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Abstract: In sodium-cooled fast reactors, the wettability of sodium with materials is closely related to
sodium-related operations and the detection accuracy of instruments and meters, so how to achieve
the selection of materials with different wettability requirements is a key problem in engineering
design. To meet these requirements, the wetting behaviors of liquid sodium with nine transition
metals were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and
molecular dynamics (MD) simulations. The results show that metals such as zinc and gold, which
react with sodium to form intermetallic compounds at the interface, exhibit superior wettability.
Followed by the metals that have strong interatomic interactions even though they do not react with
sodium or dissolve each other, such as cobalt, nickel and copper, while the wettability of these systems
tends to be poor at low temperatures. Systems that do not react with each other or have strong
interatomic affinities proved to be the most difficult to wet. Notably, metals with the closest-packed
crystal structures of fcc and hcp generally have better wettability than those with a bcc structure.
They can be a valuable guide for experimental research and technical control.

Keywords: wettability; sodium; transition metals; intermetallic compounds; molecular dynamics
simulation

1. Introduction

The Sodium-cooled Fast Reactor (SFR) system features a fast spectrum reactor and
closed fuel recycle system [1]. It is widely recognized that SFRs have a high potential for
near-term commercial deployment within the next two decades [2–5]. As liquid sodium
is the reactor coolant of the SFR, the successful operation of the SFR heavily relies on its
wettability characteristics. For example, in a sodium loop, it has been found that until full
wetting has taken place, sodium will not penetrate crevices and some physical instruments
such as flow meters, electromagnetic pumps, and resistor meters will not work satisfactorily.
This brings great challenges to the reactor operations and data detection [6–8]. Furthermore,
in the ultrasonic imaging system of the online detection device in liquid sodium, poor
wettability will reduce the acoustic and mechanical coupling between the medium and
the detector surface, which directly affects the clarity of the imaging [9–13]. Therefore,
excellent wettability is required for such service conditions. However, operations involving
filling, draining, charging and some operating tools require a non-wetting behavior even
at high temperatures to avoid the adhesion of excessive liquid metal to the surface of the
device, leading to removal difficulties and wastage of liquid metal. Therefore, in practical
scientific and industrial applications, both extreme wetting and non-wetting surfaces
are what is required, thus, achieving the regulation of wettability of liquid sodium is of
great importance.

The wetting behavior of liquid sodium has been extensively studied by various
research groups. C. C. Addison et al. found that electropolished zinc surfaces showed a
critical wetting temperature, whereas abraded surfaces do not, due to the presence of

Materials 2024, 17, 691. https://doi.org/10.3390/ma17030691 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17030691
https://doi.org/10.3390/ma17030691
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-1489-4792
https://doi.org/10.3390/ma17030691
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17030691?type=check_update&version=1


Materials 2024, 17, 691 2 of 13

different surface films. They also investigated the role of oxide films in the wetting of iron,
cobalt and nickel and suggested that the reduction of oxides by sodium is responsible
for promoting wetting [6,14]. This conclusion was further supported by experiments in
which surface films such as chromium oxide (Cr2O3), metal oxides (MnO2), or tungsten
oxide (WO3) were reduced by sodium to the corresponding metals. In addition, they
modified the wettability of sodium by adding barium and calcium to modify surface
tension [15,16]. Furthermore, D. O. Jordan et al. [17] evaluated non-wetting phenomena
based on the degree of miscibility at the solid–liquid interface and the stability of oxide
layers on metal surfaces. They proposed the atomic radius ratio as an indicator of
the degree of misfit at the atomic scale and then evaluated the wettability of sodium.
In addition, M. Kawaguchi et al. [18,19] plated SUS304 stainless steel samples with
palladium, nickel, indium and gold, and observed an increase in spreading rate with
increasing solubility. They defined a constant, α, representing the spreading rate for each
plating material, which was proportional to the logarithm of its solubility. Furthermore,
there are also numerous studies of wetting spreading processes and interfacial behavior
of other liquid metals using Molecular Dynamics Simulations that capture the wetting
properties at the atomic scale [20–25].

