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Abstract: Compressive strength is one of the most important properties of carbon fiber reinforced
plastics (CFRP). In this study, a new method for predicting the axial compressive strength of CFRP
using the response surface method is developed. We focused on a microbuckling model to predict
the compressive strength of unidirectional fiber composites. For the microbuckling model, axial
shear properties are required. To obtain the compressive strength for various material properties, we
perform individual shear tests and numerical simulations, but these require enormous computational
costs and extended time. To address the issue of computational cost, in this study, we propose a
new method to predict compressive strength using the response surface method. First, we perform
shear simulation in a microscale fracture model for unidirectional CFRP with various parameters
of the fiber and resin properties. Based on the results of the shear simulation, the response surface
method is used to evaluate and develop prediction equations for the shear properties. This method
allows for the study of the objective values of the parameters, without significant computational
effort. By comparing both the results predicted from the response surface method (RSM) and the
simulation results, we verify the reliability of the prediction equation. As a result, the coefficient of
determination was higher than 94%, and the validity of the prediction method for the compressive
strength of CFRP using the response surface method (RSM) developed in this study was confirmed.
Additionally, we discuss the material properties that affect the compressive strength of composites
comprised of fibers and resin. As a result, we rank the parameters as follows: fiber content, elastic
modulus after resin yield, yield stress, and initial elastic modulus.

Keywords: CFRP; compressive strength; response surface method

1. Introduction

Composite materials are expected to be useful for various industries. Carbon compos-
ite materials are now being employed in the aerospace industry [1–8]. Recently, carbon
fiber reinforced plastics (CFRP) have been used in automobiles [9,10] because they provide
specific energy absorption through the expression of compressive fracturing and delam-
ination [11,12]. To apply CFRP, compressive failure should be carefully considered, as a
proper estimation of the compressive strength allows for the efficient design of structures.
To explore the longitudinal compression performance of composite materials, several longi-
tudinal compressive failure experiments have been conducted [13] on unidirectional CFRP
to investigate the failure process and failure mechanisms.

Over the past three decades, in studies regarding the compressive fracture of unidi-
rectional composites [14–19], several types of possible failure modes, such as the Euler
buckling or macrobuckling of the specimen, the crushing of the specimen end, longitudinal
splitting, interfacial failure, the elastic microbuckling of fibers, the plastic microbuckling
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of fibers in a kinking mode, and the shear failure of the specimen, have been observed
and reported [13]. Among all failure modes, the fiber microbuckling failure mode is recog-
nized as the dominant compressive failure mechanism [20]. Additional studies on CFRP
compressive failure can be found in References [21–26].

In this study, the compressive strength of CFRP was determined using the fiber
microbuckling model proposed by Berbinau et al. [27,28]. The Berbinau fiber microbuckling
model is based on the initial fiber waviness, and compressive failure is most likely caused
by the local instability of the fibers embedded in the resin. The undulation of the fibers
under compressive loading lead to failure.

Berbinau et al. modeled the initial fiber waviness using the sine function v0(x) as
defined below, where V0 is the amplitude of the initial fiber waviness and λ0 is its half wave-
length. When a compressive load was applied, the fiber deformed into a sine function v(x).

v0(x) = V0sin
(

πx
λ0

)
(1)

v(x) = Vsin
(πx

λ

)
(2)

Based on the assumption that the fibers buckle in the phase, all fibers deform in the
same manner; therefore, if p = q = 0, this can be noted as Equation (3).

d2M
dx2 + P

d2v
dx2 +

dm
dx

= 0 (3)

Considering all forces, deflection curves, moments, shear forces, and deformations
applied to the fiber owing to compressive loading, Equation (4) was derived for the mi-
crobuckling model. The shear stiffness G is given in Equation (5).

V
V0

=

[
1 − P

E f I(π/λ)2 − A f G

]−1

(4)

Gep
12(γ) = Ge

12exp
(
−

Ge
12γ

τy

)
+ Gp

12exp

(
−

Gp
12γ

τult − τy

)
(5)

Here, I is the moment of inertia of area, A f is the fiber cross section, Gep
12 is the

composite shear modulus, Ge
12 and Gp

12 are the elastic and plastic out-of-plane shear mod-
ulus, respectively, τy is the yield shear stress, γ is the shear strain, and τult is the shear
failure stress.

