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Abstract: This study investigates the fracture behavior of glass fiber-reinforced plastic (GFRP) under
various loading conditions using acoustic emission (AE) testing. Using fracture tests and time series
analysis of AE signals, parameters such as b-value, improved b-value (Ib-value), and energy b-value
(be-value) were examined to understand crack initiation, growth, and structural failure. The stress–
strain curve revealed distinct responses during tensile and step loading, and time series analysis
highlighted variations in amplitude, AE energy, and Kaiser and Felicity effects. Under tensile loading,
the Ib-value exhibited a linear decrease, while step loading introduced complexities, including the
Felicity effect. The be-value, incorporating energy considerations, fluctuated, providing insights
into micro-cracks and macro-cracks. Statistical analysis demonstrated a consistent decrease in the
be-value, emphasizing its potential for long-term monitoring. This study provides a comprehensive
technique for assessing composite material fracture behavior, enhancing understanding for critical
applications in hydrogen storage vessels and pressure pipes as well as advancing reliability and
safety in industrial sectors.
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1. Introduction

Non-destructive testing (NDT) is a technique employed for the inspection and as-
sessment of structures to detect damage without causing harm. This method involves
evaluating the condition of an object without resorting to destructive means. Various NDT
techniques, including ultrasonic testing [1,2], magnetic particle inspection [3,4], and X-ray
testing [5], find application in industrial fields, such as turbine generators [6,7], rotating
equipment [8], and pressure piping lines [9]. However, recent attention has shifted towards
AE testing [10] driven by its ease of real-time monitoring and surveillance. AE testing is a
method that analyzes acoustic waves resulting from rapid stress changes. Elastic waves
generated by internal cracks in the material propagate through the material and are de-
tected by an AE sensor, a device that converts vibrations into electrical signals. During this
process, some of the acoustic waves may be released into the air and could be heard as a
breaking sound. AE testing stands out for its passive monitoring approach, where recorded
AE signals offer information related to damage, encompassing aspects like cracks [11],
leaks [12], and friction [13]. This information is meticulously captured as a time series,
providing a detailed chronicle of changes in damage from the initial installation to the
eventual dismantling of the structure.

The relationship between AE signals and external loading relies on the Kaiser effect [14]
and Felicity effect [15]. The Kaiser effect demonstrates elastic behavior during reloading,
ceasing only upon reaching the previous maximum stress level. In contrast, the Felicity
effect is characterized by significant acoustic emissions during cyclic loading, even at stress
levels below the previously applied maximum. These effects are fundamental principles
used to monitor and evaluate internal damage within a structure. The Kaiser effect relies on
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the damage history at the point of maximum stress, while the Felicity effect uses acoustic
signals during cyclic loading. Analyzing recorded AE signals through statistical techniques
enables real-time assessment of the current state of damage within the structure. For
these reasons, AE testing is applied to pressure vessels, pipelines, and structures to assess
real-time structural integrity [16–19]. The key parameter for analyzing structural integrity
through AE testing is the b-value, which detects damage (cracks) in structures. The concept
of the b-value originated from seismological research, initially proposed by Gutenberg and
Richter in 1944 [20]. According to this law, smaller earthquakes are observed to occur with
significantly greater frequency than larger ones. This relationship is typically depicted
in a log-linear format (See Equation (1), Section 2.3), effectively demonstrating that the
occurrence rate of earthquakes decreases exponentially as their magnitude increases [20].
For this reason, this law has become a significant research topic in the field of damage
assessment for engineering structures [10].

