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Abstract: Nowadays, 3D PLA-printed parts are widely used in many applications, essentially using
the fused filament fabrication technique. While the influence of printing parameters on quasi-static
mechanical characterization has been extensively considered within the literature, there are limited
accounts of this effect on fatigue performance. The two main aims of this research are first to
investigate the effects of the infill density percentage on the fatigue life of dog-bone samples under
rotating bending cycling loads, and second to model the fatigue life using Wöhler and Basquin
models. The experiments exhibit a high variability of results, especially for low cyclic loads. The
S–N curves show that the number of cycles at failure increases with the increase in the infill density
percentage and decreases with the increase in loads. Investigations allow the formulation of each
constant model as a function of the infill density percentage. The new fatigue model formulations
exhibit good agreement with the experimental data. As an outcome of this study, the fatigue model
for 3D-printed parts may be expressed as a function of the infill density percentage using fewer tests
in the future and for other polymers used in fused filament fabrication.

Keywords: fatigue properties; PLA polymer; 3D printing; Wöhler model; Basquin model

1. Introduction

The use of additive manufacturing (AM), commonly named 3D printing, is becoming
more widespread in several industries with severe production and standards constraints,
namely aerospace [1,2], automotive [3,4], biomedical [5,6], healthcare and medical de-
vices [7,8], architecture and construction [9,10], electronics [11,12], and many others. For
example, according to General Electric Aerospace, the number of parts produced using
traditional manufacturing methods was cut from 855 to 12 using AM technologies. AM sim-
plified the design, reduced the weight, improved fuel efficiency by up to 20%, and achieved
10% more power [13]. Similar to that, Airbus reduced a hydraulic housing tank that had
126 parts to having just 1 AM part [1]. Flapping wings, satellite brackets and lightweight
components for the aviation industry may now be produced easily thanks to advancements
in composite and multi-material production [2]. Fiber-reinforced AM is nowadays used to
generatively develop and produce a race car’s highly stressed and safety-relevant chassis
part [14]. In the biomedical field, 3D printing has been widely used to create customized
prosthetics [15], dental implants [16], and organ and tissue fabrications [17].

In fact, there are many types of AM techniques. Each has its own advantages and limi-
tations, making them suitable for different applications within various industries [18–20].

Materials 2024, 17, 471. https://doi.org/10.3390/ma17020471 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17020471
https://doi.org/10.3390/ma17020471
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0003-3665-1019
https://orcid.org/0000-0001-8808-7507
https://doi.org/10.3390/ma17020471
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17020471?type=check_update&version=1


Materials 2024, 17, 471 2 of 13

Among them, we cite stereolithography, selective laser sintering, binder jetting, direct metal
laser sintering, electron beam melting, powder bed fusion, continuous liquid interface
production, and fused filament fabrication (FFF). FFF, also known as fused deposition
modeling (FDM) or material extrusion (MEX), is one of the most popular and economi-
cal ways to manufacture plastic parts among the different AM processes; a continuous
thermoplastic or composite material thread in a filament form is used to manufacture 3D
items [21,22]. This process uses an extruder to feed polymer filament via an extruding
nozzle, which melts it and then deposits it in a specified automated path, layer by layer,
onto the build platform.

Many commercial polymers are used in FFF, such as acrylonitrile butadiene styrene
(ABS), polylactic acid (PLA), polycarbonate (PC), polyether ester ketone, polyetherimide,
acrylonitrile styrene acrylate, polyethylene terephthalate glycol, and thermoplastic elas-
tomers [23–26]. However, due to its simplicity of use and low expansion and contraction
upon heating and cooling, PLA is the most often used material. Indeed, it has a relatively
low printing temperature, typically around 180–220 ◦C, which makes it compatible with
a wide range of 3D printers, including those with open-frame designs. Its low printing
temperature also means that it has less tendency to warp during printing. PLA is also
biodegradable, with low odor and low toxicity when heated. Moreover, it is available in a
wide range of colors and compatible with dual extruders (when combined with a water-
soluble support material like polyvinyl alcohol [27,28]). It is important to note that while
PLA has many advantages, it also has limitations. For example, its low heat resistance,
compared to some other 3D printing materials like ABS or PC, makes it not suitable for
applications exposed to high temperatures. Its low flexibility and toughness also limit its
application [29].

