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Abstract: The primary objective of this study is to investigate and develop a rapid and effective
method for the immobilization of Sr in the event of a nuclear leakage incident. Coal gangue, an
underutilized form of solid waste from the coal industry, can be used as a raw material for curing Sr
due to its high content of silica–alumina oxides. In the present study, Sr was successfully solidified
in cancrinite synthesized using a hydrothermal method with coal gangue as raw material. A stable
cancrinite phase was formed at a relative alkali concentration of more than 6 M. When the Sr/Al(Si)
ratio was <1/6, cancrinite was the only stable phase that varied with the hydrothermal temperature
and time. When the Sr/Al(Si) ratio increased to 1/2, the cancrinite phase completely disappeared,
and a new strontium feldspar phase (SrAl2Si2O8) appeared. PCT leaching experiments showed
that when Sr/Al(Si) < 1/6, the Sr leaching rate of Sr-cancrinite samples obtained by hydrothermal
synthesis at 180 ◦C for 24 h was very low.

Keywords: coal gangue; cancrinite; hydrothermal synthesis; Sr; emergency curing

1. Introduction

Nuclear energy represents a highly concentrated and versatile energy source with
extensive potential for application [1]. However, the development and utilization of nuclear
technology, while yielding economic and societal benefits, also entail the inherent risk
of nuclear accidents [2,3]. One such hazard involves the presence of 90Sr, a prominent
constituent found in spent nuclear fuel, high-level liquid waste (HLLW) resulting from
spent nuclear fuel reprocessing, and other waste materials generated during reactor opera-
tion [4,5]. In waste, 90Sr typically exists in ionic form and demonstrates strong migration
capabilities in water [6]. In the event of a nuclear accident, the decay heat of radioactive
strontium accelerates its diffusion and migration, posing severe consequences if the nuclide
enters the biosphere [7]. During an emergency nuclear spill, the HLLW typically exhibits
high mobility, making it challenging to collect and isolate effectively [8]. Consequently, a
recommended approach involves the expedient solidification of the radionuclides present
in the HLLW, evaluating their concentrations, and thereby diminishing its potential hazards
for subsequent disposal purposes [9]. It is imperative for the development of nuclear energy
to conduct applied basic research on the emergency treatment of radioactive strontium in
leaking waste from nuclear accidents, as well as to develop rapid and efficient materials for
nuclear emergency treatment.

The utilization of Synroc solidification techniques for certain radionuclides has demon-
strated remarkable performance and holds significant prospects for further advance-
ment [10–15]. The essence of its solidification treatment is to form a certain solid solution
of the radionuclides in high-level liquid waste with the corresponding salts in the high-
temperature phase, thereby encapsulating the radionuclides in the solid phase and creating
a thermodynamically stable solidified matrix [16–19]. Researchers have employed natural
zeolite as an adsorption material to effectively remove Sr2+ and Cs+ ions from aqueous
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solutions, yielding positive outcomes [20]. Cancrinite, an exceptional zeolite, exhibits
an open framework structure comprising hexagonal rings of SiO4 and AlO4 tetrahedra
stacked along the hexagonal c-axis [21–23]. This structure forms small ε-cages and a large
12-ring channel along the c-axis [24,25]. The incorporation of Sr2+ ions into this structural
framework is feasible [26–29]. The synthesis of cancrinite is relatively straightforward,
employing hydrothermal or high-temperature calcination methods with diverse raw ma-
terials, such as silicon and aluminum sources dissolved in NaOH solution, along with
specific anions [30–33]. Coal gangue (CG), a solid waste generated during coal mining,
represents a promising resource for utilization [34–36]. However, scarce reports exist on
utilizing CG as a raw material for solidifying radioactive waste. Notably, the Sr/Al molar
ratio in CG is approximately 1, which closely aligns with the Sr/Al molar ratio observed in
cancrinite [37,38]. Therefore, CG holds potential as a viable raw material for the synthesis
of cancrinite for the purpose of solidifying Sr radionuclides.

This paper reports on the successful preparation of cancrinite for the solidification of
Sr2+ from Sr nitrate using hydrothermal treatment of CG. The study also investigates the
effects of alkali activator concentration, crystallization temperature, and time on cancrinite
synthesis, and assesses the maximum Sr capacity and chemical durability of cancrinite
synthesized from CG using the PCT method.