Over the past decades, the b-value has been widely employed to predict and analyze
damage in rocks [21] and concrete [22]. This analysis utilizes amplitude as a direct indicator
of damage, with a decrease in the b-value corresponding to crack growth. Researchers
conducting fracture tests using small-scale samples have investigated the characteristics
of the b-value to clarify the precursor to damage and failure in solid materials. Scholz
et al. [23] associated the b-value with the stress state of rocks and found that the b-value
increases at stress levels below 90% but starts to decrease beyond that point. Shiotani
et al. [24,25]. Conducted AE research on concrete specimens under bending and cyclic
loading conditions, discovering that microcracks generate a large number of events with
small amplitudes (increase in b-value), while macrocracks produce fewer events with larger
amplitudes (decrease in b-value). Ohno et al. [26] pointed out that tensile cracks generate
high amplitudes, whereas shear cracks produce smaller amplitudes. The application of
the b-value has been successfully demonstrated in the evaluation of cracks in reinforced
concrete beams under various loading conditions. Shiotani [25] and collaborators [21]
introduced the concept of the improved b-value (Ib-value) by integrating statistical values
from amplitude distribution analysis. Sagasta et al. proposed the use of the energy b-value
(be-value) [27,28], utilizing the actual energy of AE signals instead of the traditionally used
peak amplitude for b-value calculations.

Lightweight and high-strength composite materials, such as fiber-reinforced plastics
(FRP), are increasingly used in aircraft and spacecraft components due to their advan-
tageous properties [29–31]. However, during their manufacturing process, machining
operations, like drilling, are necessary, which can lead to a significant issue, namely, de-
lamination [32]. This is most often observed on the exit side near the hole edge, resulting
from the drilling process. Delamination can adversely affect the support strength of the
joint, reduce the service life, and compromise the safety of the structure. In response to
these challenges, various solutions, such as sandwich panels and honeycomb structures,
have been developed, but failures due to delamination still occur [33]. To address this, re-
search is being conducted on the application of the b-value for evaluating the integrity and
in-service soundness of these composite materials. In FRP, the b-value, a parameter used
to assess material integrity, changes in response to the type of cracks present; it increases
when microcracks are dominant and decreases when macrocracks become dominant. The
Ib-value (an indicator of crack progression) is observed to consistently decrease from the
initiation of a crack to the final failure of the material [34–36]. This behavior in FRP is
similar to what has been observed in other materials, such as rocks and concrete. Despite
the potential of the b-value in evaluating material integrity, there is currently no study that
focuses specifically on evaluating the fracture behavior of FRP using the b-value. This gap
highlights the need for further research in this area to better understand and mitigate the
risks associated with delamination in composite materials used in critical applications, like
aircraft and spacecraft.

In this study, we fabricated test specimens made of woven GFRP, which is one of the
most widely used materials in the industry, featuring a hole in the center. To discuss the
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applicability of the be-value, we progressively increased the load on the specimens until
failure while acquiring AE signals. We utilized mechanical parameters, such as the Ib-value,
stress, and strain (life), and evaluated the applicability of the be-value by comparing it
with the already verified Ib-value. This research presents a tailored structural integrity
assessment method for composite material structures, such as hydrogen storage vessels
and pressure pipes. We identified descriptors that are easily interpretable by operators
of monitoring systems, demonstrating their practicality and potential for application in
various fields. Additionally, this study suggests that these descriptors can be applied not
only to composite materials but also to a wide range of engineering structures (see Figure 1).
If the b-value, Ib-value, and be-value are successfully demonstrated in composite materials,
these indicators could potentially be used not only for assessing the integrity of composite
material structures but also for evaluating the location, timing, severity, and expected
lifespan of phenomena, such as delamination occurring during drilling. Future research
should prioritize the refinement of assessment metrics and the enhancement of reliability
in methods used for evaluating cracks in composite materials. This effort should involve
extensive testing using a large number of specimens, which would provide a more robust
and comprehensive understanding of the behavior and properties of these materials under
various conditions. This signifies that these indicators hold potential for extension and
application in a broader range of research and application programs.
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Figure 1. Summary of final research objectives.