Due to the spread of 3D-printed parts, their mechanical characterization is essential for
material selection, product design, quality control, performance evaluation, and research.
They play a central role in ensuring the safety, reliability, and efficiency of materials and
structures across various industries. Tensile, compression, flexural, shear, hardness, and
fatigue tests are examples of the many mechanical characterization tests available. As one
of the most frequent reasons for structural and mechanical components prematurely failing
is the phenomenon of fatigue. In fact, fatigue tests remain among the most interesting.
Fatigue material characterization, proposed initially by Whöler, consists of experimental
campaigns based on standardized specimens suggested by international standards sub-
jected to dynamic loading until failure. A critical parameter related to dynamic loading is
defined, such as stress, σ; stress range, ∆σ; or strain range, ∆ε. Then, a relation between the
critical parameter and the number of cycles until failure is defined by a fatigue life model.
The fatigue models can be formulated in terms of σ–N, called S–N curves. The proposed
models in the literature can be classified into two groups [30]. The first group belongs to the
deterministic models, such as the Basquin, Palmgren, Stromeyer, and Weibull models. The
second group belongs to the probabilistic models, like the Bastenaire, Castillo and Canteli,
Bolotin, and Pascual and Meeker models.

According to [23], the PLA tensile strength is around 55 MPa, the modulus of elasticity
ranges from 827 to 1552 MPa, the elongation to failure ranges from 5.1 to 16.6%, the shore D
hardness ranges from 65.8 to 81.7 HShD, and the ball indentation hardness varies between
77.2 and 99.6 N·mm−2. This variability in results is due to the PLA supplier and the applied
3D printing parameters. Indeed, the FFF printing process depends on 13 parameters that
affect the mechanical performance of the product. These parameters can be categorized into
two classes [31]: the layering and device parameters. The first class refers to the topological
parameters that can be controlled by the slicing software, such as the raster angle, the print
direction (also called build orientation), the infill pattern, the infill density, the layer height,
the extrusion width, the air gap, the solid layers, and the perimeters. The second class refers
to the parameters associated with the 3D printing device itself, such as the print speed, the
nozzle diameter, the nozzle temperature, and the platform temperature. While the influence
of FFF printing parameters on quasi-static mechanical characterization has been widely
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discussed within the literature [31–33], there are limited accounts of this effect on fatigue
performance. For example, Azadi et al. [34] investigated the impact of the print direction on
the bending fatigue properties of PLA: a shorter fatigue lifetime was obtained for vertical
specimens than that of horizontal samples. Shanmugam et al. [35] investigated the effect of
the nozzle diameter, the extrusion temperature, the bed temperature, the extrusion speed
rate, and the layer height on fatigue. They concluded that the printing parameters have a
significant impact on fatigue behavior, which need to be optimized. They also concluded
that the defects and voids are common problems in FFF, and would be considered factors
since they increased the stress concentration.

Infill density plays a crucial role in determining the mechanical properties of 3D-
printed parts. Indeed, increasing infill density generally improves the overall strength
and stiffness of the printed part. The reason is that a higher infill creates a more solid
interior structure, reducing the likelihood of deformation and providing better support
for the outer layers. However, it also increases the weight and material usage of the
printed part. This can affect the cost, print time, and overall efficiency of the 3D printing
process [36]. Infill patterns (square, hexagonal, triangular, etc.) also significantly influence
the mechanical properties of printed parts [37]. Gomez-Gras et al. [38] investigated the
fatigue performance of PLA cylindrical specimens using Taguchi Design of Experiments.
They concluded that infill density emerges as the predominant factor affecting fatigue
performance, followed by nozzle diameter and layer height. Printing speed has a negligible
influence on PLA specimens.

In this paper, an experimental campaign is realized to characterize the fatigue behavior
under rotating bending tests for PLA samples obtained via FFF. Four levels of the infill
density percentage (f%) of dog bone samples (25%, 50%, 75%, and 100%) are tested. Wöhler
and Basquin models are used to express S–N data. Updated expressions of the cited models
are implemented to consider the effect of infill density on fatigue model constants. The new
formulations are validated with success according to extra experimental configuration tests.