2. Materials and Methods
2.1. Raw Material

The CG samples used in this study were obtained from Shanxi Province. Their
chemical and mineral compositions were determined through powder X-ray fluorescence
(XRF) and X-ray diffraction (XRD), respectively. The results are presented in Table 1 and
Figure 1.

Table 1. The main chemical composition of coal gangue (wt%).

Ingredients SiO2 Al2O3 TiO2 Fe2O3 K2O CaO MgO Na2O C

Natural CG 42.93 30.20 0.88 0.58 0.43 0.36 0.15 0.10 5.29
Calcined CG 47.15 34.58 1.01 0.73 0.45 0.42 0.17 0.10 1.31
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Figure 1. XRD spectra of the coal gangue (a) and coal gangue calcined at 900 ◦C for 5 h (b).

The main chemical components of CG were found to be SiO2 (42.93 wt%) and Al2O3
(30.20 wt%), as expected. After 5 h of decarburization calcination at 900 ◦C, the contents of
SiO2 and Al2O3 in CG increased to 47.15 wt% and 34.58 wt%, respectively. The resulting
Al/Si molar ratio was approximately 1, and no additional Si and Al sources were required.
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XRD analysis of CG before and after calcination (Figure 1) revealed that the dominant
minerals in natural CG were kaolinite and quartz. The calcined sample displayed the
characteristics of an X-ray amorphous state, except for some platelet diffraction peaks
of quartz, with no obvious crystal diffraction peaks. This indicates that the calcination
treatment destroyed the initially stable crystal structure of CG, enhancing its activity and
contributing to the formation of silicate and aluminate monomers through fusion with
alkali. To enhance the purity of cancrinite crystals, calcined CG was employed as the raw
material in this experiment.

2.2. Experimental Section
2.2.1. Hydrothermal Processing

Calcined CG was combined with Sr(NO3)2 at specific Sr/Al(Si) molar ratios to serve
as the initial materials. This blend was subsequently mixed with NaOH at a predetermined
molar ratio. The resulting mixture underwent thorough stirring, facilitated by a magnetic
agitator, after the addition of the appropriate quantity of deionized water to achieve
uniform pastes. These pastes were molded into cubes (1 × 1 × 1 cm) and left undisturbed
at room temperature overnight. Upon demolding, the specimen underwent curing in a
Teflon-lined hydrothermal reactor exposed to saturated steam pressure ranging from room
temperature to 180 ◦C for a duration spanning 0 to 24 h. Post-hydrothermal treatment, the
synthesized samples were dried at 105 ◦C for 8 h to facilitate subsequent measurement
and characterization.

The detailed process used for the hydrothermal synthesis of Sr-cancrinite is illustrated
in Figure 2.
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2.2.2. Single Factor Test

The study systematically explored the effects of NaOH concentration, crystallization
temperature, and crystallization time on the immobilization of Sr2+. Initially, to assess the
influence of NaOH concentration on cancrinite’s crystallinity and purity, experiments were
conducted at 180 ◦C for 24 h with varying relative molar concentrations from 0 to 8 M
of NaOH. Subsequently, the impact of the crystallization temperature was examined by
varying the temperature from 90 to 180 ◦C under a fixed 6 M NaOH concentration for 24 h.
Following this, the influence of crystallization time on cancrinite synthesis was investigated
by setting the time from 0 to 24 h under 6 M NaOH at 180 ◦C. Finally, the study delved into
the effects of Sr/Al(Si) ratios on cancrinite formation, systematically varying the ratios as 0,
1/6, 1/3, 1/2, and 2/3. This comprehensive series of experiments was designed to pinpoint
the optimal conditions for the effective immobilization of Sr2+.

2.2.3. Sample Characterization and Chemical Durability Testing

The samples underwent characterization of their crystalline phases and morphology
using X-ray diffractometry (XRD, EMPYREAN, PANalytical, Almelo, The Netherlands)
for phase identification and scanning electron microscopy (SEM, JEOL, JSM-T001F, Tokyo,
Japan) for morphology analysis. The chemical stability of Sr-cancrinite was evaluated using
the product consistency test (PCT) leaching method [39].

Ion leaching tests were conducted by grinding and filtering the samples through a
100–200 mesh sifter. Subsequently, 1 g of the resulting powder was mixed with 10 mL of
deionized water in a Teflon container. The sealed Teflon container was then placed into
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a stainless vessel and maintained at 363 K for a duration of 168 ± 1 h. The concentration
of Sr2+ in the leaching solution was analyzed via inductively coupled plasma emission
spectrometry (ICP-OES, Agilent 720, Santa Clara, CA, USA). Normalization of the sample
concentrations was performed using Equation (1):

NCi =
Ci
fi

(1)

where NCi is the normalized concentration of element i in the leachate (g·L−1), Ci is the
concentration of element i in the leachate (g·L−1), and fi is the mass fraction of element i in
the sample.

