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Abstract: Nowadays, due to the increasing number of diseases and injuries related to bone tissue,
there is an acute problem of creating a material that could be incorporated into the bone tissue
structure and contribute to accelerated bone regeneration. Such materials can be represented by
a polymeric matrix that holds the material in the bone and an inorganic component that can be
incorporated into the bone structure and promote accelerated bone regeneration. Therefore, in this
work we investigated polyvinyl alcohol-based composite cryogels containing an in situ deposited
inorganic filler, hydroxyapatite. The freezing temperature was varied during the synthesis process.
The composition of the components was determined by infrared spectroscopy and the phase com-
position by X-ray phase analysis, from which it was found that the main phase of the composite
is hydroxyapatite and that the particle size decreases with increasing freezing temperature. The
elemental composition of the surface is dominated by carbon, oxygen, phosphorus and calcium; no
impurities of other elements not typical for polyvinyl alcohol/ hydroxyapatite cryogels were found.
Higher mechanical properties and melting points were observed at −15 ◦C. Cryogenic treatment
parameters did not affect cell viability; however, cell viability was above 80% in all samples.

Keywords: cryogel; hydroxyapatite; polyvinyl alcohol; in situ synthesis

1. Introduction

Repairing bone defects is an important part of traumatology and orthopedics. Ac-
cording to the World Health Organization, approximately 1.71 billion people in the world
suffer from disorders and diseases of the musculoskeletal system [1]. In the Russian Feder-
ation, musculoskeletal diseases will account for 7.6% of total morbidity in 2020. A total of
23 million cases of injuries, poisonings and other consequences of external causes were reg-
istered. Injuries to different parts of the musculoskeletal system accounted for 16 thousand
of these cases [2].

Bone tissue is a biological composite material consisting of organic and inorganic
components and is characterized by a multi-layered hierarchical structure [3]. Due to its
low metabolic activity, its own reparative potential is insufficient to restore large bone
volumes [4]. Bone grafts, which are used to restore lost tissue, may be a suitable solution to
these problems. The use of autografts is limited by the amount of bone tissue available in
the body [3]. Allogeneic bone materials can cause immune rejection and the transmission of
various diseases to the recipient [4]. Implantation of metallic materials can lead to osteolysis
due to a significant difference in the mechanical properties of the implant and body tissues.
A possible solution may be tissue engineering approaches—the creation of materials that
allow full functional and structural regeneration of bone tissue.

Polymers of various origins (natural, synthetic), bioactive ceramics and calcium
phosphate-based materials such as hydroxyapatite (HA) are used to restore bone defects.
However, there are limitations to the use of bioceramics due to the lack of osteoinduction,
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brittleness and difficulty in obtaining, which is unacceptable for the replacement of large
bone defects [5]. The use of polymeric materials can also be difficult because the biosorption
rate of collagen and many other natural polymers exceeds the rate of bone tissue repair.
Synthetic hydroxyapatite, on the other hand, is characterized by a low resorption capac-
ity [6,7]. The development of composite materials, which include a polymer matrix with
dispersed particles of calcium phosphate components, makes it possible to overcome these
limitations to a large extent due to the synergistic effect of the functional properties of the
components [8–10].

Polyvinyl alcohol (PVA) hydrogels have the necessary mechanical properties close
to those of natural tissues [11–13], but their application in transplantology is limited by
the bioresistance of the material, which prevents cell migration and attachment, which can
lead to a low level of calcinosis and loose attachment of the implant to the bone, making
it less suitable for integration into bone tissue [14–16]. The macroporous structure of the
polymer matrix, which provides the similarity of the material to bone tissue facilitating the
transfer processes, promoting cell migration and proliferation, can be formed by cryotropic
treatment with PVA solutions. After freezing, freezing and thawing, the water–PVA system
forms porous gels, cryogels. In vivo studies have shown that consolidation is more intense
with cryogels [17–19].

Bioactive and biocompatible components, such as calcium phosphates, can be in-
corporated into the composition of PVA cryogel. The interaction of the components of
such a system affects not only the biological activity of the composite material, but also
the whole range of physical, chemical and mechanical properties. Currently, there are
several approaches to obtain PVA/HA composite cryogels, including in situ deposition
in PVA solutions [20,21] and dispersion of HA powder in a polymer matrix [22]. Various
inorganic salts are used as precursors for the synthesis of HA. Ca(NO3)2·4H2O [20] and
CaCl2·2H2O [21,23] are used as a source of Ca2+ ions. Phosphate ions are introduced into
the system in the form of (NH4)2HPO4, Na3PO4 [23], NaH2PO4 [21]. NaOH ammonia
buffer is often used to maintain the optimum pH [23].