2. Experimental Set-Up and Analysis Methodology

This section describes the geometrical and material properties of the 3D-printed
samples, the rotating bending set-up, and the S–N models used in this study.

2.1. Fatigue Samples

Fatigue samples are FFF-manufactured using a Rise3D Pro2 printer. The study mate-
rial is commercial PLA (Anet, Shenzhen, China), which is injected layer by layer. Vertical
divisions of the normal dog bone samples are applied. Figure 1 illustrates the dog bone sam-
ple dimensions (based on the ISO 1143:2010 standard [39]) and the manufactured specimen.

Materials 2024, 17, x FOR PEER REVIEW 4 of 13 
 

 

 

 
(a) (b) 

Figure 1. (a) Fatigue dog bone sample; (b) PLA specimen printed in vertical direction. 

The 3D printing parameters are se led in accordance with the literature and the PLA 
supplier recommendations [34,40]. The nozzle temperature is fixed at 200 °C and the bed 
temperature at 60 °C. The nozzle speed is 50 mm/s, and the nozzle diameter outlet is equal 
to 0.4 mm. A square pa ern fills the material with a layer thickness of 0.15 mm. The infill 
density of the samples is 100% in the initial and final layers. The inner layers are filled to 
25, 50, 75, and 100% density. The filling speed is equal to 60 mm/s. The raster orientation 
is −45/45°. 

2.2. Fatigue Testing 
A rotating bending fatigue device is used to establish the S–N diagram. The appa-

ratus (Company: HI-TECH LIMITED, Andover, UK, model: HS M-19, Figure 2) contains 
a cantilever beam condition in which the bending stress is applied to the shaft end as a 
load. The maximal bending stress on the specimen surface is totally reversed since the 
sample is rotating (R = −1, which means the mean stress is zero). The bending load is set 
at 2, 5, 7 and 10 N, corresponding to an alternate peak bending stress of 14, 35, 49 and 70 
MPa. The loading frequency is set to 100 Hz. Each experiment is conducted 10 times to 
investigate the repeatability of the fatigue results. In total, 160 fatigue tests are carried out 
for this study. 

 
Figure 2. Rotating bending fatigue device. 

Figure 1. (a) Fatigue dog bone sample; (b) PLA specimen printed in vertical direction.



Materials 2024, 17, 471 4 of 13

The 3D printing parameters are settled in accordance with the literature and the PLA
supplier recommendations [34,40]. The nozzle temperature is fixed at 200 ◦C and the bed
temperature at 60 ◦C. The nozzle speed is 50 mm/s, and the nozzle diameter outlet is equal
to 0.4 mm. A square pattern fills the material with a layer thickness of 0.15 mm. The infill
density of the samples is 100% in the initial and final layers. The inner layers are filled to
25, 50, 75, and 100% density. The filling speed is equal to 60 mm/s. The raster orientation is
−45/45◦.

2.2. Fatigue Testing

A rotating bending fatigue device is used to establish the S–N diagram. The apparatus
(Company: HI-TECH LIMITED, Andover, UK, model: HS M-19, Figure 2) contains a
cantilever beam condition in which the bending stress is applied to the shaft end as a
load. The maximal bending stress on the specimen surface is totally reversed since the
sample is rotating (R = −1, which means the mean stress is zero). The bending load is set at
2, 5, 7 and 10 N, corresponding to an alternate peak bending stress of 14, 35, 49 and 70 MPa.
The loading frequency is set to 100 Hz. Each experiment is conducted 10 times to investigate
the repeatability of the fatigue results. In total, 160 fatigue tests are carried out for this study.
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2.3. Fatigue Life Modeling

There are numerous methods and models with which to estimate the fatigue life. This
section presents two deterministic fatigue life prediction models that express the Wöhler
S–N curve. The first one, called the Wöhler model [41], was established in 1870 and it
represents the S–N data as follows:

Log
(

N f

)
= CW1 − CW2σ (1)

where σ is the stress amplitude, Nf is the number of cycles to failure, and CW1 and CW2 are
Wöhler material positive constants.