V/V0 , as shown in Equation (4), increased slowly with the stress σ and then in-
creased exponentially, ultimately reaching the maximum value. In the function shown
in Equation (4), we assume that the fiber buckles at the point of the asymptote, defining
the stress reached as the compressive strength. In other words, this compressive strength
prediction model predicts compressive strength using fiber buckling. As can be seen
from Equation (4), the composite shear mechanical properties are necessary to predict the
compressive strength using the micro buckling model.

Considering the compressive failure of microbuckling, the out-of-plane shear prop-
erties and initial irregular angles of the fibers are important parameters that affect the
compressive strength, as shown in a study by Jumahat et al. [13]. The shear properties vary
significantly, depending on the material properties of the composite fibers and resin, and
these properties must be estimated in individual shear tests or numerical simulations [29].
However, conducting experiments and simulations of various material properties is in-
efficient because it requires a large amount of computation. In this paper, we propose
the response surface method (RSM) as a multivariate statistical method to reduce these
computational requirements. the response surface method (RSM) [30–34] is a mathematical
and statistical technique [35] that approximates discrete data to a continuous surface using
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the lowest amount of measurement data. This enables highly accurate predictions using a
small number of simulations [36].

This study proposes a new method for predicting the axial compressive strength of
composite materials. We address the issue of reducing computational cost, which has been
unresolved in previous studies, and develop a prediction model from the perspective of the
response surface method, which is different from the conventional approach. Specifically,
we propose an efficient and precise method for predicting axial compressive strength
by integrating the microbuckling model and the response surface method (RSM). This
method enables the prediction of compressive strength, without requiring the performance
of simulations each time, allowing for the comparison of the effects of different material
properties on the compressive strength. The parameters of the material properties of
the fiber and resin were designed based on the experimental method, and an axial shear
simulation was performed using a three-dimensional periodic unit cell (3D PUC) [37–40]
model of CFRP. The results obtained from the simulation were applied to the response
surface method (RSM) to create regression equations, and the reliability of the regression
equations was verified by comparing them with numerical simulation values. Additionally,
based on the developed predictive equations, we discuss which material properties within
the composite materials comprised of fiber and resin affect the compressive strength.

The added value of this research is that it will provide efficient and accurate predic-
tions when assuming compressive strength in various fiber and resin materials and when
considering the materials that should be selected to achieve the target compressive strength.
This method is expected to play a role in the design and material selection process.

Figure 1 shows a brief flow of this study, and I, II, and III are explained. First, shear
simulations (I) of CFRP are performed using numerical simulations as a conventional
method to calculate compressive strength. The compressive strength can be calculated
by applying the obtained shear property results to the equation of the microbuckling
model (II). However, using this conventional method, this is not efficient in terms of
computational cost and the time required to perform shear simulations for each material,
which is an issue. Therefore, this study proposes a novel method of prediction based on
the response surface method (III). This method eliminates the need for each simulation,
reduces computational costs, and enables the efficient calculation of shear properties. The
compressive strength of CFRP can also be obtained by combining the predicted shear
properties with the microbuckling model (II).
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Figure 1. Flow of the calculation of compressive strength in RSM and microbuckling.

2. Numerical Simulation

In this section, microscale numerical simulations are described to obtain the shear
properties of the composite materials. In this study, the three-dimensional periodic unit
cell (3D PUC) model was created using the finite element analysis software, Abaqus
2018/Explicit, as shown in Figure 2.
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Figure 2. The 3D periodic unit cell (PUC) model of CFRP.

2.1. Numerical Simulation Model

This finite element model comprises a resin, carbon fibers, and an interface between
the fibers and the resin. In Figure 2, the area shown in red is the resin, and the area shown in
beige is the carbon fiber. The model contained 29 fibers, with a diameter of 6 µm. Both the
height and width of the model were approximately 39 µm, and the fiber volume ratio was
54%. Eight-node elements (C3D8) were used to discretize the model in three-dimensional
space. The number of elements was 38,322, and the number of nodes was 173,760. For
the FEM mesh density in this study, the mesh size dependence is considered to be small
because the stress strength field is not pronounced in the damage analysis.