Despite the many great achievements, few studies have been carried out by system-
atically studying the wettability of Na with pure metals for the purpose of predicting and
screening the wettability of materials with Na. In other words, there is still no clear selec-
tion criteria or general assessment strategies for sodium wetting on different materials
that have been established. Furthermore, it is crucial to identify the underlying mecha-
nisms and processes at the atomic scale. Herein, the wetting behaviors of liquid sodium
with nine transition metals were extensively investigated by measuring contact angles
with different times and temperatures. Subsequently, post-experiment microstructural
characterization and molecular dynamics (MD) simulations were performed to elucidate
the wetting process and the underlying mechanisms, respectively. The ultimate objective
of this research was to establish a general strategy for assessing the wettability of liquid
sodium, which can be achieved through systematic experimentation and analysis of the
wetting process. The results of this investigation can serve as a valuable reference for
material screening in practical applications and provide a general strategy for evaluating
the wettability of sodium with different materials.

2. Experimental and Simulation Details
2.1. Materials and Methods

As shown in Figure 1, the experimental device contains a camera, a heating plate,
a thermocouple to monitor surface temperature, with all of these in a glove box which
provides an inert test environment with low oxygen and low water content. The tem-
peratures used in the experiments were set at 150 ◦C, 200 ◦C, 250 ◦C, 300 ◦C and 350 ◦C,
respectively. The size of each sample was 30 mm in length, 30 mm in width, and 3 mm
in height. The specimens tested included high-purity (99.99%) Cr, Fe, Co, Ni, Cu, Zn,
Mo and W, and 304 stainless steel specimens with gold plating. The surface of each
specimen, excluding the gold-plated ones, was carefully polished with sandpaper to a
roughness of less than 3 µm. The samples were then ultrasonically cleaned with ace-
tone for 30 min and immediately transferred to the glove box for further use. Once the
sample surface temperature reached setting and stabilized sufficiently, a 4 mL drop of
liquid sodium was dropped centrally onto the surface using a preheated rubber-tipped
dropper. Simultaneously, a video camera was activated to record the spreading behavior
of the sodium, paying attention to the changes in contact angle over time. Wetting tests
lasted 5 h.

After testing, the Na droplet was removed from the surface, and the surface wetting
area was observed. The sample was then immersed in ethanol for cleaning purposes
and subjected to scanning electron microscopy (SEM, Zeiss-Supra55, Jena, Germany) and
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X-ray diffraction (XRD, Bruker D8 Advance, Karlsruhe, Germany) analysis to measure the
compositions of the surface area.
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Figure 1. Schematic of the test.

2.2. Simulation Model and Methodology

Although many wetting experiments have been performed, followed by surface
micro-analysis, a method to understand the mechanisms and processes of wetting at the
atomic scale is still needed. In the present work, molecular dynamics (MD) simulations
were employed to investigate the wettability of Na droplets on nine transition metals
based on LAMMPS [26] (Large-scale Atomic/Molecular Massively Parallel Simulator)
software (LAMMPS 64-Bit 28Mar2023-MPI) in the NVT ensemble. The Nose–Hoover
thermostat was employed to control the temperature and pressure [27,28]. The Modified
Embedded Atom Method (MEAM) potential was used to describe the atomic interaction
for the Na–Cu and Na–Ni systems [29]. For the other seven systems, the Lennard–Jones
potential was used for the foreign atoms (Na–Cr [30,31], Na–Fe [32], Na–Zn [30,31],
Na–Au [32,33], Na–W [31,32], Na–Mo [31,32], Na–Co [30,32]), while the EAM potential
was used for Na–Na [34], W–W [35], Fe–Fe [36], Au–Au [37] and the MEAM potential
for Zn–Zn [38], Mo–Mo [39], Cr–Cr [40], and Co–Co [41], respectively. The timestep of
MD simulation was ∆t = 1 fs. The MD method was applied to all the simulations of Na
droplet wetting on different surfaces.

