC15
8.96

8.8517.79 9.19
16.65 8.41

M1 TC25
14.69

14.55 M2 TC25
9.24

9.1614.37 8.85
14.59 9.38

M1 C05
17.33

17.84 M2 C05
7.53

7.7817.94 7.52
18.24 8.28

M1 C15
21.27

20.55 M2 C15
7.13

7.2120.16 7.48
20.22 7.01

M1 C25
11.94

12.22 M2 C25
9.32

8.9512.48 8.47
11.88 9.07

TC = Treated Crumb Rubber; C = Crumb Rubber.

It is observed that MoE decreases with the increase of rubber content in the concrete
mix. When 25% of sand was replaced with pre-treated rubber, it caused a drop in MoE up
to 20%, whereas the non-treated crumb rubber resulted in a decrease of 36% of MoE for
25% sand replacement.

3.4. Stress–Strain Behaviour

Stress–strain curves of all GPC and CRGPC mixes are shown in Figures 14–17.
Figure 14 shows the stress–strain curve of Mix 1 and various mixes of treated CRGPC
originating from the core Mix 1. The result shows that with the increase of rubber content
in the mix, the overall strength of the concrete decreases. A decrease in peak strain at the
peak load is also noticed, along with the increase in rubber content.
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Figure 14. Stress–strain behaviour of GPC Mix 1 and pre-treated CRGPC.
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Figure 17. Stress–strain behaviour of GPC Mix 2 and non-treated CRGPC.

Figure 15 presents the stress–strain relationship of Mix 1 and various mixes of non-
treated CRGPC originating from the core Mix 1. The result presents similar behaviour to
the treated CRGPC, except all the values are lower than the pre-treated CRGP. The values
of peak strain obtained from the stress–strain curves are presented in Table 9.

Table 9. Strain at peak stress of GPC Mix 1 and CRGPC mixes.

Mix ID Strain at Peak Stress, (ε)

Mix 1 0.00333
M1 TC05 0.00289
M1 TC15 0.00305
M1 TC25 0.00242
M1 C05 0.00363
M1 C15 0.00235
M1 C25 0.00266

TC = Treated Crumb Rubber; C = Crumb Rubber.
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Figure 16 shows stress–strain curves of GPC Mix 2 and a treated CRGPC variation
of Mix 2. Figure 17 presents the stress–strain relationship of Mix 2 and various mixes of
non-treated CRGPC originating from the core Mix 2. The strain value at peak stress of Mix
2 and CRGPC variations of Mix 2 are presented in Table 10.

Table 10. Strain at peak stress of GPC Mix 2 and CRGPC mixes.

Mix ID Strain at Peak Stress, (ε)

Mix 2 0.00397
M2 TC05 0.00371
M2 TC15 0.00382
M2 TC25 0.00342
M2 C05 0.00403
M2 C15 0.00388
M2 C25 0.00330

TC = Treated Crumb Rubber; C = Crumb Rubber.

Based on the results, it is clearly understood that the addition of rubber into the GPC
mixes affects the stress–strain behaviour, and pre-treatment of rubber positively contributes
to the stress–strain behaviour.

3.5. Failure Mode

Under a compressive load, the shear fracture in a concrete cylinder is usually observed
to occur diagonally if the interparticle bond in the concrete is good.

It is observed from Figure 18a that GPC cylinders primarily failed in shear showing
diagonal cracks. However, with the increase of rubber content, the cracks in the cylinder are
observed to be steeper for CRGPC. With the increased rubber content, the adhesion between
rubber crumbs and binder/paste became weaker. However, Figure 18 shows that cracks in
the pre-treated rubber concrete are relatively less steep compared to that on non-treated
CRGPC. This indicates that a better inter-particle bond in the pre-treated CRGPC mixes
was developed when compared to that of the non-treated counterpart. Photos of the mode
of failure of two specimens from each mix are presented in Figure 18.
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4. Comparison with Codes and Models
4.1. Modulus of Elasticity (MoE) Comparison

The MoE of GPC and CRGPC obtained in the study was compared with the same
calculated using the Australian Standard (AS 3600-2018, clause 3.1.2) [53] and the American
Concrete Institution (ACI) 363R (1992). Although AS 3600-2018 and ACI-363R 1992 have
developed the equations for MoE for OPC concrete, they were used in the study.

Moreover, Mahdi Nematzadeh et al. [54] proposed an equation to predict the MoE of
OPC concrete. In the past, some researchers also attempted to develop equations for the
determination of MoE of GPC. For instance, Sreenivasulu Chitrala et al. [55] proposed an ex-
pression based on regression analysis of experimentally obtained data from GPC concrete.