2. Experimental Procedures
2.1. Specimens

A GFRP sheet, 2 mm thick and consisting of glass fiber and epoxy resin from Murakami
Dengyo Co., Ltd., Yokohama, Japan, was employed in the experiments (see Figure 2). The
glass fibers were arranged in a plain-woven fabric configuration, constituting 52.3 vol%
of the specimen. Woven GFRP plate specimens, designed in accordance with ASTM
D3039 [37] standards and featuring a center hole, were utilized for mechanical testing. To
prevent damage from the test jig, GFRP tabs were affixed to each end of the specimen. Each
specimen underwent meticulous preparation, involving the creation of a 2 mm diameter
hole at the center using a drill specifically designed for composite materials. The tensile test,
which was conducted in accordance with the guidelines described in ASTM D3039, was
performed in a universal testing machine until failure at a loading rate of 0.1 mm/min. In
step loading, the loading/unloading speed is 10 mm/min. In the tests involving both cyclic
and tensile loading, a single woven GFRP specimen was utilized for each type of load.
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Figure 2. Test specimen and AE sensor.

2.2. Acoustic Emission Testing

AE signals were recorded using a digitizer (Physical Acoustics Corp.; PCI-2, Princeton
Junction, NJ, USA) with a per-channel sampling rate of 10 MHz during each test. The tests
utilized 2/4/6 preamplifiers (Physical Acoustics Corp., Princeton Junction, NJ, USA) with
a 40 dBAE gain. For AE testing, a PICO sensor from Physical Acoustics Corporation (PAC;
Princeton Junction, NJ, USA), operating in the frequency range of 200 to 750 kHz, was
chosen. Three AE sensors, strategically positioned at various distances from the hole, were
affixed to each specimen using silicon grease (HIVAC-G, Tokyo, Japan) and secured with
vinyl tape (refer to Figure 2). Specimens experienced fractures near the center hole due to
stress concentration. Table 1 summarizes the test conditions based on previous research
for AE monitoring. Guard sensors were applied at both ends of the specimen, and AE
signals exceeding 40 dBAE as measured by the sensors were recorded, thereby filtering out
background noise.

Table 1. Test Conditions for AE Monitoring.

Threshold Amplifier Analog Filter Sampling Condition

Type dBAE dBAE Lower Upper Rate Pre-Trigger Length

Fixed 35 40 1 kHz 1 MHz 10 MHz 50 µs 1k µs
Length: recording time for each acoustic emission (AE) signal after the AE signal exceeded the threshold value.

2.3. b-Value Analysis

The b-value analysis (see Figure 3), which was originally developed by Gutenberg [20]
for seismological applications, is expressed by the formula:

log10(N) = a − b × A (1)

where A is the amplitude of AE signal in decibels (dBAE), N is the total number of AE hits,
a is an empirical constant, and b is the slope of the linear relationship. This analysis utilizes
amplitude as a direct indicator of damage, with a decrease in the b-value corresponding to
crack growth. For enhanced analysis, the Ib-value [24] was introduced, taking into account
specific statistical parameters of the amplitude distribution. The Ib-value is calculated using
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the mean (µ), standard deviation (σ), lower amplitude (µ − a1 × σ), and upper amplitude
(µ + a2 × σ) values:

Ib =
log10 N(µ − a1·σ)− log10 N(µ + a2·σ)

(a1 + a2)·σ
(2)
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Figure 3. The definitions of b-value, Ib-value, and be-value.

In the field of AE, often considered as micro-seismology, the b(Ib)-value is extensively
used to assess fracture processes. Similar to its application in the engineering field, the
b-value in AE is associated with the number of events and the amplitude of those events.
High b-values are connected to numerous small-amplitude AE events, such as those from
micro-crack formation and slow crack growth. Conversely, low b-values indicate faster-
growing or unstable crack formation. The b-value systematically changes during different
stages of the fracture process, making it a valuable indicator for estimating failure devel-
opment. In this study, following the commonly accepted approach, it was assumed that
α1 = α2 = 3. Sagasta et al. [28] proposed the energy b-value (be-value) as follows:

log10 N(AEe) = a − be × log10 AEe (3)

The proposed energy b-value (be-value) for assessing local damage in reinforced
concrete structures under dynamic loads, based on the traditional b-value, utilizes the true
energy of AE signals instead of the peak amplitude. Experimental application demonstrates
its potential for damage assessment, with the be-value responding when severe damage
occurs in critical areas of the structure.