The wetting models of Na droplets on metal substrates were constructed with a
distance of 3 Å between them (Figure 2). The transition metal substrates were generated
in the bottom of a box with dimensions of 200 × 200 × 200 Å, and the metal crystal of
Na was prepared spherically with radius R = 40 Å. The number of atoms was 6826 for
the Na droplet, 53,900 for the Fe substrate, 55,445 for the Cu substrate, 59,200 for the
Co substrate, 39,204 for the Au substrate, 53,205 for the Cr substrate, 134,460 for the
Zn substrate, 58,482 for the Ni substrate, 40,960 for the Mo substrate, and 40,325 for
the W substrate, respectively. Nine initial wetting models were constructed as shown
in Figure 2. All wetting simulations were run for a total time of 0.5 ns with the NVT
ensemble at T = 523 K controlled by the Nose–Hoover thermostat. For each simulation,
a time step of 1 fs was set, and periodic boundary conditions were applied in the x, y,
z directions. During the simulation, it was found that the temperature output of the
droplet and the substrates were different from the set one, which caused the failure of
the temperature control. To solve this problem, the temperature of the droplet and the
substrate were modified separately, and the actual temperature was finally the same as
the setting one.
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Figure 2. The initial wetting model of the Na droplet on transition metals.

3. Results
3.1. Contact Angle Measurement and Surface Composition Analysis

The wetting behavior of liquid sodium on transition metals, as depicted in Figure 3,
was investigated in terms of the variation of the contact angle with time and temperature.
According to the definition, “non-wetting” means that, θ > 90◦, “wetting” that θ < 90◦.
It is clearly observed that the contact angles of sodium droplets on the surfaces of all
samples decreased with increasing temperature, while notable differences in wettability
between the different systems could still be observed. Firstly, the wettability of sodium on
Au was consistently superior to other metals, exhibiting immediate wetting at all tested
temperatures. This was followed by Zn, non-wetting at 150 ◦C, and transitioning to wetting
after brief time intervals at temperatures above 200 ◦C, and taking 7 min to reach wetting
at 200 ◦C, 3 min at 250 ◦C, and almost immediate wetting at 300 ◦C and 350 ◦C. Ni, Co and
Cu ranked just behind Au and Zn in terms of wettability. All of them showed non-wetting
behavior below 200 ◦C, but a sharp decrease as the temperature increased to 250 ◦C and
above. Finally, the contact angle curves for the remaining four metals were generally
between 115◦ and 127◦ at 150 ◦C, 87◦ and 110◦ at 200 ◦C, 84◦ and 100◦ at 250 ◦C, 77◦ and
95◦ at 300 ◦C, and 65◦ and 85◦ at 350 ◦C, respectively. Although the curves appear to be
close, there are still distinct trends in the variation of contact angles on different metal
substrates. It is noteworthy that the contact angles of Cr and W showed a relatively uniform
decrease as the temperature increased. Conversely, no significant decrease in contact angle
was observed for Fe within the temperature range tested. Furthermore, Mo showed the
highest wettability among the four metals above 350 ◦C.
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The surface compositions of the nine transition metals were analyzed after the ex-
periments were completed, as shown by the XRD (Figure 4) and SEM (Figure 5), a layer
of the intermetallic compound Zn13Na was tested on the surface of Zn, and elements of
Na and Au were also detected on the gold-plated substrate, confirming that intermetallic
compounds were formed between the two systems, while none were found in the other
Na–Metal systems. Comparison of the phase diagrams further confirmed that the only
Zn13Na formed is between the Na–Zn system, while a series of intermetallic compounds,
AuNa2, AuNa, Au2Na and Au5Na are formed in the Na–Au system, which is fully consis-
tent with the experimental results. This suggests that there is a strong relationship between
the intermetallic and wettability. The role of the intermetallic in wetting in metallic systems
has been studied by Naidich [42], Eustathopoulos [43] and Protsenko et al. [44]. They have
two views on this study, some considered that the reaction energy liberated at the interface
can strongly improve the driving force of wetting, while others believed that the formation
of the intermetallic at the interface has a beneficial but rather limited effect on wetting.
While from the results of our experiments, it can be concluded that for the Na–metal system,
the reaction between them to form intermetallic compounds plays a crucial role in the
wettability, and this may be applicable to other alkali metals as well.
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Different Na–Metal systems exhibit different wetting behaviors, which in turn reflect
different physicochemical processes at the interfaces. For Zn and Au, although both
exhibited superior wettability, the spreading process of sodium droplets on them still
showed a distinct difference. As shown in Figure 3, the wetting of Na on Zn would
undergo a process, while the wetting of sodium on Au occurred almost instantaneously.
The difference in wetting behavior between Zn and Au results from the different interfacial
reaction processes and the different physical and chemical nature of the metals. For the Zn–
Na system, when the temperature reaches above 97.8 ◦C, Zn13Na is the only intermetallic
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compound formed [45], which means that Zn13Na would be formed at the moment of Na
droplet contact with Zn, but due to the relatively active nature of Zn, a thin film of zinc oxide
would be formed quickly on the surface after grinding and polishing treatment in air. Thus,
at the initial stage of contact, it is a process of the Na droplet reacting with the zinc oxide
film and reducing Zn continuously, and only when enough Zn is reduced with a content
higher than 92%(at), would Zn13Na be formed. The time at which wetting occurrs depends
on when enough Zn has been reduced. In contrast, the nature of Au is stable enough to
avoid oxidation, which means that a Na droplet would contact Au directly without the
process of reduction of its oxide film. In addition, a series of intermetallic compounds exist
between the Na–Au systems, and Au2Na can be formed at room temperature [46]; thereby,
reaction will occur at the moment of contact, resulting in less time-dependence. Therefore,
it can be concluded that it is the driving force of the interfacial reaction that induced the
rapid wetting.