3. Results and Discussion
3.1. The Effect of NaOH

The synthesis of Sr-cancrinite is greatly influenced by the concentration of NaOH due
to the framework structure of cancrinite. In order to investigate this effect, the NaOH con-
centration was varied between 0–8 M while keeping all other conditions constant. Figure 3
presents the XRD patterns of the samples obtained at different NaOH concentrations, while
Figure 4 displays the corresponding SEM images.
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Figure 3. XRD patterns of specimens obtained under different NaOH concentrations when the
crystallization temperature and crystallization time were 180 ◦C and 24 h, respectively (NaOH
concentrations: (a) 0 M, (b) 2 M, (c) 4 M, (d) 6 M, and (e) 8 M).

The XRD patterns in Figure 3a show that the samples existed in an amorphous form
similar to the calcined CG before NaOH was added. The SEM images in Figure 4a,b indi-
cate the absence of regular crystals when the NaOH concentration was less than 4 M, and
Figure 4c shows only a small amount of columnar cancrinite crystals. However, at a NaOH
concentration of 6 M, diffraction peaks of cancrinite crystals were observed, as shown in
Figure 3d and reflected in Figure 4d. When the NaOH concentration was 4 M, the grains
were less developed, but the number of smooth columnar crystals increased when the
NaOH concentration was increased to above 6 M. This observation indicates that cancrinite
can be easily synthesized from CG when a sufficient alkali activator is used. The alkali
activator induces the dissolution of silica–alumina oxides in CG and enables sufficient
synthesis of silica and aluminum tetrahedra to form the silica–alumina cage structure of can-
crinite. Furthermore, the ideal chemical formula of Sr-cancrinite [Na6Sr(AlSiO4)6(NO3)2]
indicates coordination numbers of eight for cations and two for anions. In order to satisfy
the chemical stability of the Al-Si framework, six cations supplied by NaOH are required
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to occupy the remaining cation sites, in addition to Sr ions occupying two ionic bonding
positions. The synthesized Sr-cancrinite crystals were observed to have a higher particle
count and purity when the NaOH concentration was 6 M. Therefore, this concentration
was chosen to ensure the reproducibility and consistency of subsequent experiments.
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3.2. The Effect of Hydrothermal Temperature and Time

The formation process of Sr-cancrinite grains is primarily determined by the rate
of aluminosilicate gel formation and nucleus growth during hydrothermal treatment,
and increasing the hydrothermal temperature can accelerate the synthesis process [40].
Moreover, as hydrothermal time and temperature change, the crystals may undergo phase
transformation. To investigate the effects of both the crystallization temperature and time
on the synthesis of Sr-cancrinite, the crystallization temperature was raised from room
temperature to 180 ◦C, and the crystallization time was increased from 0 to 24 h while
keeping other conditions constant. Figures 5 and 6 display the XRD results and SEM
photographs of the Sr-cancrinite samples prepared at different temperatures.

The XRD patterns reveal that the crystalline phase before hydrothermal treatment is
primarily Sr-cancrinite with small amounts of quartz and sodium nitrate. The diffraction
peaks of quartz and sodium nitrate vanished when the hydrothermal temperature was in-
creased to 120 ◦C. Moreover, the intensity of the diffraction peaks of Sr-cancrinite increased
with the rise in the hydrothermal temperature. By analyzing XRD images, the average
grain sizes of cancrinite prepared at room temperature and 180 ◦C were estimated to be
around 384 Å and 460 Å, respectively, indicating that increasing the temperature promoted
the growth of grains. Furthermore, SEM images showed that numerous small, spherical
crystals existed at room temperature, which gradually grew into short rod-shaped crystals
with the increase in temperature and ultimately developed into hexagonal long columnar
crystals with characteristic morphology.

Figures 7 and 8 present the XRD patterns and SEM images, respectively, of Sr-cancrinite
samples prepared at various hydrothermal times.

