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Abstract: The increasing emission of carbon dioxide into the atmosphere has urged the scientific
community to investigate alternatives to alleviate such emissions, being that they are the principal
contributor to the greenhouse gas effect. One major alternative is carbon capture and utilization
(CCU) toward the production of value-added chemicals using diverse technologies. This work aims
at the study of the catalytic potential of different cobalt-derived nanoparticles for methanol synthesis
from carbon dioxide hydrogenation. Thanks to its abundance and cost efficacy, cobalt can serve as an
economical catalyst compared to noble metal-based catalysts. In this work, we present a systematic
comparison among different cobalt and cobalt oxide nanocomposites in terms of their efficiency as
catalysts for carbon dioxide hydrogenation to methanol as well as how different supports, zeolites,
MnO2, and CeO2, can enhance their catalytic capacity. The oxygen vacancies in the cerium oxide act as
carbon dioxide adsorption and activation sites, which facilitates a higher methanol production yield.

Keywords: carbon dioxide hydrogenation; methanol synthesis; nanomaterials; heterogeneous catalysis;
metal–support interaction

1. Introduction

Nowadays, one of the main worldwide concerns is the slow but unstoppable rise in
global average temperature, a direct cause of climate change that seems almost unavoidable.
The high quantities of greenhouse gases emitted into the atmosphere, of which carbon
dioxide emissions are the most important, predict an increase in the Earth’s temperature
by 2040 of approximately 1.5 ◦C compared to the data recorded at the end of the 19th
century [1]. Such predictions have alerted the scientific community to develop protocols
to lower carbon dioxide emissions, which can be classified according to whether they are
carbon capture and storage (CCS) or carbon capture and utilization (CCU) methods. On
one hand, CCS methods consist of capturing and storing the gas, and it is so efficient that it
could account for almost 20% of the carbon dioxide reduction. Nevertheless, it can be quite
costly because industrial-scale installations have to be built. Unfortunately, fossil fuels are
still needed as an energy source for this treatment, so carbon dioxide reduction will never
be fully completed [2].

On the other hand, CCU results are remarkably interesting since CCU does not only
deal with the storage of carbon dioxide but it takes advantage of this gas as a valuable
carbon resource for chemical conversion into other products. This is a more viable strategy,
as it could not only keep the atmospheric concentration of CO2 at acceptable levels but also
provide high added-value chemical/fuel products, such as methane and methanol [3,4].
Among all the technologies, carbon dioxide hydrogenation has been considered a promising
alternative for obtaining some products from carbon dioxide. An attractive possibility is
the production of methanol, a chemical compound that has a wide range of applications.
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For instance, it can be used as a solvent to obtain several chemicals (formaldehyde, acetic
acid, etc.), as well as in the conversion process to olefins, which can be used to produce
hydrocarbon fuels and their derivatives that are currently obtained from petroleum [5,6].

Carbon dioxide hydrogenation to methanol occurs through two competing reactions.
The first step is the methanol synthesis from carbon dioxide and hydrogen:

CO2 + 3H2 → CH3OH + H2O ∆H0
298K = −49.5 kJ/mol (1)

The second step is known as the reverse water–gas shift reaction (RWGS), leading to
carbon monoxide production:

CO2 + H2 → CO + H2O ∆H0
298K = 41.2 kJ/mol (2)

In addition, methanol can be indirectly produced from carbon monoxide hydrogena-
tion via the RWGS reaction [7]:

CO + 2H2 → CH3OH ∆H0
298K = −90.6 kJ/mol (3)

The synthesis of methanol is thermodynamically favored at low temperatures and
high pressures [8,9].

In recent years, bimetallic catalysts have been elaborately studied owing to their chem-
ical, electronic, and structural characteristics. Additionally, the synergy between metals
leads to the generation of a catalytic system, which, unlike monometallic systems, presents
advantages in terms of catalytic activity, methanol selectivity, and catalyst stability [10].
The catalysts for carbon dioxide hydrogenation to methanol studied more comprehensively
include Cu-Zn-based catalysts, although other bimetallic catalysts such as Pd-Zn, Pd-Ga,
Cu-Ni, and Ni-Ga have been investigated as well [7]. In addition to these mentioned cata-
lysts, methanol has also been obtained using cobalt-based catalysts. Stangeland et al. [11]
demonstrated that Co3O4/MnOx was efficient in the production of methanol at mild pres-
sures, but a variety of by-products were also obtained. These authors achieved a manifold
increase in methanol yield with Co3O4/MnOx catalysts compared to Cu/Zn-based cata-
lysts under similar reaction conditions [11]. Wang et al. [12] investigated silica-supported
cobalt catalysts with the aim of accelerating the selectivity of methanol obtained from the
carbon dioxide hydrogenation, and they showed that silica incorporation in the cobalt
catalysts improved both carbon dioxide conversion and selectivity toward methanol.