The wettability of Co, Ni and Cu is second only to that of Au and Zn. It can be observed
that after the Na droplets were removed after testing, a uniform liquid film of sodium
appeared on the surface of all three groups of metals covering the test area, indicating that
the liquid sodium formed a relatively tight bond with the solid metal interface (Figure 6).
In contrast, after the Na droplets were removed from Fe, Cr, Mo and W, no uniform film
of liquid Na remained on the surfaces, implying that Na droplets did not form a tight fit
with these samples. For these non-reactive metal systems, what dominates the difference
in wettability? It is difficult to trace the atomic-scale wetting process and determine its
microscopic spreading state only in an experimental way. Therefore, molecular dynamics
simulations were performed.
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Figure 6. The sample surfaces after removal of Na droplets after 5 h of wetting.

3.2. Spreading Behaviors of Na Droplets on Substrates

The snapshots of the spreading behavior of Na–metal (Na–M) systems at 250 ◦C are
shown in Figure 7. Taking the initial structure after equilibrium as the wetting starting
point, the contact angles of all systems gradually decreased with the simulation time until
the systems equilibrated and no longer changed. The contact angles of Na droplets on Au
and Zn changed dramatically ever 100 ps, and atomic exchange, i.e., interfacial alloying,
occurred at the solid–liquid interface. The contact angles of Na droplets on Co, Ni, and Cu
changed relatively slowly, while the spreading state of Na droplets on the Fe, Mo, W and
Cr were close to equilibrium after 100 ps, with almost no more change thereafter. As shown
in Figure 8, the simulated and experimental values of the final state contact angle are in
good agreement, indicating that the atomic trajectories during the simulation can be used
to describe the spreading process of the actual Na droplets.