The material properties of the 3D PUC are as follows. In this FEM model, the material
properties are defined as anisotropic elastic materials for fibers and isotropic elastoplastic
materials for resins, considering continuous damage mechanics. These material prop-
erties were assumed based on those suggested in Ref. [29], for fiber properties, and in
References [20,38,41], for resin properties. The fibers were modeled as anisotropic elastic
materials, as listed in Table 1. We defined the Young modulus (E1, E2, E3), Poisson’s ratio
(n12, n13, n23), and shear modulus (G12, G13, G23) for the X, Y, and Z directions with respect
to the principal axes [40]. The Poisson’s ratio is dimensionless; thus, the units are not listed.
Mechanical properties of the resin are described in Table 2 and Figure 3. Resin is an isotropic
and elastoplastic material incorporating continuous damage mechanics [41], as shown in
Figure 3. Figure 3a shows the stress–strain curve illustrating the deformation behavior
of the resin. The plastic damage occurrence criterion was considered for evaluating resin
damage. According to this criterion, the equivalent plastic strain at the onset of damage is
described as a function of the stress triaxiality and strain rate, as illustrated in Figure 3b.

Table 1. Mechanical properties of the fiber.

E1 E2 E3 n12 n13 n23 G12 G13 G23

14 GPa 14 GPa 294 GPa 0.35 0.02 0.02 5 GPa 18 GPa 18 GPa
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Table 2. Mechanical properties of the resin.

Resin modulus 3.6 GPa
Resin Poisson’s ratio 0.34
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Figure 3. (a) Bi-linear assumption of the resin; (b) failure criterion for the resin.

Additionally, to consider the interfacial failure between the fiber and the resin, a
cohesive element was introduced to model the interfacial behavior and strength [18,19].
The cohesive element is defined using the traction separation law under the mixed mode,
as shown in Figure 4.
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Figure 4. Traction separation law for cohesive behavior under mixed-mode.

The traction separation behavior is defined by associating the traction, which acts on
the node between the resin and fiber, with the distance between them. In Figure 4, the
cohesive element parameters tn, ts, Yn, and Ys are the interfacial tensile stress, the interfacial
shear stress, the pure tensile stress, and the pure shear strength, respectively, and Gc is their
fracture toughness.

The pure shear strength of the cohesive element was assumed to be √2 times larger
than the tensile strength [42], and we predicted that the interface shear strength would be
160 MPa. The shear fracture strength of the interface and the mode II fracture toughness
(GI Ic), which is an indicator of material resistance, are presented in Table 3.
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Table 3. Cohesive properties of the 3D PUC model.

YS =
√

2Yn 160 MPa

GIIC=2GIC= GC 0.008 N/mm

2.2. Numerical Simulation Results

This section presents the results of the fiber direction shear simulation using the 3D
PUC model. The stress–strain diagrams obtained from the axial shear simulation are shown
in Figure 5. The shear simulation results indicate that the material underwent yielding at a
certain stress, followed by plastic deformation, which finally led to failure. From the shear
stress–strain relationship shown in Figure 5, the yield stress, fracture stress, and the elastic
and plastic modulus were derived, and these values are shown in Table 4. The respective
values in Table 4 are the elastic and plastic out-of-plane shear modulus; Ge

12 and Gp
12; the

yield shear stress, τy; and the shear failure stress, τult.
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Table 4. The out-of-plane shear properties obtained from the 3D PUC simulation.

Ge
12 Elastic shear modulus 6530 MPa

Gp
12

Plastic shear modulus 300 MPa

τy Out-of-plane shear yield stress 85 MPa
τult Out-of-plane shear strength 140 MPa

These four parameters are the mechanical properties necessary to obtain the CFRP
unidirectional compressive strength. Subsequently, the four shear properties listed in
Table 4 were applied to the microbuckling model to calculate the compressive strength.

2.3. Compressive Strength Using the 3D PUC Model and the Microbuckling Model

To obtain the compressive strength, four shear property values were applied to the mi-
crobuckling model. The microbuckling model is represented by Equations (6)–(8) [13,27,28],
and a graph showing the left-hand side, V/V0 , as the vertical axis and the right-hand side
as the horizontal axis is shown in Figure 6. The material parameters for the microbuckling
formula were calculated based on the analysis conditions described in Section 2.1, and
these are shown in Table 5.