One of the significant features of cobalt-based catalysts is their potential to catalyze
various carbon dioxide conversion reactions such as methanation [13,14], synthesis of
higher alcohols [15,16], or methanol synthesis [11,12,17,18]. In these investigations, it was
shown that the selectivity of these catalysts can be impacted by the use of different supports.
In the present study, different supports including zeolite, manganese oxide, and cerium
oxide have been investigated to increase the catalytic activity of cobalt-based catalysts. It is
hypothesized that different metal–support interactions between cobalt nanoparticles and
the support will enhance the catalytic sites, leading to higher methanol yield and selectivity.
Zeolites with a microporous three-dimensional structure based on SiO4 and AlO4 present
substantial catalytic and adsorption properties [19]. Cerium oxide is a non-toxic oxide,
which is of great importance in catalysis due to its ability to store and supply oxygen [20,21].
It provides a large number of oxygen vacancies on the surface, which can function as sites
for the adsorption and activation of carbon dioxide. Manganese oxide is a mesoporous
support and its effect as support for nanocatalysts used for carbon dioxide hydrogenation
to methanol has not been reported [11].

Capping agents are reported to be significant stabilizers since they counteract the
attraction between nanoparticles, thus inhibiting their overgrowth and aggregation. These
agents are amphipathic molecules that are characterized by having a polar head group and a
non-polar tail, and due to this amphipathic property, they improve compatibility with other
phases. Different types of protection agents have been implemented in the synthesis of
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nanomaterials (surfactants, polymers, polysaccharides, etc.), aiming to obtain nanoparticles
of smaller sizes, which will lead to the highest surface area of nanoparticles [22,23]. In
this study, the agglomeration of the synthesized nanoparticles was controlled by steric
stabilization using polyvinylpyrrolidone (PVP).

This work is centered on studying the catalytic activity of supported and unsupported
cobalt-based nanoparticles. The aim is to evaluate this type of nanomaterial in order to
obtain high methanol production yields and high selectivity under mild pressure and
temperature conditions.

2. Materials and Methods
2.1. Materials

Sodium borohydride (NaBH4) (99.0%), cobalt (II) chloride hexahydrate (CoCl2·6H2O)
(99.0%), polyvinylpyrrolidone (PVP), sodium carbonate (Na2CO3) (99.5%), zeolite, cerium
(III) nitrate hexahydrate (Ce(NO3)3·6H2O (99.0%), sodium hydroxide (NaOH) (98.0%),
manganese (II) sulfate monohydrate (MnSO4·H2O) (99.0%), and potassium permanganate
(KMnO4) (99.5%) were all purchased from Sigma-Aldrich (Barcelona, Spain). A mixed-gas
bottle of carbon dioxide and hydrogen with a molar ratio of 1:3, respectively, was provided
by Carburos Metálicos S.A. (Barcelona, Spain).

2.2. Synthesis of Nanocomposites
2.2.1. Co nanoparticles Synthesis

Co nanoparticles were synthesized by the chemical reduction method. A total of
1.10 g of cobalt (II) chloride hexahydrate was dissolved in 100 mL of deionized water with
magnetic stirring and nitrogen bubbling to avoid the oxidation of cobalt. Then, a solution
of sodium borohydride (0.25 M) was added dropwise, and the solution was left to stir for
20 min to ensure all the cobalt was reduced [24]. Once the reaction was complete, the pH
reached 9.3, and cobalt nanoparticles were separated using a magnet. The product was
washed three times with deionized water to remove any impurities and dried in an oven
at 105 ◦C overnight. Co nanoparticles with PVP were synthesized via a similar route by
adding 1.10 g of PVP to the cobalt (II) chloride hexahydrate solution.