Figures 19 and 20 show a comparative study among the MoE of GPC, treated CRGPC,
and non-treated CRGPC of this study and the same obtained from AS 3600-2018 and ACI-
363R 1992 [53,56]. This shows that the measured EC values of the experimental samples
are substantially lower than the predicted value calculated using AS 3600 and ACI models.
Hence, AS 3600 (2018) and ACI (1992) models are not suitable for determining the MoE of
GPC. The proposed models of Sreenivasulu Chitrala et al. and Mahdi Nematzadeh et al.
also provide much higher values than the measured values. Therefore, these models cannot
be suitably used to determine the MoE of geopolymer and CRGPC.
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Figure 19. Modulus of Elasticity versus compressive strength of GPC and pre-treated CRGPC [53–56].
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For non-treated CRGPC, Figure 20 shows that all the models considered in the study
provide significantly higher MoE values compared to the measured values.
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A decrease in the MoE was observed with the increase of rubber content in the mixes;
the findings are similar to many recent studies conducted by others [15,17–22].

4.2. Stress–Strain Behaviour Comparison

A well-established model for the stress–strain relationship of CRGPC is not read-
ily available. Consequently, existing models of stress–strain relationships are used in
this study.

4.2.1. Existing Models

Hardjito [57] highlighted that the stress–strain behaviour of GPC is similar to the
behaviour of OPC. In his study, he showed a good match of the stress–strain relationship
for GPC with the analytical model proposed by Collins et al. [58]. This model was also
endorsed by the research of Chitrala et al. [55] in the stress–strain behaviour analysis
of GPC.

Consequently, Popovics [59] proposed a model, which was developed for OPC. The
model also has a close match with the results of GPC mixes obtained in this research.
In recent years, Noushini et al. [60] proposed a stress–strain relationship model for fly
ash-based geopolymer concrete. Additionally, the fib model code 2010 [61] describes the
stress–strain relationship for short-term uniaxial compression.

4.2.2. Comparison with Existing Models

It is crucial to compare the existing models with experimental results of the study
to fully understand the models’ effectiveness in explaining the stress–strain behaviour of
CRGPC. Figures 21 and 22 illustrate the comparison of experimentally obtained stress–
strain data with the various existing models. Figure 21 presents stress–strain curves of GPC
Mix 1 and treated variants of CRGPC mixes, while comparing with the models of Collins
et al., Popovics et al., Noushini et al., and fib 2010. Figure 22 compares the experimental
stress–strain data of non-treated variants of CRGPC mixes originating from GPC Mix 1
with material models.
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Figure 21. Stress–strain model comparison for GPC Mix 1 with pre-treated CRGPC and non-treated
CRGPC mixes. (a) M1 stress–strain comparison with the model of Collins, Popovics, Noushini, and
fib 2010; (b) M1 TC05 stress–strain comparison with the model of Collins, Popovics, Noushini, and
fib 2010; (c) M1 TC15 stress–strain comparison with the model of Collins, Popovics, Noushini, and
fib 2010; (d) M1 TC25 stress–strain comparison with the model of Collins, Popovics, Noushini, and
fib 2010; (e) M1 C25 stress–strain comparison with the model of Collins, Popovics, Noushini, and
fib 2010; (f) M1 C15 stress–strain comparison with the model of Collins, Popovics, Noushini, and
fib 2010; (g) M1 C05 stress–strain comparison with the model of Collins, Popovics, Noushini, and
fib 2010.
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The models of Collins et al. and Popovics et al. were originally developed for OPC
concrete. The above figures show that ascending branches of experimental stress–strain
curves match the models of Collins et al. and Popovics et al. However, the slope of the
ascending part of the models started to deviate from the experimental results with the
increase of rubber content in the mix. The deviation is higher in the non-treated rubber
concrete when compared with the pre-treated counterpart. The descending part of the
experimentally obtained curves always showed values that were lower than any of the
models used. In both models, strain value at peak stress is obtained from the experimental
outcomes. Hence, the strain at peak stress has a close match with the experimental results.
However, the strain value at peak stress for the models of Noushini et al. and fib 2010 is
derived from the equation proposed in the models. From Figures 21 and 22, it is observed
that the experimentally obtained stress–strain relationship of the GPC and CRGPC samples
did not align with the model of Noushini et al. and fib 2010. The models either overestimate
or underestimate the strain at peak stress. From Table 11, it can be observed that for the
M1 specimens, the model of Noushini et al. predicted the strain at peak stress up to 91%
higher than the experimental results, whereas fib 2010 predicted up to 36% lower than the
experimental outcomes. For M2 specimens, the model of Noushini et al. predicted up to 51%
higher, and the fib 2010 model predicted up to 49% lower than the experimental results.
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Table 11. Experimental results of strain at peak stress comparison with the model of Noushini et al.
and fib 2010.