V
V0

=

[
1 − P

E f I(π/λ)2 − A f Gep
12

]−1

(6)
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σ =
PVf

A f
(7)

Gep
12(γ) = Ge

12exp
(
−

Ge
12γ

τy

)
+ Gp

12exp

(
−

Gp
12γ

τult − τy

)
(8)
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Table 5. Material parameters in the microbuckling method.

Material Properties

Fiber diameter d f 6 µm
Fiber content Vf 54%

Fiber cross section A f 28.3 µm2

Fiber Young modulus E f 294 GPa
Fiber half-waviness λ = 10d f 60 µm

Moment of inertia of area I = d4
f π/64 63.6 µm4

In Figure 6, V/V0 slowly increased with the increase in the applied stress σ, and
then exponentially grew until it reached maximum stress. Equation (6) assumes that V
in the function increases rapidly, and that the fiber buckles at the point of the asymptote.
The stress at the asymptote point was defined as the compressive strength. In terms
of the material properties described in Section 2.1, this graph shows that the predicted
compressive strength was 1730 MPa.

In this section, microscale numerical simulations conducted using the 3D-PUC model
are described, and their shear properties are applied to a microbuckling model to calculate
the compressive strength. This method has been used as a valid compressive strength
evaluation method, and the compressive strength of 1730 MPa shown in Figure 6 is roughly
consistent with the experimental results of Sawamura et al. [20,29]. However, this method,
particularly the shear simulation to calculate shear properties, requires considerable time
and computational cost.

To evaluate the compressive strength of various materials, it is necessary to perform
a shear simulation for each material, which is highly inefficient. Therefore, we propose a
compressive strength evaluation method using the response surface method as a faster and
more efficient method for compressive strength evaluation.

3. The Response Surface Method (RSM)
3.1. Introduction

During material development, it is often difficult to evaluate materials by prototyping
and experimentation, and numerical simulations are useful to predict material properties
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and design materials [36]. However, the actual exploration of material properties requires
simulation of the microstructure of the material at the nanoscale, which requires a significant
amount of time.

One method to reduce this design time is the response surface method (RSM), which
predicts the design space with high accuracy. The response surface method (RSM) is a
mathematical and statistical method for representing continuous solutions from discrete
data using the minimum amount of measurement data [33]. This method can be used to
predict solutions without requiring any simulations.

The RSM is used worldwide in quality engineering, i.e., in product process optimiza-
tion and variability phenomena [30–34]. Using this method, a significant reduction in
the development time can be achieved by replacing conventional experimental and trial-
and-error design studies with a combination of simulation and optimization methods. In
other words, the RSM is a faster and more efficient method for designing new materials
and processes.

In Section 2, we discussed the fact that performing simulations individually requires
high computational costs and extensive time periods, and this is very inefficient. To
overcome this problem, the RSM has been proposed as a method to reduce computational
complexity using multivariate statistical methods. The RSM specifically explores the
relationship between response y and factors (x1, x2 . . . , xp) by collecting data according to
an experimental design.

3.2. Central Composite Designs

In this study, using the RSM, we created a prediction equation using the material
properties as explanatory variables and the results of shear simulation as objective functions.
Based on the prediction equation, the compressive strength was evaluated to determine the
material properties that affect it. To apply the RSM, we perform the following steps [36,43]:

1. The variables of main influence are selected, and the boundaries of the experimental
domain are set for these variables.

2. Experiments are conducted based on the experimental method design.
3. The coefficients β of the polynomial function are determined through both mathemat-

ical and statistical calculations..
4. The goodness of fit of the model is evaluated.
5. The influence of the material is assessed using the desirability function.

In this study, we adopted a polynomial approximated model widely used in the RSM.
The coefficients of the function were statistically estimated using the least squares method.
The RSM calculations are shown in Equation (9).

yn = β0 +
k

∑
i=1

βixi+
k

∑
i=1

βiix2
i + ∑

i<j
βijxixj (9)

The yn term shows four shear properties for n = 1 ∼ 4, respectively: the elastic and
plastic out-of-plane shear modulus; Ge

12 and Gp
12; yield shear stress, τy; and shear failure,

τult. β0 is the constant term, βi represents the coefficients of the liner parameters, and βij
represents the coefficient of the quadratic parameters. The x term refers to the explanatory
variables, which are shown in Table 6, with k = 6.