3. Results and Discussion

Figure 4 presents the stress–strain curve obtained from a fracture test using the GFRP
specimen with a center hole (refer to Figure 2). The black line illustrates the results of the
tensile fracture test, with the maximum stress (237.5 MPa) divided into five increments
for step loading. The lower limit value in this case is 22.5 MPa, and all conditions are
summarized in Figure 2. To distinguish AE signals generated at each stage, a step loading
test progressed from #1 to #2. After repeating #1 from 22.5 MPa to 47.5 MPa ten times, the
first stage (#1) concluded upon reaching 22.5 MPa, and then #2 (95 MPa) began. Throughout
tests from #1 to #5, the test specimen remained continuously attached to the universal
testing machine, maintaining independence from external forces.
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Figure 5 illustrates the variation of AE parameters concerning stress. Time series
analysis was employed to compare and analyze AE signals, Ib-value, and be-value based
on the fracture test results.
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The maximum amplitude consistently increased under both loading conditions
(Figure 5a,b). The Kaiser effect occurs in the elastic region of composite materials, while
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the Felicity effect is recognized in the plastic deformation region. The A–B segment in
Figure 5b,d,f represents the Kaiser effect region, while the B–C segment indicates the Felic-
ity effect region. The Felicity effect generates more AE hits during step loading than tensile
loading because it produces signals even during unloading.

Figure 5c,d illustrate the AE energy behavior in response to load changes. During the
AE test, all measured signals were converted to AE energy and displayed on a logarithmic
scale for clarity. AE energy shows a wide dispersion in the yielding region compared to
amplitude, consistent with previous reports and highlighting the correlation between AE
signal energy and yielding deformation. during tensile loading, 8460 AE signals were
generated, while 11,599 signals were recorded during step loading (Figure 5e,f).

Theoretically, AE signals are generated from the initiation, propagation, and fracture
of cracks. Consequently, AE hits and the b-value serve as crucial indicators for evaluating
the integrity of materials. Within this framework, the rate of AE hits is utilized as a metric
to gauge the degree of crack activity. Nonetheless, this metric encounters limitations
in differentiating between scenarios dominated by micro-cracks and those where crack
propagation has ceased. In micro-crack-dominated scenarios, an elevated rate of AE hits
is typically observed, whereas in contexts characterized by macro-cracks or halted crack
growth, a notable decrease in the AE hit rate is evident. Such ambiguities can result in
significant inaccuracies when assessing structural integrity.

The b-value, which evaluates structural soundness, is determined by plotting the
amplitude of AE hits on a frequency distribution chart and analyzing the resultant slope.
In this methodology, the amplitude serves as an indicative parameter for crack size, with
the b-value escalating in the presence of micro-cracks and diminishing in macro-crack-
dominant scenarios. In contrast, the Ib-value is derived using statistical techniques to
identify representative segments for crack evaluation. This approach, which is relatively
static, leverages current value computations, as opposed to the b-value’s dynamic, trend-
based evaluative method.

To calculate the Ib(be)-value, a frequency distribution is necessary, requiring a determi-
nation of the class. During the fracture test, the amplitude and AE energy of all recorded
signals were displayed in a frequency distribution. Figure 6a represents the variance curve
of amplitude divided into 16 intervals based on past research experience. AE energy was
partitioned into 16 intervals based on maximum and minimum values (Figure 6b). The
overall slope in Figure 6a corresponds to the previously mentioned b(Ib)-value method that
evaluates the slope of specific intervals to assess the cracks in the structure. The slope of
the frequency distribution was calculated using the least squares method each time AE hits
accumulated to 5.

Materials 2024, 17, x FOR PEER REVIEW 7 of 11 
 

 

The maximum amplitude consistently increased under both loading conditions (Fig-
ure 5a,b). The Kaiser effect occurs in the elastic region of composite materials, while the 
Felicity effect is recognized in the plastic deformation region. The A–B segment in Figure 
5b,d,f represents the Kaiser effect region, while the B–C segment indicates the Felicity ef-
fect region. The Felicity effect generates more AE hits during step loading than tensile 
loading because it produces signals even during unloading. 