The amount of foreign ions in the system, whose presence is due to the choice of
such precursors, should be strictly controlled. The toxicity of nitrates is well known (the
maximum permissible concentration of NO3

− is 45 mg/mL) [24]. Nitrates can form nitroso
compounds with carcinogenic activity in the human body [25]. Chlorine ions provide the
osmotic pressure of body fluids; their concentration belongs to a narrow range. Fluctuations
in pH within a narrow range are an integral part of homeostasis. The morphology of bone
tissue hydroxyapatite crystals and agglomerates is due to its hierarchical organization from
the nanometer to the macroscopic scale. Synthetic hydroxyapatite obtained by various
methods does not have such an organization and crystallizes in the form of agglomerates
of different granulometric composition. Highly crystalline samples have low solubility and
are inert in the physiological environment. Cryoprocessing parameters also vary, such as
the number of freeze–thaw cycles, freezing temperature, cooling and heating rates of the
system and frozen holding time.

Therefore, it is important to optimize the technology for obtaining composite PVA/HA
cryogels: the selection of safe reagents, study of the influence of different parameters on the
properties of the obtained materials and study of the structure and interaction mechanisms
of the system components. The work is devoted to obtaining biocompatible composite
materials based on polyvinyl alcohol and calcium phosphate cryogels. The aim of the work
is to synthesize, study the composition, morphology, physicochemical and mechanical
properties of composite materials obtained by precipitation of calcium phosphates in
polyvinyl alcohol solution and the influence of parameters of cryogenic treatment.
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2. Materials and Methods

PVA (with an average molecular weight of 104,500 g/mol) was purchased from Sigma
Aldrich (Saint Louis, MO, USA), calcium oxide Sigma Aldrich (Saint Louis, MO, USA),
phosphoric acid, 87 wt.% JSC REAHIM (Moscow, Russian Federation). Distilled water was
used to prepare the solutions.

Composite PVA/HA cryogels were obtained by in situ deposition of HA in a PVA
solution. Weighed dry reagents calcium oxide (2.23 g) and PVA (10 g) were dissolved in the
calculated volume of distilled water (86 mL). The calculated amount of hydroxyapatite was
4 wt.% of the mass of the entire mixture. A ready solution of phosphoric acid (87 wt.%)
was added in equimolar amounts (1.58 mL). The concentration of the solution of polyvinyl
alcohol was 10 wt.%. After the solutions were drained, phosphoric acid was added to the
reaction mixture. The mixture was kept under heat (T = 90 ◦C) in water and stirred with
the help of an upper submersible bag for 14 h. At the time as the addition of phosphoric
acid, the pH of the system was ≈10. By the end of the synthesis, the medium was neutral.

Ca(OH)2 + H3PO4 → Ca10(PO4)6(OH)2 + 18H2O (1)

After synthesis of the composites, the reaction mixture was brought to room tempera-
ture, followed by cryogenic treatment at −10, −15, −20 ◦C. The detailed data of cryogenic
treatment are presented in Table 1. When a polyvinyl alcohol solution is physically cross-
linked, intra- and intermolecular hydrogen bonds are formed due to the orientation of the
-OH groups relative to each other [26,27]. In this regard, one of the approaches to form-
ing a cryogel may not be repeated freezing–thawing, but slow freezing–thawing during
one cycle.

Table 1. Temperature mode of cryotropic treatment.

Sample K-1 K-2 K-3

T, ◦C −20 −7 +7 +20 −15 −7 +7 +20 −10 −7 +7 +20

τ, min 240 15 700 35 240 15 700 35 240 15 700 35

Cooling rate, ◦C/min 0.167 0.146 0.125

In this way, three types of samples were obtained, differing in the minimum tempera-
ture of cryotreatment. For the investigations (XRD, SEM, EDX, IR), cryogels were cut in
the direction perpendicular to the height of the cylindrical sample. The samples were then
dried to a constant weight in a vacuum oven (T = 70 ◦C, p = 80 mbar).