2.2.2. Co3O4 Nanoparticles Synthesis

Co3O4 nanoparticles were synthesized via the co-precipitation method. Briefly, 0.61 g
of cobalt (II) chloride hexahydrate was dissolved in 100 mL of deionized water using
magnetic stirring for 20 min. The synthesis was performed in a 500 mL Scharlau Minireactor
HME-R/500 with mechanical stirring and heating at constant ambient pressure. Cobalt (II)
chloride hexahydrate solution was added to the reactor and the precipitation agent, sodium
carbonate solution (1 M), was added dropwise at a flow rate of 5 mL/min using a peristaltic
pump (Watson Marlow SCI 400, Watson-Marlow GmbH, Rommerskirchen, Germany), and
the solution was left to age at 60 ◦C for 5 h with constant stirring at 120 rpm. The Co3O4
nanoparticles were obtained after centrifuging three times for 15 min at 5000 rpm and
drying at 105 ◦C overnight [24]. Co3O4 nanoparticles with PVP were synthesized via a
similar route by adding 0.62 g PVP to the cobalt (II) chloride hexahydrate solution.

2.2.3. MnO2 Nanoparticles Synthesis

The co-precipitation method was also employed for the synthesis of MnO2 nanopar-
ticles. A total of 3.12 g of manganese (II) sulfate monohydrate was dissolved in 100 mL
deionized water. The potassium permanganate solution (0.15 M) was added to the above
solution dropwise, and the mixture was vigorously stirred in a Scharlau Minireactor HME-
R/500 (Barcelona, Spain) at 80 ◦C for 5 h. Then, a sodium hydroxide solution was added
dropwise to adjust the pH to 11. Afterwards, the nanoparticles were centrifuged and
washed three times with deionized water. Finally, the nanoparticles obtained were dried at
105 ◦C for 12 h [25].
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2.2.4. Co3O4/Zeolite Nanocomposite Synthesis

To immobilize the Co3O4 nanoparticles onto zeolite, the same Co3O4 synthesis de-
scribed above was followed. In 200 mL of ultrapure water, 1 g of zeolite was dispersed in
an ultrasound bath for 15 min. Once zeolite was dispersed, it was transferred to the reactor,
and the same Co3O4 synthesis procedure was performed.

2.2.5. CeO2 Nanoparticle Synthesis

CeO2 nanoparticles were synthesized through a co-precipitation method as well. A
total of 5.12 g of cerium (III) nitrate hexahydrate was dissolved in another 100 mL of
deionized water. Then, 1.88 g of the precipitant agent, sodium hydroxide, was dissolved
in 100 mL of deionized water and was added dropwise to cerium solution in a reactor
(Scharlau Minireactor HME-R/500, Scharlab, Barcelona, Spain) with mechanical agitation
using a peristaltic pump at 7 mL/min. The solution was then left for 15 min under stirring.
Eventually, the precipitates obtained were centrifuged, washed with deionized water three
times, and then dried at 105 ◦C overnight [26].

2.2.6. Co3O4/CeO2 Nanocomposite Synthesis

To immobilize the Co3O4 nanoparticles onto CeO2, the same Co3O4 synthesis proce-
dure was followed. In 200 mL of deionized water, the nanoparticles of CeO2 were scattered
in an ultrasound bath for 15 min. Once dispersed, the same Co3O4 synthesis procedure
was carried out, but first, the solution of the CeO2 nanoparticles was transferred to the
reactor. The resulting weight ratio of Co3O4 nanoparticles and CeO2 supports was 2:1
(g/g), respectively.

2.2.7. Co3O4/MnO2 Nanocomposite Synthesis

Co3O4 nanocomposites were synthesized using the co-precipitation method. The
same Co3O4 synthesis procedure followed, but first, the previously synthesized MnO2
nanoparticles were dispersed in 200 mL of deionized water in an ultrasound bath for
15 min. Subsequently, the same Co3O4 synthesis was followed after MnO2 was added to
the reactor. The resulting weight ratio of Co3O4 nanoparticles and MnO2 supports was 2:1
(g/g), respectively.