Figure 5c,d illustrate the AE energy behavior in response to load changes. During the 
AE test, all measured signals were converted to AE energy and displayed on a logarithmic 
scale for clarity. AE energy shows a wide dispersion in the yielding region compared to 
amplitude, consistent with previous reports and highlighting the correlation between AE 
signal energy and yielding deformation. during tensile loading, 8460 AE signals were gen-
erated, while 11,599 signals were recorded during step loading (Figure 5e,f). 

Theoretically, AE signals are generated from the initiation, propagation, and fracture 
of cracks. Consequently, AE hits and the b-value serve as crucial indicators for evaluating 
the integrity of materials. Within this framework, the rate of AE hits is utilized as a metric 
to gauge the degree of crack activity. Nonetheless, this metric encounters limitations in 
differentiating between scenarios dominated by micro-cracks and those where crack prop-
agation has ceased. In micro-crack-dominated scenarios, an elevated rate of AE hits is typ-
ically observed, whereas in contexts characterized by macro-cracks or halted crack 
growth, a notable decrease in the AE hit rate is evident. Such ambiguities can result in 
significant inaccuracies when assessing structural integrity. 

The b-value, which evaluates structural soundness, is determined by plotting the am-
plitude of AE hits on a frequency distribution chart and analyzing the resultant slope. In 
this methodology, the amplitude serves as an indicative parameter for crack size, with the 
b-value escalating in the presence of micro-cracks and diminishing in macro-crack-domi-
nant scenarios. In contrast, the Ib-value is derived using statistical techniques to identify 
representative segments for crack evaluation. This approach, which is relatively static, lev-
erages current value computations, as opposed to the b-value’s dynamic, trend-based 
evaluative method. 

To calculate the Ib(be)-value, a frequency distribution is necessary, requiring a deter-
mination of the class. During the fracture test, the amplitude and AE energy of all recorded 
signals were displayed in a frequency distribution. Figure 6a represents the variance curve 
of amplitude divided into 16 intervals based on past research experience. AE energy was 
partitioned into 16 intervals based on maximum and minimum values (Figure 6b). The 
overall slope in Figure 6a corresponds to the previously mentioned b(Ib)-value method 
that evaluates the slope of specific intervals to assess the cracks in the structure. The slope 
of the frequency distribution was calculated using the least squares method each time AE 
hits accumulated to 5. 

 
Figure 6. Frequency distribution of amplitude (a) and AE energy (b). 

In Figure 7, fluctuations in Ib(be)-values are observed under different loading condi-
tions. During tensile loading, the Ib-value consistently decreases linearly from crack 

Figure 6. Frequency distribution of amplitude (a) and AE energy (b).

In Figure 7, fluctuations in Ib(be)-values are observed under different loading con-
ditions. During tensile loading, the Ib-value consistently decreases linearly from crack
initiation to final failure, aligning with similar observations in reports from the concrete
and composite material fields. Composite materials, renowned for their versatility, exhibit
a range of failure modes that significantly contribute to their structural behavior. One
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particularly noteworthy phenomenon is the manifestation of matrix cracking, prominently
observed immediately preceding ultimate failure. This distinctive characteristic introduces
a discernible scatter in the Ib-values, a trend perceptible from the 1800 s mark in Figure 7b.
Indeed, this process closely resembles the analysis of acoustic emission (AE) signals in
mechanical systems comprising diverse combinations of components and materials. The
distinct variations in Ib-values across five loading conditions highlight the material’s nu-
anced response to different stress scenarios. Notably, the most significant reduction in
b-value is evident during the initial step of #4, indicating pronounced crack growth and
emission at a higher load (#4) compared to the preceding load (#3). Further insights into
crack growth and emission under increased loads are revealed by specific instances, such as
the substantial drop in b-value during the initial step of #4. Additionally, the application of
the Felicity effect from #3 onwards contributes to observed variations in Ib-values through-
out the steps of #3. In #2, the presence of the Kaiser effect region is apparent, with Ib-values
changing only during the first cycle. The GFRP subjected to step loading experiences failure
in the 8th cycle of #5, exhibiting an Ib-value of 0.4, which is identical to the tensile loading
value. Notably, certain studies assign significance to values through repetitive experiments,
using them as critical criteria for evaluating the operational durability of structures.
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Figure 7c presents the be-value categorized into increasing and decreasing segments.
The conventional variation of b-values can be attributed to micro-cracks and macro-cracks.
Micro-cracks, occurring predominantly at the crack tip, result in the generation of numerous
AE signals with small AE energy. Hence, an accumulation of signals in the low-energy
range leads to an increase in the be-value. On the other hand, in the high-stress regime,
there is the initiation of macro-cracks that penetrate through the micro-cracks. Macro-cracks
accumulate in the high AE energy range of the frequency distribution, causing an increase
in the be-value. The trend of increases and decreases in be-value can be used to assess the
condition of cracks in the structure.