During the wetting process, it was observed that unlike the way sodium spreads on
other metals, a single sodium atomic precursor film was found on the Cu surface after
250 ps (Figure 9). Subsequently, the Na atoms at the top of the Na droplets continue to
spread forward on the precursor film causing the contact angle to decrease remarkably at
this stage (Figure 10). This suggests that the appearance of the precursor film influences
the spreading behavior of the Na droplet and is an indication of better wettability.
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3.3. End-State Wetting of Na Droplets and Interfacial Atomic Behavior

Under ideal wetting conditions, the precursor film in metal–metal systems is more
likely to be in the form of an adsorbed film. It has been suggested that the spreading of the
precursor film is based on the diffusion of the first molecular layer (or a thicker molecular
layer) on the solid, which occurs between non-reactive systems. It shows that the formation
of the Na precursor film on Cu is complemented by its good wettability.

The phenomenon of whether a precursor film appears or not when the Na droplets
spread on the nine metals indicates that the spreading details of the Na atoms on the nine
metals are different, and to further understand the structure and atomic order information
of the Na droplets, the Na–Na radial distribution function (RDF) of the final state sodium
atoms on the substrates was analyzed. As shown in Figure 11, except for the Au–Na
system, all the other systems have a prominent peak at the distance of 3.75 Å, indicating
the first dense atomic layer, while the value is 3 Å on the Au substrate, indicating that
the sodium atoms on the Au substrate are more tightly arranged and the interatomic
interactions among the Na atoms are stronger compared to the other systems. In contrast,
the distribution of sodium atoms in other systems is more loosely arranged.

For a further understanding of the distribution of atoms at the solid–liquid interface,
the substrate and Na droplets were layered along the z-axis direction, with each layer
having a thickness of 0.5 Å, and the number densities of each layer statistically calculated.
As shown in Figure 12, for both Na–Au and Na–Zn systems, the black and red lines have



Materials 2024, 17, 691 9 of 13

undergone interfacial exchange, indicating that interdiffusion of substrate atoms and Na
atoms occurs at the interface, which suggests that the high degree of interatomic bonding
of atoms between the Na–Au and Na–Zn systems is demonstrated from a computational
point of view, providing the possibility of generating intermetallic compounds in terms of
bonding distances. No interfacial exchange of solid–liquid atoms was observed between
any of the other systems. The first peaks of the Na droplets on Co, Ni and Cu substrates
are high compared to those on Fe, Mo, W and Cr, indicating that the number of Na atoms
near the surface of the substrates is larger, i.e., the number of spreading Na atoms is large
and the wettability performance excellent. The peak heights of the sodium droplets on Fe,
Mo, W and Cr are all lower, implying that the Na droplets are poorly dispersed and have
weaker wettability.

Materials 2024, 17, x FOR PEER REVIEW 9 of 13 
 

 

0 100 200 300 400 500
0

20

40

60

80

100

120

140

Co
nt

ac
t A

ng
le

(°
)

Time (ps)

 Au  Zn  Ni
 Co  Cu  W
 Fe  Cr  Mo

 
Figure 10. Dynamic contact angles for Na droplets on nine metals. 

3.3. End-State Wetting of Na Droplets and Interfacial Atomic Behavior 
Under ideal wetting conditions, the precursor film in metal–metal systems is more 

likely to be in the form of an adsorbed film. It has been suggested that the spreading of 
the precursor film is based on the diffusion of the first molecular layer (or a thicker mo-
lecular layer) on the solid, which occurs between non-reactive systems. It shows that the 
formation of the Na precursor film on Cu is complemented by its good wettability. 