Table 6. The explanatory variables.

xi Explanatory variables
x1 Fiber content
x2 Initial elastic modulus
x3 Yield stress
x4 Modulus after yielding
x5 Fracture strength
x6 Interface strength
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The experimental design is based on these explanatory variables. Although the central
composite design, the Behenken design, and three-level factorial design [36] are used as
experimental designs for the RSM, the central composite design was adopted in this study.
The central composite design adds a center point and an axis point to the design, and all
factors are evaluated at five factorial levels (−α. −1, 0, 1, α) to create a model with curved
surface properties [36]. The first step in implementing this plan was to standardize the
explanatory variables. The standardization is based on Equation (10).

xi =
x − xu+xl

2
xu−xl

2

(10)

In Equation (10), xu is the upper level, xl is the lower level, and xi is the level value after
standardization. The xu and xl values need to be set for each parameter, and realistic values
for each material property are set based on previous experiments and research [38–40].
The explanatory variables at the five-factor level xi (−α. −1, 0, 1, α) are shown in Table 7.
In this study, the value of α was set to equalize the range of variation of the factors. In
addition, the points of the experimental data were strategically placed on a sphere of radius√

2, where the value of α was set to
√

2.

Table 7. Explanatory variables divided into five levels.

Explanatory Variables −α −1 0 +1 +α

x1 Fiber content 45 50 60 70 75
x2 Initial elastic modulus 2800 3000 3500 4000 4200
x3 Yield stress 51 55 65 75 79
x4 Modulus after yielding 75 200 500 800 925
x5 Fracture strength 92 100 120 140 148
x6 Interface strength 55 80 140 200 225

These explanatory variables were randomized to construct an experimental matrix
design, resulting in 77 experimental designs. Based on this central composite design,
simulations were performed to calculate the objective variables and shear properties.
According the calculated shear properties and material property parameters (77 in total),
a regression model was constructed to explain the response variables. Specifically, the
regression coefficient β of Equation (9) was calculated using the statistical software JUSE-
StatWorks/V5 (Institute of the Japanese Union of Scientists and Engineers).

3.3. Determination of β

A common technique for calculating the coefficient β is using the method of least
squares [36]. The coefficient β of the model is adjusted with the aim of minimizing the
residuals between the predicted and measured values from a hypothetical regression model.
When the number of experiments is n and the number of variables is k, the predictive
model is represented by the matrix in Equations (11) and (12).

y = Xβ + ε (11)
y1
y2
...

yn

 =


y1 x11 x12 · · · x1k
y2 x21 x22 · · · x2k
...

...
...

. . .
...

yn xn1 xn2 · · · xnk




β0
β1
...

βk

+


ε1
ε2
...

εn

 (12)

By minimizing the sum of error squares, the unbiased estimator b of the coefficients β
is obtained as follows:

b =
(

XTX
)−1

XTy (13)
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The appropriateness of the regression model was determined using the coefficient of
determination defined by Equation (14). The coefficient of determination ranges from 0 to
1, and is less than 1 if there are residuals.

R2 =
SSR
Syy

= 1 − SSE
Syy

(14)

Here, SSE and SSR denote the residual and regression sums of squares, respectively. In
this study, the coefficient β is calculated using differentiation and optimization algorithms
in the statistical software JUSE-Stat Works/V5, leading to the response surface equation.
Table 8 shows the β values calculated using Equations (12) and (13). In Equation (9), β0
represents the constant term, βi the coefficient of the linear term, βii the coefficient of the
quadratic term, and βij the coefficient of the interaction term. The values of i and j range
from 1 to 6, corresponding to the explanatory variables listed in Table 6.

Table 8. Calculated value of β in Equation (9).