In practical industrial settings, the demand for static indicators is paramount to ensure
easy interpretation and seamless application. To meet this demand, we adopted a method
that harmonizes insights from Equation (2) to Equation (3), aligning with the observed
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trend in step loading. This unified approach facilitates a more static assessment of crack
conditions, catering to the pragmatic needs of real-world applications in industrial contexts.

In our methodology, representative intervals on the AE energy derivative curve were
judiciously selected, leveraging statistical parameters, such as the mean and standard
deviation. The subsequent calculation of the slope within these carefully chosen intervals
provides a practical and actionable indicator for assessing crack conditions. The assumption
of α1 = α2 = 3, mirroring the approach used for the Ib-value, ensures consistency in the
application of statistical parameters.

The results obtained for the be-value, which is akin to the Ib-value, consistently dis-
played a decreasing trend, transitioning from 4 to 1 under tensile-loading conditions. This
consistency underscores the reliability and stability of our methodology in providing valu-
able insights into crack conditions. By seamlessly integrating dynamic insights derived
from the continuous changes in the be-value with the stability offered by static indicators,
our unified approach effectively bridges the gap between comprehensive understanding
and practical utility in industrial contexts. This method holds promise for efficient crack
condition assessment and monitoring in GFRP, contributing significantly to enhanced
structural health management across diverse industrial applications.

4. Conclusions

In this study, we conducted a comprehensive investigation of the fracture behavior
of GFRP under different loading conditions, utilizing AE testing and analyzing parame-
ters, such as Ib-value, and be-value. The experimental procedures involved fracture tests
on GFRP specimens, capturing AE signals through time series analysis. Our findings
provide valuable insights into the structural integrity assessment of composite materials,
particularly relevant for applications such as hydrogen storage vessels and pressure pipes.

The stress-strain curve derived from the fracture test illuminated the material’s be-
havior under varying loads, with distinctive responses observed during tensile and step
loading. The time series analysis of AE parameters revealed nuanced variations in ampli-
tude, AE energy, and the occurrence of Kaiser and Felicity effects. The Ib(be)-value analysis,
considering statistical parameters, offered a detailed assessment of crack initiation, growth,
and structural failure.

Under tensile loading, the Ib-value exhibited a linear decrease from crack initiation
to final failure, consistent with observations in concrete and composite material studies.
The step-loading conditions introduced complexities, including the Felicity effect, resulting
in distinct variations in Ib-values. The be-value, incorporating energy considerations,
showcased fluctuations attributed to micro-cracks and macro-cracks, providing further
insights into the evolving nature of structural damage.

The application of statistical analysis to the be-value, with assumptions similar to the
Ib-value, revealed a consistent decrease, emphasizing the potential of these parameters for
long-term monitoring. The improved be-value demonstrated a continuous decline, aligning
with both tensile and step loading scenarios.

In conclusion, this study describes a comprehensive technique for assessing the frac-
ture behavior and structural integrity of composite materials. The detailed analysis of
AE parameters, especially the Ib(be)-value, offers a valuable tool for real-time monitoring
and long-term evaluation, enhancing our understanding of the operational principles of
composite structures in critical applications. These insights are crucial for advancing the
reliability and safety of composite material-based structures in various industrial sectors.
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