2.3. Characterization of Catalysts

X-ray diffraction (XRD) was used to perform a structural analysis of the nanoparticles
and their crystallographic structure. All the analyses were conducted after the materials
had been thermally treated. A diffractometer (PANalytical X’Pert, Malvern Panalytical,
Malvern, UK) using Cu-Kα radiation was employed to record the X-ray diffraction patterns.
The measurements were conducted at room temperature in a range of 10.0–80.0◦ on 2θ
with a step size of 0.026◦. The data analysis was completed by simulating the nanoparticles’
crystallinity with the X’Pert High Score (PANalytical) software (Version 3.0.5). A scanning
electron microscope (SEM) (FEI Quanta 650F ESEM, FEI, Hillsboro, OR, USA) equipped
with an energy-dispersive spectroscopy (EDS) source was used to determine the morphol-
ogy, size distribution, and composition of the nanoparticles. Samples were prepared on
copper and graphite grids (TED PELLA, Inc., Redding, CA, USA). The microstructure,
the size, morphology, and size distribution of the nanoparticles were determined using a
transmission electron microscope (TEM) (FEI TECNAI G2 F20, FEI, Hillsboro, OR, USA).
The samples were analyzed using copper grids (TED PELLA, Inc., Redding, CA, USA). An
AutoChem (Micromeritics) instrument using 12 vol% H2/Ar at a flow of 50 N mL·min−1

in a temperature range of 35−800 ◦C at a heating ramp of 10 ◦C·min−1 was used for
temperature-programmed reduction (H2-TPR) measurements. The amount of H2 uptake
was measured with a thermal conductivity detector. A total of 100 mg of the sample was
used for each measurement.
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2.4. Catalytic Activity Test

The catalytic test was carried out in a stainless-steel fixed-bed reactor. Prior to the
tests, samples were calcinated at 500 ◦C for 4 h, and those containing elemental cobalt
were reduced by a hydrogen flow of 40 mL/min at 350 ◦C for 2 h. The catalyst samples
were fixed between two layers of glass wool at each end of the reactor. The catalytic tests
were carried out under two moderate pressure values of 10 and 15 bar. The flow rate
of the stoichiometric H2/CO2 mixture was 10 mL/min. To study the impact of reaction
temperature on the catalytic activity, the reaction was performed at temperatures ranging
from 180 to 280 ◦C. After fixing each temperature, catalysts were stabilized for half an
hour, resulting in a total time of operation of more than four hours. Sampling bags (SKC
FlexFoil PLUS Sample Bag, SKC, Seoul, Republic of Korea) were utilized to collect the
gas samples, and methanol was measured in a gas chromatograph (Shimadzu GC-2010,
Shimadzu, Kyoto, Japan) with a flame ionization detector (FID) using helium as carrier gas.
The software used was Chromeleon (Version 6.80 SR5b), the inlet temperature was 260 ◦C,
and the flow was 50 mL/min; the detector temperature was 280 ◦C. An Agilent 7890B
chromatograph (Agilent, Santa Clara, CA, USA) was used to measure carbon monoxide
and dioxide, employing a thermal conductivity detector (TCD) and helium as the carrier
gas. The software used was OpenLab (Version A.01.04), the inlet temperature was 120 ◦C,
the inlet flow was 20 mL/min, and the detector temperature was 150 ◦C. To study the
catalytic activity, methanol space–time yield (STY), as well as methanol selectivity, were
calculated according to the following equations. Carbon monoxide was observed to be the
only side-product of the reaction.

CH3OH STY
(

g
kgcat × h

)
=

(
Mass of methanol (g) formed

Wcat(kg)× Hour

)
(4)

CH3OH Selectivity(%) =

(
moles of methanol formed

n[CO2]in − n[CO2]out

)
× 100 (5)

3. Results and Discussion
3.1. Structural and Morphological Characterization of Nanomaterials

The XRD patterns obtained for cobalt and cobalt oxide with and without capping
agents (PVP) and their corresponding simulations using PANALYTICAL X’Pert High
Score software are presented in Figure 1. As is shown, the peaks at diffraction angles
of 2θ of 19.05◦, 31.27◦, 36.90◦, 38.56◦, 44.82◦, 55.70◦, 59.40◦, 65.30◦, 74.14◦, and 77.14◦

correspond to the (111), (220), (311), (222), (400), (422), (511), (440), (620), and (533) planes of
Co3O4 [11,23,27]. Furthermore, the peaks at 2θ of 44.23◦ (111) and 51.52◦ (200) corresponded
to Co nanoparticles [24]. It can also be observed that the XRD spectra of the synthesized
materials are very similar to the simulation, which means a high level of purity and
crystallinity. Regarding the Co3O4 and Co with and without PVP, it was observed that
PVP did not interfere with the crystallinity of cobalt and cobalt oxide nanoparticles. As
can be seen, there is no presence of cobalt oxide in the cobalt XRD patterns, indicating
that the synthesis of cobalt nanoparticles was satisfactory, and all the nanoparticles were
completely reduced.