The phenomenon of whether a precursor film appears or not when the Na droplets 
spread on the nine metals indicates that the spreading details of the Na atoms on the nine 
metals are different, and to further understand the structure and atomic order information 
of the Na droplets, the Na–Na radial distribution function (RDF) of the final state sodium 
atoms on the substrates was analyzed. As shown in Figure 11, except for the Au–Na sys-
tem, all the other systems have a prominent peak at the distance of 3.75 Å, indicating the 
first dense atomic layer, while the value is 3 Å on the Au substrate, indicating that the 
sodium atoms on the Au substrate are more tightly arranged and the interatomic interac-
tions among the Na atoms are stronger compared to the other systems. In contrast, the 
distribution of sodium atoms in other systems is more loosely arranged. 

0 2 4 6 8 10
0

10

20

30

40

50

60

70

r (Å)

g(
r)

 Au
 Zn
 Co
 Ni
 Cu
 Cr
 Fe
 Mo
 W

 
Figure 11. Interatomic Na–Na RDF on the nine metal surfaces. Figure 11. Interatomic Na–Na RDF on the nine metal surfaces.

Materials 2024, 17, x FOR PEER REVIEW 10 of 13 
 

 

For a further understanding of the distribution of atoms at the solid–liquid interface, 
the substrate and Na droplets were layered along the z-axis direction, with each layer 
having a thickness of 0.5 Å, and the number densities of each layer statistically calculated. 
As shown in Figure 12, for both Na–Au and Na–Zn systems, the black and red lines have 
undergone interfacial exchange, indicating that interdiffusion of substrate atoms and Na 
atoms occurs at the interface, which suggests that the high degree of interatomic bonding 
of atoms between the Na–Au and Na–Zn systems is demonstrated from a computational 
point of view, providing the possibility of generating intermetallic compounds in terms 
of bonding distances. No interfacial exchange of solid–liquid atoms was observed between 
any of the other systems. The first peaks of the Na droplets on Co, Ni and Cu substrates 
are high compared to those on Fe, Mo, W and Cr, indicating that the number of Na atoms 
near the surface of the substrates is larger, i.e., the number of spreading Na atoms is large 
and the wettability performance excellent. The peak heights of the sodium droplets on Fe, 
Mo, W and Cr are all lower, implying that the Na droplets are poorly dispersed and have 
weaker wettability. 

0.000

0.054

0.000

0.045

0.00
0.11
0.22

0.00

0.21

0.000

0.059

0.00

0.16

0.00

0.13

0.000

0.099

0 10 20 30 40 50 60

0.00

0.11

 Au
 Na

Surface line

 Zn
 Na
 Co
 Na
 Ni
 Na

D
en

sit
y 

(a
to

m
s/A

3 )

 Cu
 Na
 Fe
 Na
 Mo
 Na
 W
 Na

Z-coordinate(Å)

 Cr
 Na

 
Figure 12. The density distribution profiles along the z axis for Na droplets on nine surfaces at 250 
°C. 

For the Na–M systems, regardless of whether the Na droplets are interfacially alloyed 
or merely adsorbed on the surface, it is the interaction energy between the solid–liquid 
atomic groups that drives the spreading process and ultimately determines the spreading 
extent of the liquid metal. The interaction energy is calculated as ΔE = Etotal − (ENa + EMetal), 
where ΔE is the interaction energy of the solid–liquid atomic group, and Etotal, ENa, and 
EMetal represent the energy parameters of the system, the Na, and the metal, respectively. 
The more significant the negative value of the interaction energy, the lower the energy in 
the system from the interaction and the system is more likely to be stabilized, i.e., the 
system has a stronger tendency to react. Since the potential parameter type used for Cu–
Na and Ni–Na is the MEAM potential, which is not supported by the MD algorithm for 
calculating interaction energies between groups of atoms, only the interaction energies for 
the other seven systems were calculated. The values are listed in Table 1, which shows that 
the Na–Au system has the negative maximum value of −40,515 eV, which is far higher than 
the other systems, followed by the Na–Zn system with a value of 1432 eV. The relationship 
between interaction energy and wettability is shown in Figure 13, where the contact angle 
increases and the wettability decreases as the interaction energy decreases. Therefore, it 
can be concluded that the atomic interaction of the solid–liquid atoms dominate the 

Figure 12. The density distribution profiles along the z axis for Na droplets on nine surfaces at 250 ◦C.