Elastic Shear
Modulus

Plastic in Plane
Shear Modulus

Yield Share
Stress

Failure Shear
Stress

βi

β0 9871 2310 73.89 162
β1 1910 436 0.44 −3
β2 850 −51 0.67 1.03
β3 60 79 9.27 −0.65
β4 35 752 −0.45 −2.98
β5 31 −39 1.25 17.69
β6 35 −62 0.95 15.46

βii

β1
2 −606 −226 −0.39 −3.65

β2
2 −159 −145 −0.13 −0.59

β3
2 −166 −31 0.72 2.67

β4
2 −163 −153 1.91 −3.60

β5
2 −163 −40 −0.12 −3.69

β6
2 −171 −29 −0.85 −13.01

βij

β1β2 95 −27 0.17 0.25
β1β3 31 −3 −0.57 −0.56
β1β4 13 105 0.44 −0.86
β1β5 14 −2 0.18 −0.06
β1β6 39 −51 0.25 −3.07
β2β3 25 −25 −0.04 0.13
β2β4 17 −24 0.05 0.62
β2β5 13 5 −0.03 0.03
β2β6 9 −15 −0.04 0.01
β3β4 −30 32 −0.24 −3.90
β3β5 −24 −13 0.35 3.60
β3β6 −30 −16 −0.51 −2.31
β4β5 −29 −59 0.17 2.12
β4β6 −27 −42 −0.79 −6.04
β5β6 −33 91 0.23 13.45

The coefficients β of these linear, quadratic, and interaction terms indicate how much
each parameter contributes to the shear properties. The coefficients of the linear terms
exhibited a strong linear influence on the parameters and shear properties, whereas the
coefficients of the quadratic terms exhibited a curvilinear relationship. The coefficients
of the interaction terms emphasize the combined actions of the parameters. In Table 8, a
comparison of the coefficients shows that each shear property is influenced by different
material property parameters, which tend to vary with the shear properties.
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4. Prediction of Compressive Strength Using RSM
4.1. Prediction Equation of Compressive Strength

In this section, regression equations are developed based on the estimated coefficients
β and Equation (9) for the four shear properties (Ge

12, Gp
12, τy, and τult). The RSM prediction

equation can be graphed by plotting any two parameters on the x and y axis and the
response variable on the z axis. Figure 7 shows an example of a response surface diagram.
The x axis of this diagram shows the x1 fiber content, and the y axis shows x2 initial
elastic modulus.
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Figure 7. Graph of RSM prediction formula for x1 and x2.

This graph allows for a quantitative and visual understanding of how the parameters
and their interactions affect the response variable. Owing to these advantages, the RSM is
widely used in various fields such as experimentation, process optimization, and product
improvement [30,34,36].

4.2. The Validity of the RSM Equation

This section presents a validation of the reliability of the prediction equations derived
using the RSM. Specifically, the values obtained from the prediction equation using the
RSM were compared with those obtained from the numerical simulation described in
Section 2. The x axis represents the shear property values obtained from the prediction
equation, and the y axis represents the values obtained from the numerical simulation.

In addition, to assess the accuracy of the forecasting equation, we focused on whether
there was a large amount of data close to y = x. The stronger this tendency, the more reliable
the prediction equation. In this study, we adopted the coefficient of determination as an
indicator to verify the accuracy of the forecasting equation. The coefficient of determination
is an important indicator of the predictive ability of regression models. Specifically, it
indicates the proportion of variance in the data explained by the regression model; the
closer the value is to 1, the better the model’s predictions fit the actual data.

The coefficients of determination R2 for the four graphs are listed in Figure 8. In all
prediction equations, the coefficient of determination exceeded 94%. Specifically, the aver-
age coefficient of determination for each prediction equation was 96.3%, with the highest
reaching 99%. Thus, the prediction model agreed well with the actual data, suggesting that
a highly accurate response surface equation was obtained.
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Additionally, we confirmed the validity of the compressive strength prediction using
the prediction equation from the RSM by comparing the predicted and measured values.
We applied the predicted shear values to the microbuckling model and calculated the
compressive strength. The microbuckling equations are based on Equation (15), as de-
scribed in Section 1. Figure 9 shows an example of the results of comparing the calculated
compressive strength predicted value and the actual measured value. This is the result of
the prediction of material properties at factor level xi = 0 in Table 7, i.e., x1 = 60; x2 = 3500;
x3 = 65; x4 = 500; x5 = 120; x6 = 140.