The phase composition of the starting components and composites was determined
using a MiniFlex 600 diffractometer (Rigaku, Tokio, Japan) Shimadzu XRD-6000. Survey
photography of the samples was performed under monochromatic CuKα (α = 1.5418 Å)
radiation in the reflection angular range of 2θ = 5–100◦ in 0.02◦ increments, with a voltage
of 40 kV and a speed of 3 ◦/min. The phases were decoded and identified using the ICDD
diffraction database (PDF-2/Release 2012 RDB).

The morphology was examined using a (AMETEK, Inc., Bervin, USA) Quanta 3D 200i
two-beam scanning electron microscope at a voltage of 5 kV, with no metals applied to
the surface. Particle size was calculated using the linear intercept method, which involves
measuring the size of all particles using a straight line at a selected angle and then plotting
a graph from the resulting data set.

IR spectroscopy was performed on a Bruker Tensor 27 Fourier spectrometer using
the ATR method in the 4500–400 cm−1 spectral range. Attenuated total reflection (ATR)
is a type of IR spectroscopy. Its main advantage is the absence of any sample preparation
procedure—the sample is placed in the cuvette compartment on the crystal surface and
carefully pressed to the working surface of the crystal (in the case of solid sample analysis)
or closed with a lid (in the case of solution analysis) using a clamping device with a
micrometric screw, and the spectrum is recorded [28].
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TG-DSC measurements were performed using a (NETZSCH, Selb, Germany) STA 449
F1 Jupiter synchronous thermal analysis instrument in the temperature range of 25–300 ◦C
at a heating rate of 10 K/min in an argon atmosphere. Weighed, freshly prepared cryogels
were placed in an aluminum crucible.

The degree of crystallinity was calculated by Formula (2):

Xs =
∆Hm

∆H0
m
× 100%; (2)

where ∆Hm is the sample melting enthalpy; ∆H0
m is the enthalpy of melting of completely

crystallized PVA at the equilibrium melting temperature Tm, 138.6 J/g [29].
Compressive strength measurements and Young’s modulus calculations for PVA/HA

specimens were performed using a setup based on the (Arduino, Scarmagno, Italy) Mega
2560 board and a strain gauge at 20% specimen deformation. The dependence of the
specimen deformation on the compressive load was determined.

To assess the solubility of HA in the composite cryogels and the swelling behavior
of the material, 12 mL of phosphate buffered saline (PBS, LLC PanEco, Moscow, Russia)
was added to 0.500 g of the sample and kept at 37 ◦C for 4 weeks. Measurements of Ca2+

concentration (by complexometric titration in the presence of Eriochrome Black T with an
ammonia buffer solution, pH = 10) and weighing were performed every 7 days. Student’s
t-test was used to assess reliability at a significant level of p = 0.05.

The following equation was used to evaluate the swelling degree (Q):

Q(%) =
(Wt − Wd)

Wd
× 100 (3)

where Wt is the weight of the swollen samples at time t and Wd it the initial weight of
the samples.

A cytotoxicity test using the Alamar blue indicator was used to assess the effect of the
materials on the viability of immune system cells. Monocytes were isolated from the buffy
coats of healthy donors at 37 ◦C for 6 days [30]. The buffy coats were obtained from the
Blood Transfusion Department of the Northern Clinical Hospital (Seversk, Russia). The
obtained monocytes were cultured at a concentration of 106 cells/mL in the X-VIVO 10
medium (Lonza, Verviers, Belgium) supplemented with 1 ng/mL of M-CSF (Peprotech,
Hamburg, Germany) and 10−8 M of dexamethasone (Sigma Aldrich, Darmstadt, Germany).
Signal intensity was measured using a Tecan Infinite 200 microrider at a wavelength of
540 nm.

Institutional Review Board Statement: The study was conducted according to the
guidelines of the Declaration of Helsinki and approved by the Ethics Committee of Tomsk
State University (Protocol of the meeting of NR TSU Bioethics Commission, Protocol No 3
from 7 March 2022). Informed consent was obtained from all subjects involved in the study.
Written informed consent has been obtained from the patient to publish this paper.

3. Results and Discussion
3.1. Determination of the Phase Composition

Diffraction patterns were obtained for the composites K-1, K-2 and K-3 (Figure 1).
The most intense reflections 2θ = 31.7◦, 32.2◦, 32.9◦ corresponding to HA (JCPDS N

9–432) are not resolvable using Cu Kα radiation and are represented by a peak in the range
30.62 ≤ 2θ ≤ 31.9. The most intense peaks for PVA appear around 2θ = 19.4◦; 23.5◦; 40.3◦,
corresponding to its semi-crystalline structure.