The second model is called the Basquin model [42]. It was established in 1910 and it
expresses the S–N data in the following equation:

Log
(

N f

)
= CB1 − CB2Log(σ) (2)

where CB1 and CB2 are Basquin material positive constants.
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3. Results and Discussion

In this section, we discuss the size of the fatigue samples used to characterize the S–N
curves accurately. Then, we present our investigation on fatigue behavior modeling. Two
models, Wöhler and Basquin, are used. The material constants are expressed as a function
of the infill density percentage (f%) to formulate a unique equation that considers its contri-
bution to the model formulation. The results are validated with additional experiments.

3.1. Fatigue Specimen Sampling

Fatigue tests show an inevitable variability in the number of cycles at failure, especially
for the low stress of 14 MPa (see Table 1 and Figure 3). Yet, the number of samples that
must be tested depends on three parameters: the variability of observed results, the desired
accuracy, and the desired level of confidence for the estimated result. Very often, the desired
accuracy is expressed as a percentage of the mean of the observed result. For example,
the ambition of fatigue modeling may be to achieve an estimate within 10 percent of the
actual mean. The sample size needed to achieve that purpose can be determined using the
following formula:

n =

(
z·s

a·N f

)2

(3)

where z is the number of normal standard deviations needed for desired confidence, s is
the sample standard deviation, a is the desired accuracy percentage, and N f is the mean of
the number of cycles at failure.

Primarily, 10 tests are performed for each configuration to evaluate the standard
deviation and then to update the correct required number of samples regarding the desired
confidence targeted. Table 1 resumes the number of cycles at failure under the peak stress of
14 MPa, for instance, and the corresponding sample size. We opt for a desired confidence of
90% (z = 1.65) and a desired accuracy percentage of ±10%. For the infill density percentage
of 75% and 100%, the required number of samples are 79 and 132, respectively. This
means that we should make 69 and 122 more fatigue tests for each of these configurations.
Unfortunately, these tests are time-consuming, so we decided to limit our investigations to
the initial 10 tests already made.
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Table 1. Size sample (desired confidence of 90% and desired accuracy percentage of ±10%).

Infill Percentage

Specimen N◦ 25% 50% 75% 100%

1 25,300 146,050 249,250 1,020,750

2 43,200 289,800 1,454,800 424,750

3 20,000 222,400 485,300 982,700

4 23,200 68,200 1,451,940 762,700

5 42,800 321,600 392,150 1,055,780

6 16,250 205,100 1,057,400 2,284,000

7 28,500 330,300 1,520,200 2,605,000

8 31,600 188,100 872,300 2,552,300

9 38,800 290,600 558,350 435,000

10 33,100 303,700 740,150 499,150

mean 30,275 236,585 878,184 1,262,213

standard deviation 9349 85,866 472,994 876,096

n 26 36 79 132

3.2. Fatigue Behavior Modeling

Based on the rotating bending tests, the S–N curves are obtained (Figure 3). The
data show a significant variability in the Nf cycles for a low load (14 MPa). Indeed,
the ratio of Nf min to Nf max at 14 MPa is 2.66, 4.84, 6.10 and 6.13 for infill percentages
of 25, 50, 75 and 100%, respectively. However, for the other loads, this ratio ranges be-
tween 2 and 3.8, between 1.5 and 2.2 and between 1.5 and 2.2 for 35 MPa, 49 MPa and
70 MPa, respectively.

Our following investigations are based on the mean values of Nf (Figure 4). The S–N
curves show the expected material behavior under a cyclic load: Nf logically goes up with
the increase in f% and decreases with the rise in the load (see Figure 5).
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3.2.1. Wöhler Model

To assess Wöhler coefficients, we start by depicting the S–N curve with a Log(N) scale
(Figure 6) in accordance with Equation (1). The relationship is obviously linear. The use
of the linear regression allows the determination of CW1 and CW2 (Table 2, R2: coefficient
of determination).
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Table 2. Identification of Wöhler coefficient for different infill percentages.

CW1 CW2 R2

25% 4.719 0.0190 0.987
50% 5.763 0.0329 0.950
75% 6.336 0.0409 0.952

100% 6.460 0.0417 0.936

Figure 7 depicts CW1 and CW2 as a function of f%. Equations (4) and (5) express the
obtained least squares regression with a coefficient of determination of 0.96 for CW1 and of
0.97 for CW2.
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Thus, we can express Wöhler material positive constants as follows:
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3.2.2. Basquin Model

To assess Basquin coefficients, we now depict the S–N curve with a log(S)–log(N) scale
(Figure 8) in accordance with Equation (2). The relationship is obviously linear. The use of
linear regression allows the determination of CW1 and CW2 (Table 3).
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Table 3. Identification of Basquin coefficients for different infill percentages.