For the Na–M systems, regardless of whether the Na droplets are interfacially alloyed
or merely adsorbed on the surface, it is the interaction energy between the solid–liquid
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atomic groups that drives the spreading process and ultimately determines the spreading ex-
tent of the liquid metal. The interaction energy is calculated as ∆E = Etotal − (ENa + EMetal),
where ∆E is the interaction energy of the solid–liquid atomic group, and Etotal, ENa, and
EMetal represent the energy parameters of the system, the Na, and the metal, respectively.
The more significant the negative value of the interaction energy, the lower the energy in the
system from the interaction and the system is more likely to be stabilized, i.e., the system
has a stronger tendency to react. Since the potential parameter type used for Cu–Na and
Ni–Na is the MEAM potential, which is not supported by the MD algorithm for calculating
interaction energies between groups of atoms, only the interaction energies for the other
seven systems were calculated. The values are listed in Table 1, which shows that the
Na–Au system has the negative maximum value of −40,515 eV, which is far higher than
the other systems, followed by the Na–Zn system with a value of 1432 eV. The relationship
between interaction energy and wettability is shown in Figure 13, where the contact angle
increases and the wettability decreases as the interaction energy decreases. Therefore, it can
be concluded that the atomic interaction of the solid–liquid atoms dominate the occurrence
of wetting, whereas the contact angle, as an indicator of the atomic interaction, directly
reflects its value.

Table 1. Interaction energy between the Na droplet and transition metals.

System Na–Cr Na–Fe Na–Co Na–Zn Na–Mo Na–W Na–Au

Interaction
Energy (eV) −69 −251 −322 −1432 −42.63 −45 −40,515
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In reviewing the metals that have different wettability with Na, it appears that certain
intrinsic properties of the materials are somehow related to wettability. For example, the
crystal structure. To summarize the results of the experiments and simulations, it is found
that crystals with the most compact structures of fcc and hcp, which have densities of 0.74
and coordination number of 12, generally have better wettability than the bcc metal, which
has a density of 0.68 and a coordination number of 8. The phenomena indicate that, for
the solid metal itself, the tightness of the internal atomic bonding and the compactness
of the crystal structure both play a positive role in wetting, which provides a preliminary
judgement of materials with different wettability. It also provides a new idea for controlling
wettability by microstructural modification of materials.

4. Discussion

In this study, we focused on the influencing factors that lead to differences in wettabil-
ity behaviors, and presented a general strategy for selecting such materials with sodium
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which can be used as a guide for material screening. According to the above discussion, it
can be summarized as follows:

Optimal wettability occurs in systems that are capable of forming intermetallic com-
pounds by interfacial reactions, where the reaction provides the driving force that can drive
rapid wetting. Therefore, in conjunction with the phase diagram, the wettability of a system
can be judged by whether intermetallic compounds can be formed between the systems
or even by the temperature at which the reaction occurs. Followed by the metals that do
not react with Na to form intermetallic compounds, but have strong interactions between
them, it is noteworthy that the wettability tests all performed poorly at low temperatures
in these systems. The poorest are those that do not react with Na or interact weakly with it.

Based on the laws presented in the experimental and computational data, it can be
concluded that the fundamental driving force that dominates the occurrence of wetting is
the interaction energy between the systems, and that this ultimately determines the degree
of wetting that can be achieved. On the other hand, the contact angle is an indicator of the
interaction between solid–liquid heterogeneous atoms, which can accurately measure the
value of the interaction energy in a macro-scale way. From this point of view, it appears that
the compactness of the crystal structure may be a material property that relates whether
it is susceptible to producing large interactions with other materials. The generalized
strategy derived from this study may have some positive implications for solving the
similar wettability problems of other alkali metals and even other liquid metals.
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