Before hydrothermal treatment (0 h), the XRD patterns showed the presence of a
Sr-cancrinite phase, along with a small amount of quartz and sodium nitrate. After 3 h of
hydrothermal treatment, the quartz and sodium nitrate phases disappeared. Additionally,
the peak intensity of Sr-cancrinite increased progressively with the increasing curing time.
The SEM images depicted the formation of small, spherical grains in the sample without
hydrothermal treatment, which subsequently evolved into short, rod-shaped grains with
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time. Finally, after 24 h of hydrothermal treatment, the grain morphology transformed into
smooth, long columnar crystals.
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The results of the experimental study indicate that the formation of stable Sr-cancrinite
is strongly influenced by the curing temperature and time. Based on these results, the
optimal conditions for crystallization were determined to be 180 ◦C and 24 h. Previous
research on hydrothermal treatment with different silica–alumina sources for solidifying
inorganic waste materials has shown that an acicular zeolite phase transforms to the sodalite
phase, eventually leading to the formation of a stable cancrinite phase as the temperature
and time are increased [41]. However, in the current study, stable Sr-cancrinite was already
present before hydrothermal treatment, and no transformation of the relevant phases was
observed. This can be attributed to two factors. Firstly, the Si/Al molar ratio of the starting
material was around 1, similar to the structure of cancrinite. Consequently, stable cancrinite
crystal nuclei formed at the initial stage of the reaction, followed by hydrothermal time
and temperature, which only promoted the ordered growth of the crystals without leading
to further phase transformation. During this process, Sr2+ ions entered the lattice structure
of cancrinite from the open interlayer domains of zeolite and occupied the lattice cage. The
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localization and fixation of Sr2+ were achieved through various polar interactions, including
ion–ion interactions, electric dipole–electric dipole interactions, and electric dipole–ion
interactions. Secondly, the cancrinite phase was thermodynamically stable, and even under
hydrothermal conditions, the energy generated by temperature and pressure could not
overcome the phase transition potential of cancrinite or lead to its transformation into
other phases.

3.3. Effect of Sr/Al(Si) Molar Ratio

Based on the molecular composition of cancrinite, it can theoretically incorporate four
divalent Sr ions into its silica–aluminum framework. To determine the maximum Sr content
that can be accommodated, samples were prepared by controlling the Sr/Al(Si) molar ratio
in the range of 0–2/3, followed by curing at 180 ◦C for 24 h. The phase evolution of the
samples was investigated using XRD analysis (Figure 9), revealing that a pure and stable
Sr-cancrinite phase existed when the Sr/Al(Si) molar ratio was less than 1/6.
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Figure 9. XRD patterns of specimens obtained under different Sr/Al(Si) ratios when NaOH concen-
tration, crystallization temperature, and crystallization time were 6 M, 180 ◦C, and 24 h, respectively
(Sr/Al(Si) ratios: (a) 0, (b) 1/12, (c) 1/6, (d) 1/4, (e) 1/3, (f) 5/12, (g) 1/2, (h) 7/12, and (i) 2/3).

However, as the Sr/Al(Si) molar ratio increased, the diffraction peak intensity of
the sodium nitrate phase increased, and a new strontium feldspar phase (SrAl2Si2O8)
appeared when the ratio reached 1/2. SEM images (Figure 10) confirmed these findings,
showing smooth, long columnar cancrinite crystals when Sr/Al(Si) was 1/6 and 1/3, but
no representative strontium feldspar crystal structure was observed.

The Sr content in the samples was quantified using ICP analysis (Figure 11), which
showed that the maximum cured molar fraction of Sr2+ was about 1/3 of Al(Si), and the
ratio of Sr2+ doping to a cured amount decreased significantly when Sr/Al(Si) was greater
than 1/6.

The adsorption of Sr2+ into the cancrinite crystal structure formed bonds with Al or
Si in the lattice, and the bonding strength between Sr and Al or Si was affected by the
concentration of Sr2+ and the coordination number between Sr2+ and Al or Si. Thus, the
amount of Sr2+ addition and the coordination mode can significantly affect the stability of
the cancrinite structure and the interaction of the crystal structure during the curing process.