Materials 2024, 17, 478 13 of 17

Materials 2024, 17, x FOR PEER REVIEW 13 of 18 
 

 

Additionally, we confirmed the validity of the compressive strength prediction using 
the prediction equation from the RSM by comparing the predicted and measured values. 
We applied the predicted shear values to the microbuckling model and calculated the 
compressive strength. The microbuckling equations are based on Equation (15), as de-
scribed in Section 1. Figure 9 shows an example of the results of comparing the calculated 
compressive strength predicted value and the actual measured value. This is the result of 
the prediction of material properties at factor level 𝑥 = 0 in Table 7, i.e., 𝑥 = 60; 𝑥 =3500; 𝑥 = 65; 𝑥 = 500; 𝑥 = 120; 𝑥 = 140. 

 
Figure 9. Comparison of RSM and numerical simulation for compressive stress. 

From Figure 9, it can be confirmed that for any given material, the predicted and 
measured values are in close agreement. Additionally, the error is significantly small 
(within 10%), confirming that the prediction equation based on the RSM developed in this 
study is highly reliable. 𝑉𝑉 = 1 − 𝑃𝐸 𝐼 𝜋 𝜆⁄ − 𝐴 𝐺  

𝐺 𝛾 = 𝐺 𝑒𝑥𝑝 − 𝐺 𝛾𝜏 + 𝐺 𝑒𝑥𝑝 − 𝐺 𝛾𝜏 − 𝜏  (15) 

4.3. The Factors Affecting Compressive Strength 
In this section, we discuss the influence of the parameters on the compressive strength 

prediction using the RSM and microbuckling model. In the discussion, we evaluate the rela-
tionship by optimizing the desirability function. The scale is such that 0 indicates a totally un-
desired reaction, and the closer it is to 1, the more desirable the reaction [36,43]. For each re-
sponse variable, the upper and lower limits, 𝑈  and 𝐿 , are determined, as is the coefficient 𝑘 
which determines the shape of the desirability function [44], as shown in Equation (16). 

𝑏𝑑 𝑥 , … , 𝑥 = ⎩⎪⎨
⎪⎧ 0 ∶ 𝑖𝑓𝑦 1            �̂� 𝑥 , … , 𝑥 − 𝐿𝑈 − 𝐿 ∶ 𝑖𝑓𝐿 𝑦 𝑇1 ∶ 𝑖𝑓𝑦 𝑇             (16) 

We evaluated the effect of each material property on the compressive strength. The 
desirability functions were calculated from the compressive strength data derived from 
the RSM and microbuckling models, and are shown in Figure 10. This figure shows the 
factors 𝑥 ~𝑥  on the horizontal axis, the predicted compressive strength values on the 
vertical axis, and the desirability function 𝐷 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 , 𝑥 . 

Figure 9. Comparison of RSM and numerical simulation for compressive stress.

From Figure 9, it can be confirmed that for any given material, the predicted and
measured values are in close agreement. Additionally, the error is significantly small
(within 10%), confirming that the prediction equation based on the RSM developed in this
study is highly reliable.

V
V0

=

[
1 − P

E f I(π/λ)2 − A f G

]−1

Gep
12(γ) = Ge

12exp
(
−

Ge
12γ

τy

)
+ Gp

12exp

(
−

Gp
12γ

τult − τy

)
(15)

4.3. The Factors Affecting Compressive Strength

In this section, we discuss the influence of the parameters on the compressive strength
prediction using the RSM and microbuckling model. In the discussion, we evaluate the
relationship by optimizing the desirability function. The scale is such that 0 indicates a
totally undesired reaction, and the closer it is to 1, the more desirable the reaction [36,43].
For each response variable, the upper and lower limits, Ut and Lt, are determined, as is
the coefficient k which determines the shape of the desirability function [44], as shown in
Equation (16).

bdt
(
x1, . . . , xp

)
=


0 : i f y < 1(

µ̂t(x1,...,xp)−Lt
Ut−Lt

)k
: i f L ≤ y ≤ T

1 : i f y > T

(16)

We evaluated the effect of each material property on the compressive strength. The
desirability functions were calculated from the compressive strength data derived from the
RSM and microbuckling models, and are shown in Figure 10. This figure shows the factors
x1 ∼ x6 on the horizontal axis, the predicted compressive strength values on the vertical
axis, and the desirability function D(x1, x2, x3, x4, x5, x6).
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The desirability functions D(x) for each material property are compared in Figure 10.
The parameters whose desirability functions change significantly are the most influential,
in the following order: fiber content x1, modulus after yielding x4, yield stress x3, and
initial elastic modulus x2.