The X-ray diffraction patterns of all the supports are shown in Figure 2. Regarding
two of the supports, CeO2 and MnO2, it is observed that not all the peaks observed in the
simulation correspond to the peaks observed in the synthesized sample, which indicates
that these samples are not completely crystalline. However, the peaks obtained for the
zeolite sample show a more crystalline structure, with a spectrum that is more similar to
the simulation than in the case of the other two supports.
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zeolite simulation; MnO2; MnO2 simulation.

The X-ray diffraction patterns of the nanoparticles and their supports are shown in
Figure 3. Regarding the highest peaks of Co3O4/zeolite, it is observed that the first peaks
are associated with zeolite since the X’Pert High Score software determined that they
correspond to the two typical elements of zeolite (aluminum and silicon) [28]. Small peaks
corresponding to Co3O4 were also observed at the following angles: 19.05◦, 31.27◦, 36.90◦,
38.56◦, 44.82◦, 55.70◦, 59.40◦, and 65.30◦. Regarding the XRD patterns of Co3O4 /CeO2, it is
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observed that the peaks situated at the angles of 28.50◦, 33.10◦, 47.50◦, 56.30◦, 69.40◦, 76.70◦,
and 79.10◦ belong to CeO2. They are associated with planes (111), (200), (220), (311), (400),
(331), and (420), respectively (Figure 3) [27]. Moreover, other characteristic peaks of Co3O4
are seen at angles 19.05◦, 31.27◦, 36.90◦, 38.56◦, 44.82◦, 59.4◦, and 65.30◦ (Figure 3) [29,30].
Finally, in the Co3O4/MnO2 patterns, the peaks of both materials can also be visualized
(Figure 3). The angles 24.50◦, 41.60◦, 50.30◦, 54.70◦, 63.70◦, 72.30◦, and 79.19◦ correspond to
Co3O4/MnO2 and are related to the (110), (120), (220), (231), (130), (343), and (330) planes
(Figure 3) [31,32]. Another wide peak around 58◦ is probably the peak at 59.4◦ attributed to
Co3O4, which is broadened due to the interaction with MnO2. The other profiles observed
correspond to the cobalt oxides present in the sample since they coincide with the Co3O4
angles described above. This means that there is a coexistence of elemental cobalt and its
oxidized species in the sample.

Materials 2024, 17, x FOR PEER REVIEW 8 of 18 
 

 

to Co3O4, which is broadened due to the interaction with MnO2. The other profiles ob-
served correspond to the cobalt oxides present in the sample since they coincide with the 
Co3O4 angles described above. This means that there is a coexistence of elemental cobalt 
and its oxidized species in the sample. 

 
Figure 3. XRD patterns of the following samples: Co3O4/CeO2; Co3O4/MnO2; Co3O4/zeolite. 

The characterization and morphology study of the materials was performed using a 
scanning electron microscope (SEM) and a transmission electron microscope (TEM). Fig-
ure 4C shows the SEM image of the Co3O4 nanoparticles, which presents an irregular 
shape with a high degree of agglomeration, as previously reported [24]. Nevertheless, 
when PVP was added, the nanoparticles were smaller and with a more spherical geometry 
(Figure 4D). The nanoparticle sizes were determined by analyzing TEM images with Im-
ageJ software (Version 1.46r) (Figure 5). The mean size for Co3O4 nanoparticles was 27 ± 5 
nm (Figure 5B), whereas when PVP was used, the size was reduced to 15 ± 2.5 nm (Figure 
5B,E), confirming the observation of SEM images. It is reported in the literature that by 
adding a capping agent, the nanoparticles are smaller, and this effect leads to an increase 
in the surface area of the catalyst, which means that the active sites are more exposed 
[22,23]. Therefore, the catalytic activity of the catalyst increases. The morphology of cobalt 

Figure 3. XRD patterns of the following samples: Co3O4/CeO2; Co3O4/MnO2; Co3O4/zeolite.