In previous studies, we have shown that the formation of the HA phase in a polyvinyl
alcohol environment can be influenced by temperature and the choice of initial reagents [19].
For example, the use of salts, instead of reacting directly to neutralize the alkali with an
acid at a lower temperature (50 ◦C), leads to the formation of monetite and brushite. Such
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a system is easier to control, because it is homogeneous and the evaporation of the solvent
occurs less intensely, but this method does not allow hydroxyapatite to be obtained.
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Figure 1. X-ray diffraction patterns of polyvinyl alcohol/ hydroxyapatite (PVA/HA) composite cryogels.

There is a decrease in the degree of crystallinity of HA as the freezing temperature
increases. For the polymer phase, the change in the degree of crystallinity is non-linear
and has an extreme character, which is characteristic of the crystallization of polymers.
Probably T = −15 ◦C is close to the optimum values of nucleation rate and viscosity of
the medium [31]. For the reflections of hydroxyapatite (211) and PVA (101), the size of
crystallites values and the degree of crystallinity were calculated (Table 2).

Table 2. Crystallographic characteristics of composite materials.

Characteristics
Samples

K-1 K-2 K-3

Xs HA (211), % 22 16 9
Xs PVA (101), % 18 42 23

D (PVA) (101), nm 6 6 6
D (HA) (211), nm 10 10 12

HA crystal
lattice

parameters

a = b, Å 9.43 9.51 9.45
c, Å 6.89 6.98 6.90

V hex, Å3 77.01 78.32 77.34
Xs is the degree of crystallinity; D is the size of crystallites; V hex is the volume of elementary cells.

According to the literature, during the first freeze–thaw cycle, a few small crystal-
lites (about 3–8 nm in size) are formed, connected by swollen amorphous chains. The
approximate distance between the crystallites is 30 nm [32].

The size of the crystallites of both phases does not depend on the type of cryotropic
treatment. In the work of VI Lozinsky [26,33], it is shown that cryostructuring in water–PVA
systems occurs at the stage of thawing.

An increase in cell parameters compared to stoichiometric hydroxyapatite is observed.
This may be due to the high proportion of amorphous component. For K-2, the maximum
HA cell volume is observed and for K-1 the unit cell volume is close to the values of
stoichiometric HA.
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Thus, the freezing temperature affects the structure of the obtained composites: the
degree of crystallinity of HA decreases with an increasing freezing temperature. For PVA,
the change in the degree of crystallinity is non-linear; D of both phases does not depend on
the type of cryotropic treatment; the parameters of the HA unit cell change non-linearly.
The cell volume is maximum for K-2 (freezing temperature −15 ◦C).

3.2. IR Spectroscopy

In the IR spectrum of pure PVA, there is a broad band at 3400–3100 cm−1 associated
with the stretching vibrations of the OH groups (ν O-H, blue on Figure 2). The doublet
at 2900 and 2940 cm−1 is associated with the CH2 group, while the peak with a large
wavenumber belongs to asymmetric and a smaller one to symmetric stretching vibrations.
The bands at 1651 and 1090 cm−1 belong to the C=C and C-O(H) stretching vibrations,
respectively. The presence of C=C bonds may be related to intramolecular dehydration:

−[CH(OH)− CH2]n−
H+

→ −[CH+ − CH2]n −+H2O →
−H+

−[CH = CH]n −+H2O

The band at 1432 cm−1 belongs to scissor vibrations of CH2 groups (δas). The peak
at 1710 cm−1 is associated with C=O and C-O bonds of acetate groups. The informative
region is represented by a band at 1140 cm−1 associated with C-O-C stretching vibrations
and torsional vibrations δCH (blue on Figure 2) [32]. Any tetrahedral ions or molecules
(e.g., phosphate ions) exhibit four types of vibrational modes, such as ν1, ν2, ν3 and ν4 [34]
(Figure 2).
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The first sign of HA formation is a broad band with a maximum at about
1000–1100 cm−1 [35]. In addition, peaks at 3570 and 630 cm−1 are characteristic bands
of stoichiometric HA [35]. The band at 962 cm−1 refers to non-degenerate symmetric
stretching vibrations (ν1) of the P-O bond of the phosphate group [36]. The doubly degen-
erate ν2 mode of the phosphate group gives a faint band at 474 cm−1 [35]. The most intense
band of the phosphate group related to the triple degenerate P-O stretching vibrations,
ν3, is located at about 1094 cm−1. The band between 564 and 604 cm−1 belongs to the
triple degenerate deformation mode of the P-O-P bond of the phosphate group (ν4), which
occupies two positions in the crystal lattice [35]. Two peaks at these frequencies confirm
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the presence of two different positions of the phosphate group in the hydroxyapatite lattice.
Two bands at 633 and 3546 cm−1 are associated with libration and stretching vibrations
of the hydroxyl group in the HA crystal structure. The peak at 1635 cm−1 relates to the
deformation vibrations of adsorbed water. During the synthesis of hydroxyapatite in an
alkaline medium (pH = 10.5), atmospheric CO3

2− is absorbed and bands appear in the
IR spectrum at 1422 and 875 cm−1 corresponding to vibrations in CO3

2−. The band at
875 cm−1, corresponding to ν2 deformation vibrations of CO3

2−, may indicate a B-type
substitution. The ν3 valence mode of CO3

2− manifests itself at 1422 cm−1 [37]. The shape
of ν3 and the absence of a band at 700 cm−1 related to the C-O bond indicate that calcite
is associated with HA. As CO3

2− is present in bone tissue hydroxyapatite, its presence in
synthesized materials may improve their biocompatibility [35].

The IR spectrum of HA contains an intense doublet at 1091 and 1039 cm–1 (1048 cm–1 [31]),
corresponding to the asymmetric stretching vibrations of the phosphate group (ν3), and
the band at 962 cm–1 belongs to its symmetric vibrations (Table 3).

Table 3. Absorption bands for PVA/HA composite cryogels [31–41].

Vibrations Wavenumber (WN),
cm−1

K-1 WN,
cm−1

K-2 WN,
cm−1

K-3 WN,
cm−1

ν, stretching vibrations, OH- (strong) 3400–3100 3271 3285 3281
asymmetric stretching vibrations, CH2 2940 2908 2914 2920
symmetrical stretching vibrations, CH2 2900 2854 2854 2856

stretching vibrations, C=C 1651 1655 1647 1653
Stretching vibrations, -C-O-H 1560 1572 1582 1545

scissor oscillations, CH2 1432 1416 1418 1416
stretching vibrations, C-O-C 1150–1060 1142 1142 1142

torsional vibrations, δCH 1150−1350 1329 1327 1327
stretching vibrations C-C bonds between the carbon

of CH2 groups and carbon atoms related to
unsaturated bonds

914 920 920 920

ν1 symmetrical stretching vibrations, PO4
3− (weak) 962 964 964 -

ν3 asymmetric stretching vibrations, PO4
3− 1094 1090 1088 1090

ν3 asymmetric stretching vibrations, PO4
3− 1039 1024 1026 1026

ν4 stretching vibrations, PO4
3− (strong) 564, 604 557, 598 559, 600 559

librational vibrations, OH- (middle) 633 627 627 629
stretching vibrations, OH- (weak) 3546 3271 3285 3281

ν2 deformation vibrations, OH- (weak) 1635 1655 1647 1653
ν2 deformation vibrations, CO3

2− 875 847 843 847
ν3 stretching vibrations CO3

2− 1422 1416 1418 1416

The shift of the bands in the IR spectrum indicates the existence of an interaction
between the mineral and gel components of the system. Characteristic bands of the
carbonate ion are observed.

3.3. Morphology and Elemental Composition (EDX) of Materials Surface

Surface properties determine the bioactivity of the material. Filamentous HA particles
are often carcinogenic.

The morphology of bone tissue hydroxyapatite crystals and agglomerates is due to its
hierarchical organization from the nano- to the macroscopic scale. Synthetic hydroxyapatite
obtained by various methods does not have such an organization of crystallites in the form
of agglomerates of different granulometric composition. Highly crystalline samples have
low solubility.