Mix ID
Noushini et al. Fib 2010

% Higher % Lower

M1 4.99 25.00
M1 TC05 38.38 13.51
M1 TC15 31.34 17.91
M1 TC25 85.84 3.25
M1 C05 26.74 36.63
M1 C15 91.41 14.93
M1 C25 69.11 24.84

M2 25.90 49.64
M2 TC05 34.66 46.14
M2 TC15 30.96 47.62
M2 TC25 46.26 41.49
M2 C05 23.41 50.64
M2 C15 28.88 48.45
M2 C25 51.15 39.54

Therefore, the above-mentioned models cannot be suitably used to predict the stress–
strain relationship of fly ash-based heat-cured GPC and CRGPC.

5. Proposed Models
5.1. Modulus of Elasticity Model

In this study, based on a regression analysis of the experimentally obtained data, a
model is proposed to predict the MoE of GPC and CRGPC. The model can be expressed as
the following equation.

EC = 463 fcm + 188 (MPa), (1)

where fcm is the mean compressive strength of GPC and CRGPC in MPa.
Figures 23 and 24 illustrate a well-fitted relationship between the proposed model

and experimental data. The data is provided under Table 12. However, for the pre-treated
CRGPC, the deviation of experimental results from the predicted model is relatively lower
when compared with non-treated CRGPC. Hence, the proposed model can be used to
predict the Modulus of Elasticity of heat-treated geopolymer concrete and crumb rubber
geopolymer concrete.
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Figure 23. Modulus of Elasticity versus compressive strength of GPC and pre-treated CRGPC for the
proposed model and experimental results.



Materials 2024, 17, 1031 20 of 25

Materials 2024, 17, x FOR PEER REVIEW 21 of 27 
 

 

 
Figure 23. Modulus of Elasticity versus compressive strength of GPC and pre-treated CRGPC for 
the proposed model and experimental results. 

 
Figure 24. Modulus of Elasticity versus compressive strength of GPC and non-treated CRGPC for 
the proposed model and experimental results. 

Table 12. Elastic modulus of GPC and CRGPC as of the model. 

Mix ID 
Experiment Proposed Model 

Mix ID 
Experiment Proposed Model 

(GPa) (GPa) (GPa) (GPa) 
Mix 1 18.40 19.84    

M1 TC05 19.09 19.41 M1 C05 13.50 16.63 
M1 TC15 17.24 16.99 M1 C15 20.55 16.18 
M1 TC25 14.55 13.50 M1 C25 12.23 13.50 

Mix 2 11.37 11.38    
M2 TC05 9.95 9.64 M2 C05 7.78 9.03 
M2 TC15 8.85 9.05 M2 C15 7.21 8.15 
M2 TC25 9.16 8.85 M2 C25 8.96 7.85 

TC = Treated Crumb Rubber; C = Crumb Rubber. 

5.2. Stress–Strain Model 
The suitability of the existing model in predicting the stress–strain relationship of 

GPC and CRGPC is discussed in Section 4.2. From the comparison of the experimental 
results with available models, the necessity of a new model to predict the stress–strain 
behaviour of GPC and CRGPC is understandable. Based on the analysis of the 

R² = 1

0

20

40

15 25 35 45
Experiment Proposed Model

(GPa)

R² = 0.9988

0

20

40

15 25 35 45

Experiment Proposed Model

(GPa)

Figure 24. Modulus of Elasticity versus compressive strength of GPC and non-treated CRGPC for the
proposed model and experimental results.

Table 12. Elastic modulus of GPC and CRGPC as of the model.

Mix ID
Experiment Proposed Model

Mix ID
Experiment Proposed Model

(GPa) (GPa) (GPa) (GPa)

Mix 1 18.40 19.84
M1 TC05 19.09 19.41 M1 C05 13.50 16.63
M1 TC15 17.24 16.99 M1 C15 20.55 16.18
M1 TC25 14.55 13.50 M1 C25 12.23 13.50

Mix 2 11.37 11.38
M2 TC05 9.95 9.64 M2 C05 7.78 9.03
M2 TC15 8.85 9.05 M2 C15 7.21 8.15
M2 TC25 9.16 8.85 M2 C25 8.96 7.85

TC = Treated Crumb Rubber; C = Crumb Rubber.

5.2. Stress–Strain Model

The suitability of the existing model in predicting the stress–strain relationship of GPC
and CRGPC is discussed in Section 4.2. From the comparison of the experimental results
with available models, the necessity of a new model to predict the stress–strain behaviour
of GPC and CRGPC is understandable. Based on the analysis of the experimental data, a
model of the stress–strain relationship for GPC and CRGPC is proposed. The proposed
model can be expressed as the equation below.