Materials 2024, 17, 697 9 of 18

The characterization and morphology study of the materials was performed using
a scanning electron microscope (SEM) and a transmission electron microscope (TEM).
Figure 4C shows the SEM image of the Co3O4 nanoparticles, which presents an irregular
shape with a high degree of agglomeration, as previously reported [24]. Nevertheless,
when PVP was added, the nanoparticles were smaller and with a more spherical geometry
(Figure 4D). The nanoparticle sizes were determined by analyzing TEM images with
ImageJ software (Version 1.46r) (Figure 5). The mean size for Co3O4 nanoparticles was
27 ± 5 nm (Figure 5B), whereas when PVP was used, the size was reduced to 15 ± 2.5 nm
(Figure 5B,E), confirming the observation of SEM images. It is reported in the literature
that by adding a capping agent, the nanoparticles are smaller, and this effect leads to an
increase in the surface area of the catalyst, which means that the active sites are more
exposed [22,23]. Therefore, the catalytic activity of the catalyst increases. The morphology
of cobalt nanoparticles with and without PVP is shown in Figure 4A,B, respectively. The
same effect is observed when PVP was added to the synthesized material: the morphology
obtained is well defined and the particles are smaller.

SEM images of nanoparticles embedded in a support are presented in Figure 6. Co3O4
nanoparticles immobilized on zeolite show a granular morphology (Figure 6A). The TEM
image of the same sample shows a good dispersion of cobalt oxide nanoparticles, and a
mean size of 13 ± 1.7 nm (Figure 5D), which means that these cobalt oxide nanoparticles are
even smaller than those synthesized in the presence of PVP. It is reported in the literature
that the use of a support helps to obtain nanoparticles with better distribution and a higher
surface area [30]. In Figure 6C, Co3O4 nanoparticles supported on CeO2 can be observed,
demonstrating that the nanoparticles have a very small size and a good distribution. Indeed,
the Co3O4 nanoparticles supported on CeO2 analyzed with TEM (Figure 5C) reveal a size of
22.6 ± 4.2 nm for the former, which is slightly smaller than unsupported Co3O4 (27 ± 5 nm).
Figure 5C also shows a good interaction between cobalt and cerium oxide nanoparticles.
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Co3O4 nanoparticles embedded in MnO2 show an aggregated morphology, as previ-
ously reported in the literature (Figure 6B) [25]. This fact is also shown in the TEM image
of the same sample (Figure 5E).

The elemental composition of the catalyst samples was determined by energy disper-
sive spectrometry (EDX). This analysis was carried out on the nanoparticles immobilized
on the three tested different supports in order to confirm the presence of the expected
elements and possible impurities. The content of the latter is expressed in the “others”
row in Tables 1–3 and includes mainly chloride, sodium, and potassium coming from the
synthesis process. As observed with XRD, the EDX spectrum of Co3O4/zeolite confirms
the presence of expected chemical elements (Co, Al, Si) (Table 3) [33]. Nevertheless, a
very small presence of impurities from the reducing agent used during the synthesis was
also detected, indicating that the material should have been washed more times. Co and
Ce were detected in the Co3O4/CeO2 sample as expected (Table 2). In the Co3O4/MnO2
sample (Table 1), the presence of Co and Mn elements was detected, as well as a very small
amount of sodium and potassium.

Table 1. Element quantification with EDX of Co3O4/MnO2 material.

Element Weight (%) Atomic (%)

C 28.60 43.21
O 38.52 43.68

Mn 14.38 4.75
Co 14.15 4.36

Others 3.81 3.58
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Table 2. Element quantification with EDX of Co3O4/CeO2 material.

Element Weight (%) Atomic (%)

C 5.44 16.78
O 24.06 55.74
Co 21.43 13.48
Ce 48.46 12.82

Others 0.61 1.18

Table 3. Element quantification with EDX of Co3O4/zeolite material.

Element Weight (%) Atomic (%)