The mechanism of bone tissue formation is its main characteristic. First, an organic
fibrillar scaffold of collagen and non-collagen proteins is formed. This scaffold is a matrix
that determines the spatial relationships of the deposition of hydroxyapatite crystallites
on it.
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The collagen scaffold is a multi-layered, hierarchically organized structure. The ele-
ments of the structure are arranged in a helical pattern at all levels. The lowest (molecular)
level is a long helical molecule. At the second level, several collagen molecules are coiled
into a microfibril, and so on. In total, seven levels of bone organization are considered.
Hydroxyapatite crystallites, which are deposited on the collagen matrix and then fused
into a single mineral monolith, repeat the entire helical hierarchical organization from the
nanometer to the macroscopic level.

The SEM images (Figure 3) show that the calcium phosphates crystallize in the form of
agglomerates. As the freezing temperature decreases, the particle size distribution widens
and becomes polymodal. Prior to cryogenic treatment, the system was not subjected to
ageing and the HA phase was not finally formed. A decrease in the proportions of [33] can
lead to an increase in supersaturation on the one hand and an increase in the viscosity of
the medium on the other [42]. A stronger ap approximation is not possible because the
polymer samples start to degrade as the stress increases.
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Calculation of particle size from the images (Figure 4, Table 4) showed that sample
K-1 is characterized by a polymodal distribution with maxima localized in the ranges
0.101–0.111 µm; 0.121–0.131 µm; 0.161–0.181 µm. The size distribution of the particles
in samples K-2 and K-3 is unimodal with maxima in the ranges 0.121–0.141 µm and
0.136–0.156 µm, respectively.
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Table 4. Average particle diameter.

Sample D, µm σ2 (D, µm)

K-1 (−20 ◦C) 0.15 0.04
K-2 (−15 ◦C) 0.14 0.04
K-3 (−10 ◦C) 0.17 0.07

The composition of the obtained materials is dominated by carbon, oxygen, phos-
phorus and calcium; impurities of other elements not typical for PVA/HA cryogels were
not found.

For pure hydroxyapatite Ca10(PO4)6(OH)2, the stoichiometric ratio of the elements is
Ca/P = 1.67, although in natural bone tissue structures this ratio can vary within Ca/P from
1.3 to 2.1 [43]. The Ca/P ratios in the samples are significantly higher than the stoichiometric
value (1.67) (Table 5). This may be due to the high proportion of amorphous component.
The closest to the stoichiometric Ca/P ratio, equal to 1.87, is sample K-2.

Table 5. Ca and P content in materials and Ca/P ratio.

Sample Ca, At % P, At % Ca/P

K-1 5.32 2.73 1.95
K-2 5.60 3.00 1.87
K-3 4.63 2.29 2.02

3.4. Contact Angle and Surface Energy

The study of surface wetting is very important for biocompatible materials, because
the biocompatibility of a material relates to the behavior of cells in contact with a surface,
where the surface characteristics of the materials, such as surface topography, chemi-
cal composition or surface energy, play an important role in the adhesion process. The
quality of this first phase of cell–material interaction influences and ensures good prolif-
eration and differentiation of cells on the surface [44,45]. There are studies that suggest
that increased wettability (as indicated by a low contact angle) will lead to improved
biocompatibility [46,47].

The wetting angle (θ, ◦) was determined by the sessile drop method for all PVA/HA
composite cryogels and starting components. Water and glycerol were used as wetting
liquids. All materials and components are hydrophilic in nature as θ water < 90◦.

Despite the different chemical nature of the components of the system, we found
that the total surface energy (72–75 mJ) and the ratio of its polar (58–56 mJ) and disperse
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(9–15 mJ) components are within narrow limits and practically do not change depending
on the way the composites are obtained (Tables 6 and 7). Similar values of wettability
and surface energy suggest that with similar chemical compositions of the surfaces of the
materials, cells will demonstrate similar viability in the presence of materials.

Table 6. Contact angle θ for components and composite cryogels.

Sample HA PVA K-1 K-2 K-3

θ water, ◦ 9.6 10.2 9 10.2 9.3
θ glycerol, ◦ 25.5 15.3 18.9 23.4 10.9

Table 7. Surface energy of composite PVA/HA cryogels and components.

Sample σD, mJ/m2 σP, mJ/m2 σ, mJ/m2

HA 9.28 66.10 75.38
PVA 14.34 58.33 72.67
K-1 12.52 61.13 73.65
K-2 10.53 63.88 74.41
K-3 15.71 56.71 72.49

σD—dispersion component of the surface energy, σP—polar component of the surface energy.