The experimental results indicate that the quantity of radioactive cations present
in cancrinite is significantly influenced by the anion content of the corresponding salt.
Specifically, the content of cations should not exceed 25% of the total cation content, with the
exception of silica–alumina. The addition of excess strontium salts does not enhance the Sr
solidification process, but rather decreases the relative concentration of the alkali activator,
resulting in incomplete dissolution of silica–alumina tetrahedra, which are necessary for
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zeolite formation. Additionally, Sr curing can also occur via the formation of a new
strontium feldspar phase (SrAl2Si2O8). However, its curing effect is not as satisfactory as
that of cancrinite, and further research is necessary to investigate its content and structural
stability. To ensure adequate curing of Sr2+ within the crystal structure of cancrinite, the
optimal Sr/Al(Si) ratio should be maintained below 1/6.
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3.4. Sr2+ Solidification and Leaching Test

Based on the above experimental results, Sr-cancrinite [SrxNa8−2x(AlSiO4)6(NO3)2],
where x ranges from 0.2 to 1, was successfully synthesized through hydrothermal treatment
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of CG as the main raw material at 180 ◦C for 24 h. The immobilization effectiveness of
radioactive elements primarily depends on the structure of the main mineral phase of the
immobilized material. X-ray diffraction analysis (Figure 12) confirmed that the synthesized
sample exhibited a pure and stable cancrinite phase when x < 1.
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Figure 12. XRD patterns of solidified cancrinite waste specimens (x of SrxNa8−2x(AlSiO4)6(NO3)2:
(a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8, and (e) 1).

This finding suggests that Sr-cancrinite can effectively stabilize waste materials under
complex natural conditions while preventing the migration of nuclide ions into the environment.

The ion leaching concentrations of Sr-cancrinite, obtained using the PCT method, are
presented in Table 2.

Table 2. Ion leaching concentrations of cancrinite according to PCT.

Sample Mass Ratio of Sr2+ (wt%) Normalized Concentration (mg/L) Solidification Rate (%)

Na8[(SiAl)6O12](NO3)2 0 0.000 -
Sr0.2Na7.6[(SiAl)6O12](NO3)2 1.63 2.217 >99.9
Sr0.4Na7.2[(SiAl)6O12](NO3)2 3.24 3.795 >99.9
Sr0.6Na6.8[(SiAl)6O12](NO3)2 4.82 4.561 >99.9
Sr0.8Na6.4[(SiAl)6O12](NO3)2 6.38 5.484 >99.9

SrNa6[(SiAl)6O12](NO3)2 7.92 6.190 >99.9

The normalized elemental mass release of Sr2+ from the samples was consistently
low, typically less than that of boroaluminate glasses and calcined ceramics evaluated in
other environmental assessments [11]. The solidification effectiveness did not diminish
with the increasing Sr2+ content. When the Sr2+ content was increased to 7.92%, the
normalized concentration of leached Sr2+ from the cancrinite specimens remained extremely
low (6.190 mg/L), and the solidification rate (ratio of solidified Sr content to the total
amount) of Sr2+ was nearly 100%. These results indicate that cancrinite waste forms possess
excellent chemical durability, making them a promising candidate for the immobilization
of radioactive elements.

4. Conclusions

This paper reports on the successful synthesis of cancrinite crystals capable of immo-
bilizing Sr2+ through hydrothermal treatment in an alkaline medium, using CG as the raw
material. The study employed XRD, SEM, and PCT leaching tests to evaluate the effective-
ness of the synthesized cancrinite crystals in immobilizing Sr2+. The findings suggest that
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stable and efficient immobilization of Sr2+ in the crystal structure of the cancrinite can be
achieved by controlling the NaOH concentration at 6 M, the hydrothermal temperature at
180 ◦C, the hydrothermal time at 24 h, and the molar ratio of Sr/Al(Si) at less than 1/6. The
resulting cancrinite crystals exhibit low leaching of Sr and demonstrate good thermal and
chemical stability.

Compared to traditional curing methods, the hydrothermal treatment method offers
several advantages, including simplicity, rapidity, and good feasibility for emergency
curing processes in nuclear accidents. The raw material employed is coal gangue, a readily
available and cost-effective form of common waste. Furthermore, in comparison to glass
and ceramic solidifications, this method exhibits a lower sintering temperature, which is
below the boiling point of Sr (approximately 1000 ◦C) [42]. Consequently, issues such as flux
selection and low-temperature densification sintering are alleviated. These findings provide
new insights into the potential applications of cancrinite crystals for immobilizing Sr2+ and
offer a promising approach to mitigate the risks associated with nuclear waste management.

To ensure the viability of this method, the radiation durability of the samples will be
tested in subsequent studies. The plan involves simulating the β rays released during the
decay of 90Sr and using our accelerator equipment to investigate the sample’s resistance to
irradiation. This approach aims to provide a more comprehensive understanding of the
sample’s performance under radiation exposure.
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