C 46.01 58.85
O 35.51 34.10
Si 2.12 1.16
Al 2.25 1.28
Co 11.83 3.08

Others 2.28 1.53

The reducibility of the Co3O4 catalyst supported on different supports was investi-
gated by hydrogen temperature-programmed reduction (H2-TPR) in a 50–800 ◦C temper-
ature range. The corresponding TPR profiles are shown in Figure 7. As can be observed,
a different reduction behavior is obtained for the Co3O4 when supported on different
materials as a result of the metal–support interaction between Co3O4 and the support. The
reduction behavior of all samples can be seen to consist of two main peaks. The first peak
at lower temperatures (250–300 ◦C) can be attributed to the well-dispersed Co3O4, while
the peaks at higher temperatures (400–500 ◦C) correspond to the reduction in bulk Co3O4.
In general, MnO2 seems to have had the most constructive effect on the reducibility of
Co3O4 since the peak corresponding to bulk Co3O4 disappeared and the peaks at lower
temperatures corresponding to the well-dispersed Co3O4 strengthened significantly in the
TPR profile of Co3O4/MnO2, demonstrating a strong metal–support interaction between
Co3O4 and MnO2, leading to better dispersion of Co3O4 nanoparticles. However, this result
was not supported by TEM images, as previously discussed.
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Zeolite can be seen to have also affected the reduction behavior of Co3O4, as there
is a broad peak at 250–500 ◦C for the sample Co3O4/zeolite, while no peak at higher
temperatures can be observed. In addition, CeO2 support seems to have had a slightly
positive effect on the reducibility of Co3O4, as the peak at higher temperatures in the TPR
profile of Co3O4/CeO2 also disappeared, while two peaks appeared at 250–350 ◦C. Finally,
comparing the profile of Co3O4 and Co3O4/PVP, although there can be seen a slight shift
to lower temperatures for the first peak related to dispersed Co3O4 and a slight shift to
higher temperatures for the peak related to bulk Co3O4, it can be stated that there is no
significant change in the reducibility of Co3O4 when synthesized using PVP, showing that
the metal–support interaction can be considered negligible for the catalyst Co3O4/PVP.

3.2. Catalytic Activity of the Catalysts

To study the catalytic activity of the samples, methanol STY and selectivity were
obtained. Figure 8 presents methanol STY for cobalt and its oxide as a function of operating
temperature at pressures of 10 and 15 bar, respectively. The error bars have not been
included in the STY figures due to their low values. The effect of the reaction temperature
was also investigated, and it can be seen that for cobalt samples methanol STY increases
gradually as the temperature rises. However, for the Co3O4 catalyst, this increase was
not so evident operating at 10 bar, and when the operating pressure was 15 bar, a slight
decrease in the STY values as the temperature rises can be detected. On the contrary, in the
case of cobalt, the results showed that a better catalytic activity is obtained at 15 bar, which
is an expected result, as the use of high pressures is advantageous due to the exothermic
nature of the reaction [8,11].
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Furthermore, the catalytic activity of cobalt and cobalt oxide was compared in terms
of STY and selectivity to understand which cobalt species presents the active sites more
favorable for methanol synthesis. As can be observed in Figure 8, cobalt nanoparticles
give a methanol STY of 3.2 g·kgcatalyst

−1h−1, while only 0.25 g·kgcatalyst
−1h−1 was obtained

for cobalt oxide nanoparticles. Hence, metallic cobalt possesses active sites catalyzing the
methanol synthesis from the carbon dioxide hydrogenation reaction more efficiently. This
is due to the fact that the selectivity of the reaction is much more favored for methanol
formation than for carbon monoxide production when cobalt is used instead of Co3O4
because the latter material is highly selective toward methane and carbon monoxide
formation [34,35]. In many studies, this effect has been attributed to a lower carbon
dioxide adsorption on the cobalt surface compared to Co3O4, which favors the formation
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of products, such as methane, when using the oxide [36]. However, the catalyst selected for
this study was cobalt oxide due to its high stability compared to elemental cobalt [37].

Two ways to improve the catalytic activity working with cobalt oxide nanoparticles
were studied: (a) the addition of polyvinylpyrrolidone (PVP), in order to restrain the over-
growth of the nanoparticles, and (b) the addition of a support, to improve the synergistic
effect between the nanoparticles and the support. A comparison of the catalyst’s perfor-
mance with and without PVP was carried out to analyze the effect of this polymer on the
materials. The results are shown in Figure 9. By adding PVP in the synthesis of Co3O4,
higher methanol STY was obtained, which is accounted for by the smaller size of Co3O4
nanoparticles, showing a more spherical morphology (Figure 4C,D). This aspect leads to a
higher specific surface area and, therefore, more availability of the catalytic sites.
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In order to investigate the impact of supports on the catalytic activity of Co3O4
nanoparticles, they were immobilized on different supports including zeolite, CeO2, and
MnO2. As seen in Figure 10, more methanol STY was obtained when immobilizing Co3O4
on CeO2. This can be attributed to the strong metal–support interaction between Co3O4
and CeO2, which generates interfacial sites that can synergistically catalyze the methanol
synthesis reaction. In addition, oxygen vacancies present in CeO2 are also assumed to
facilitate the adsorption and activation of carbon dioxide [8,20,21,38]. The other support
studied was zeolite, which resulted in an improvement of methanol production since the
presence of aluminum atoms in these silicate-based materials provides negative charges
that are compensated by exchangeable cations in the pore space, and these porous char-
acteristics in the zeolite structure are those that allow greater carbon dioxide adsorption
capacity [22,37,39]. Co3O4 immobilized on MnO2 also resulted in more methanol STY com-
pared to Co3O4. This is probably a result of the interactional effect of the two materials, as
the catalytic activities of the individual materials are lower and less selective for methanol
(Figure 8), indicating the importance of the architecture and nature of the interface [11].
Comparing the methanol STY of the three supports studied, CeO2 revealed the best results
as a support of Co3O4, which can be due to the oxygen vacancies promoting carbon dioxide
adsorption and activation, as well as the generation of the interfacial sites between CeO2
and Co3O4, hence favoring the methanol synthesis reaction. Cobalt oxides have previously
been reported to provide a low methanol production yield when compared with supported
or modified cobalt compounds. For instance, Wang et al. [12] show that unsupported
cobalt oxide shows the lowest yield compared with these species supported on SiO2 or
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modified through linkages with silicon. Li et al. [40] show a similar result when comparing
manganese oxide supported on cobalt oxide. Although the results make it difficult to com-
pare the catalytic performance of the compounds studied in this work with others in the
literature due to the different experimental conditions and material features, it has been pre-
viously reported that cobalt oxide species, like In2O3, supported on Co3O4 have a catalytic
activity that reveals an STY of up to 650 g·kgcatalyst