Subsequently, we focused on each material property x1 to x6 individually. The effects of
the six explanatory variables on the compressive strength are shown in Figure 11. The limits
for the material property parameters considered in this study were established based on the
results of previous studies [38–40], as described in Section 3. The horizontal axis shows the
normalized values of the parameters, and the vertical axis shows the compressive strength.
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First, we focused on the fiber content, as shown in Figure 11a. The graph shows that
the compressive strength surges as the fiber content increases from 46% to 70%. The rate of
change tended to increase rapidly at first, and then moderately. From 70% to 74%, a slight
decrease was observed. Therefore, a fiber content in the range of 60–70% is optimal, and
the effect may decrease if the fiber content exceeds this range.

We then examined the initial modulus of elasticity x2, as shown in Figure 11b. As the
initial modulus of elasticity increased from 2800 to 4200 MPa, the compressive strength also
tended to increase. Additionally, the rate of change was relatively high at the beginning,
and then became moderate.

We show the yield stress x3 in Figure 11c. The graph shows that as the yield stress
increased from 51 to 79 MPa, the compressive strength also increased gradually. The rate of
change was relatively high at the beginning, and then converged. Overall, the yield stress
affected the compressive strength; however, the extent of this effect was not as significant
as that of the other parameters.

The modulus after yielding x4 is shown in Figure 11d. The graph shows a trend of
increasing compressive strength with increasing modulus after yielding. In the range of
x4 considered in this study, the compressive strength varied widely from approximately
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1950 MPa to 2410 MPa. This indicates that varying the modulus after yielding may signifi-
cantly affect the compressive strength.

Finally, we show the fracture strength x5 and interface strength x6 in Figure 11e and 11f,
respectively. The fracture and interfacial strengths had some influence on the compressive
strength; however, the range of variation was narrower than that of the other parameters.
Therefore, the influence of these properties on the compressive strength is limited, and other
factors are thought to have a significant effect on the compressive strength. As a result, the
effects of the fracture strength and interfacial strength are considered relatively negligible.

4.4. Prioritizing Factors Affecting Compressive Strength

Based on this discussion, we ranked the parameters that were most likely to affect the
compressive strength. The order is: fiber content x1, modulus after yielding of resin x4,
yield stress of resin x3, and initial elastic modulus of resin x2.

These rankings are based on the rate of change in the compressive strength and
desirable function described in Section 4.3. For the range of parameters considered in this
study, the fiber content showed the highest change in the compressive strength, followed
by the modulus after yielding. The yield stress and initial elastic modulus of the resin are
also considered to be factors that affect the compressive strength. This indicates that the
resin properties of the composites were dominant during compression.

However, modifying these parameters is difficult in practice and highly dependent on
the materials used, as well as the manufacturing process. For example, the resin properties
may be modified by material selection and heat treatment; however, the manufacturing
process, design implications, and costs should be considered.

5. Conclusions

In this study, a new prediction method for the axial compressive strength of com-
posite materials was developed using the RSM method and a microbuckling model. The
parameters of the material properties of the fiber and resin were calculated based on the
design of the experimental method. An axial shear simulation was performed using the
3D PUC model of CFRP, and the prediction equation was formulated by applying the
results obtained from the analysis to the RSM. The reliability of the prediction equation
was compared with the numerical simulation results, and the validity of the equation was
evaluated by determining the goodness of fit of the prediction model using the coefficient
of determination. In all prediction equations, the coefficient of determination exceeded 94%,
indicating a high goodness of fit. Specifically, the average coefficient of determination for
each prediction equation was 96.3%, with the highest reaching 99%. These figures demon-
strate the exceptional performance of the proposed method as a predictive model, fitting
exceptionally well with the actual data. Therefore, the validity of the prediction method
for the compressive strength of CFRP using the RSM method developed in this study was
confirmed. Additionally, we discuss the material properties that affect the compressive
strength of composites comprised of fibers and resin. Consequently, we ranked the param-
eters most likely to influence the compressive strength as follows: fiber content, elastic
modulus after resin yield, yield stress of resin, and the initial elastic modulus of resin.
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