σc = fcm
n(εc/ε′c)

n − 1 + (εc/ε′c)n (MPa), (2)

where n = n1 = [1.02 − 1.17 (Esec/Ec)]−0.95, if εc ≤ ε′c, for GPC; n1 = [1.02 − 1.17 (Esec/Ec)]−0.85,
if εc ≤ ε′c, for CRGPC; n2 = n1 + (ϖ + 28 × ζ), if εc > ε′c; ϖ = 17 (12.4 + 0.015 fcm)−0.95,
for GPC; ϖ = 17 (12.4 + 0.015 fcm)−1.5, for treated CRGPC; ϖ = 17 (12.4 + 0.015 fcm)−1, for
non-treated CRGPC; ζ = 0.83 e(−911/fcm

); Esec = fcm/ε′c; ε′c = 2.23 × 10−7EC
1.74

fcm
1.98 ; Ec = obtained

from Equation (1) fcm and ε′c are obtained experimentally.
Figures 25–28 present a comparison of the stress–strain relationship between experi-

mental results and the proposed model. It is observed from the mentioned figures that the
proposed stress–strain model fits well with the experimental data. To check the suitability
of the proposed model, the stress–strain relationship following the fib 2010 model is also
plotted in Figures 25–28. However, the strain value at peak stress is replaced with the ex-
perimental value. Modified fib 2010 fits very well when no rubber is added to the concrete
specimens. With the increase of rubber content in the specimens, both the ascending and
descending part of the curve deviates from the proposed model and experimental result.
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Figure 25. Experimental stress–strain comparison with the proposed model for GPC Mix 1 and
pre-treated CRGPC mixes. (a) M1 stress–strain comparison with proposed model and modified
fib; (b) M1 TC05 stress–strain comparison with the proposed model and modified fib; (c) M1 TC15
stress–strain comparison with the proposed model and modified fib; (d) M1 TC25 stress–strain
comparison with the proposed model and modified fib.
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Figure 26. Experimental stress–strain comparison with the proposed model for GPC Mix 1 and
non-treated CRGPC mixes. (a) M1 stress–strain comparison with proposed model and modified
fib; (b) M1 C15 stress–strain comparison with the proposed model and modified fib; (c) M1 C25
stress–strain comparison with the proposed model and modified fib.
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Figure 27. Experimental stress–strain comparison with the proposed model for GPC Mix 2 and
pre-treated CRGPC mixes. (a) M2 stress–strain comparison with the proposed model and modified
fib; (b) M2 TC05 stress–strain comparison with the proposed model and modified fib; (c) M2 TC15
stress–strain comparison with the proposed model and modified fib; (d) M2 TC25 stress–strain
comparison with the proposed model and modified fib.
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Figure 28. Experimental stress–strain comparison with the proposed model for GPC Mix 2 and
non-treated CRGPC mixes. (a) M2 C05 stress–strain comparison with the proposed model and
modified fib; (b) M2 C15 stress–strain comparison with the proposed model and modified fib; (c) M2
C25 stress–strain comparison with the proposed model and modified fib.
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5.3. Strain at Peak Stress

Strain at peak stress plays an important role in predicting the stress–strain behaviour
of GPC and CRGPC. It is observed from Figures 25–28 that when the strain value at peak
stress for the fib 2010 model is replaced with the experimentally obtained value, it matches
well with the experimental stress–strain behaviour of GPC and CRGPC. Due to a lack of
data, a model to predict strain at peak stress was not developed.

6. Conclusions

Fine aggregates of geopolymer concrete (GPC) were replaced with pre-treated and non-
treated rubber crumbs to produce crumb rubber geopolymer concrete (CRGPC). Emphasis
was given to assessing the mechanical properties of CRGPC obtained from the standard
compression tests (deformation controlled) on cylinder specimens. Based on the results,
new material models are proposed to accurately predict the mechanical properties of
CRGPC. The following conclusions have been drawn from this experimental investigation:

1. The compressive strength of CRGPC decreases with the increase of rubber content
in the mix. For a 25% fine aggregate replacement with crumb rubber, a 33% strength
reduction is observed to happen.

2. Pre-treated rubber particles provided relatively higher compressive strength com-
pared to non-treated rubber particles. Rubber pre-treatment contributed a 4% to 9%
increase in the compressive strength.

3. It is also understood that the relationship between the compressive strength and the
percentage of replacement of rubber in concrete is not linear for CRGPC.

4. With the increase of rubber content in CRGPC mixes, the Modulus of Elasticity
decreases. The decrease is observed to be higher in non-treated CRGPC compared to
treated rubber aggregates. For the pre-treated CRGPC, MoE is observed to drop up to
20%; however, for non-treated CRGPC, MoE is observed to drop up to 36%.

5. The CRGPC cylinders showed vertical cracking, with no well-formed cone under the
co-axial load.

6. To predict the Modulus of Elasticity and stress–strain of GPC and CRGPC, the existing
models for conventional concrete are found to be not suitable. However, the proposed
models can reasonably predict the Modulus of Elasticity and stress–strain properties
of heat-cured GPC and CRGPC.
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