−1h−1 [41]. Another similar compound,
a cobalt–indium composite obtained by pyrolysis, was evaluated by Wang et al. to perform
an STY of 620 g·kgcatalyst

−1h−1 [42]. However, the compounds studied in the mentioned
works are more complex structures, such as a cobalt metal–organic framework impreg-
nated with indium, and a pyrolytic composite of cobalt and indium (Co3InC0.75-In2O3),
respectively. Also, the pressures used are much higher; they are 50 bar. Other bimetallic
catalysts using noble metals, like palladium, in particular Pd/Zn materials supported on
carbon nanotubes, have also obtained high STY values of 371 g·kgcatalyst

−1h−1 but at higher
pressures of 30 bar [43]. The Co3O4/CeO2 catalyst analyzed in this study improved the
catalytic performance of a material composed of copper and zinc, which are the typical
elements used for this catalysis reaction, Cu/ZnO/zeolite, reported by Carrasco García
et al. [22]. In particular, the latter obtained an STY of 4.3 g·kgcatalyst

−1h−1 and Co3O4/CeO2

an STY of 8.3 g·kgcatalyst
−1h−1 at the same temperature and pressure conditions.
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15 bar.

Methanol selectivity for the catalyst samples is presented in Figure 11. As can be
seen, at 180 ◦C and 15 bar, the methanol selectivity for all samples was 100%, except
for Co3O4/CeO2, indicating that no carbon monoxide was formed at this temperature
using the indicated materials. Nonetheless, with the temperature increase, methanol
selectivity decreases because the change in the enthalpy of methanol synthesis is negative,
and, therefore, it is an exothermic reaction, which is more favored at lower temperatures
(Figure 11) [9,44]. In the case of Co3O4 with PVP and Co3O4/zeolite, a decrease in selectivity
toward methanol was only observed at 220 ◦C. For the other remaining catalysts, this
methanol selectivity decreased considerably because of the production of carbon monoxide
at high temperatures (Figure 11) [11,40].
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4. Conclusions

In this work, a series of cobalt-based catalysts with different supports were synthesized,
and their catalytic activity for methanol production from carbon dioxide hydrogenation
was studied. XRD analysis detected the crystalline phase of the samples and confirmed
the integration of Co3O4 and Co on the supports studied (zeolite, cerium oxide, and
manganese oxide). Moreover, it was demonstrated that the addition of PVP as a stabilizing
agent improves the catalytic capacity of Co3O4, as it helps to obtain more homogeneous
and smaller nanoparticles. However, for the Co catalyst synthesized using PVP, this effect
was not observed as a result of partial oxidation of the material due to the presence of the
stabilizing agent. Comparing the effect of the supports studied, the performance of CeO2 as
support was more promising, which was accounted for by the presence of oxygen vacancies
in CeO2 that promote carbon dioxide adsorption and activation. In addition, the higher
catalytic activity of the catalyst supported by CeO2 can be attributed to the generation of
favorable interfacial sites between CeO2 and Co3O4 for the methanol synthesis reaction.
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