CB1 CB2 R2

25% 6.206 1.4678 0.955
50% 8.420 2.5953 0.956
75% 9.740 3.2922 0.996

100% 9.974 3.3825 0.999

Figure 9 depicts CB1 and CB2 as a function of f%. Equations (6) and (7) express the
obtained least squares regression with a coefficient of determination, R2, of 0.98 for CB1 and
of 0.97 for CB2.
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Figure 9. Evolution as a function of f% of (a) CB1 and (b) CB2.

Hence, we can express the Basquin material positive constants as follows:

CB1(f%) = 10.266 + 2.841Ln(f%) (6)

CB2(f%) = 3.543 + 1.451Ln(f%) (7)

3.2.3. Validation of Models

Combining Equations (1), (4) and (5), and combining Equations (2), (6) and (7) allow
us to formulate Wöhler and Basquin models, respectively. Figure 10 shows good agreement
between the theoretical models and experiments. To validate the new formulations, an
additional experimental campaign is performed: two stress levels are used (28 and 63 MPA)
at different infill density percentages ranging from 35% to 85% (Table 4). Each test is
repeated only five times.
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Table 4. New configurations for validation.

σ (MPa) f% (%)

28 35
28 70
28 85
63 40
63 60
63 80

Figure 11 represents the fatigue models with the experimental values. The experiments
are depicted by their mean value and the error bars (standard deviation). We note that
for the high stress of 63 MPa (a low number of loading cycles), both theoretical models
perfectly represent the fatigue behavior. However, for the low stress of 28 MPa, we note
that for the density infill percentage of 35%, Wöhler shows a better agreement than Basquin
does. For higher density infill percentages, Basquin becomes more realistic. We recall
that for the low stress, three replications are insufficient to model the high variability of
observed results.
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The major cause of the deviations between the model and actual experimental results is
attributed to the discrepancies in the experimental data themselves. Specifically, the fatigue
tests exhibit a high degree of deviation, especially at a high number of cycles. Additionally,
the deviation can be ascribed to the properties of the material used. Indeed, the mechanical
properties of PLA, like all polymers, are temperature-dependent, and any change in room
temperature can impact the overall fatigue results.

4. Conclusions

FFF is essential due to its versatility and wide-ranging applications in various indus-
tries. One of the most used materials is PLA due to its ease of use, eco-friendliness, good
surface finish, and affordability. PLA 3D prints must be assessed regarding mechanical
behavior, essentially under repeated cyclic loading and unloading. However, the overall
ability to withstand repeated stress or load cycles over time depends on the FFF parameters.
In this work, we focus on how the infill percentage density affects the fatigue life of dog
bone samples under rotating bending tests. The experimental data show a high variability
of results, which requires a significant number of replications for each test to improve
the confidence and accuracy of outputs. In some cases, hundreds of tests are required for
confidence and accuracy with 90% for each. However, due to time constraints, we limit
our experimental campaign to 10 replications per configuration. The S–N curves show that
the number of cycles upon failure goes up with the increase in the infill density percentage
and decreases with the rise in the load. Two deterministic fatigue life prediction models
are used: Wöhler and Basquin. The investigations demonstrate that a unique formulation
of the cited models can be expressed to consider the effect of the infill density percentage.
Indeed, the model constants can be related to it. The results show that both models agree
on high cyclic loads, which correspond to the low-cycle fatigue regime. However, for
the low cyclic load, which corresponds to the high-cycle fatigue regime, the new Wöhler
formulation shows a better fit for an infill density percentage lower than 50%. For the other
cases, higher than 50%, the new Basquin formulation is better. This finding means that a
fewer number of tests can be performed to express the fatigue model as a function of the
infill density percentage. According to the literature, decreasing surface roughness using a
post-processing approach (by turning) would enhance the 3D print lifetime through the
high-cycle fatigue regime. Future research will analyze the influence of 3D-printed surface
roughness samples on the fatigue life.
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