3.5. Thermal Analysis

The thermograms (Figure 5) show a two-stage weight loss. Dehydration occurs
over a wide temperature range and is accompanied by endo effects corresponding to the
destruction of the spatial structure of the gel. A further increase in temperature causes
thermal degradation of the polymer.
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Figure 5. TG and DSC curves for PVA/HA composite cryogels.

On the DSC thermograms of PVA (95.8; 116.3 ◦C) and K-3 (129.6; 140.3 ◦C), two peaks
are clearly distinguishable, while for K-2 a peak at 95.3 ◦C and a bend at 119.1 ◦C are
determined. The curve for K-1 has a peak at 89.1 ◦C and is then monotonic up to the
melting point of the PVA crystallites.
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The peak at 85 ◦C is called α-relaxation and represents the glass transition temperature
of PVA. In the presence of water and other solvents, the glass transition temperature
decreases significantly [29]. The β-relaxation at 143 ◦C corresponds to the relaxation in
crystalline domains. The third relaxation occurs at temperatures between 200 and 260 ◦C
due to melting of the crystallites. The end effect at 90 ◦C indicates the secondary formation
of crystallites. The sol-gel transition of PVA during the formation of physically crosslinked
hydrogels occurs at 55–70 ◦C [48,49].

The sol-gel transition temperature varies non-linearly and is maximum for K-3, which
may indicate the strongest intermolecular interactions. The end effects corresponding
to the secondary formation of PVA crystallites and melting of the polymer decrease for
composites of relatively pure PVA. It is likely that the presence of HA prevents PVA–PVA
intermolecular interactions. However, the melting temperature of the polymer in the K-2
composite is comparable to that of pure PVA cryogel. For the same sample, the maximum
degree of crystallinity is observed in the series of composite cryogels.

3.6. Study of Mechanical Properties

In order to determine the effect of the cryotropic treatment temperature on the modu-
lus, materials were obtained at different initial freezing temperatures; as the initial temper-
ature is increased from −20 ◦C to −10 ◦C, the modulus changes non-linearly (Figure 6).
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Figure 6. Mechanical properties of PVA/HA cryogels. (a) Stress–strain curves; (b) the effect of
freezing temperature on Young’s modulus.

The maximum value of Young’s modulus is observed for materials obtained at −15 ◦C.
Apparently, the high degree of crystallinity of PVA in sample K-2 has a direct effect on its
mechanical properties. According to other studies [49], for cryogels obtained by repeated
freezing and thawing at −15 ◦C from 10 wt.%, the selected mode allows such properties to
be obtained in one cycle. The increase in Young’s modulus is directly related to the degree
of crystallinity of the sample, as there is an increase in intermolecular interactions as a
result of an increase in the content of ordered crystalline regions. Therefore, sample K-2,
which shows the highest crystallinity of PVA, has the highest elastic modulus value; this,
coupled with such a parameter as the degree of swelling, may indicate that in the sample
with high mechanical strength the formation of the largest number of hydrogen bonds is
observed. This tells us that the temperature regime for the K-2 sample (with a maximum
freezing temperature of up to −15 ◦C) is the most preferable.
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3.7. Solubility and Swelling

The degree of swelling (Q) of the cryogels in PBS varies non-linearly, with maxima
occurring in the first and third weeks (Figure 7). The degree of swelling of the gel can indi-
rectly estimate the number of hydrogen bonds during physical cross-linking of polyvinyl
alcohol. The more the gel swells, the more space there is in the spatial network of the gel for
the diffusion of solvent into it. This statement correlates with the degree of crystallinity of
PVA (Table 2), because for sample K-2 (obtained at a minimum temperature of −15 ◦C), the
greatest crystallinity is observed—the greatest ordering of the segments of macromolecules,
which, together with the value of the elastic modulus, indicates a greater number of hydro-
gen bonds in the spatial network of this sample. Therefore, we do not observe swelling for
this sample in the first week.

Materials 2024, 17, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 7. Swelling degree of PVA/HA cryogels. 

This can be explained by the ageing processes of the gel as well as changes in the 
concentration of Ca2+ ions. First, the gels swell, accompanied by the release of Ca2+ ions. 
By the third week, degradation of the material leads to a significant change in structure and 
syneresis. The stability of the materials for 1–3 weeks varies in the series: K-1 ≈ K-3 < K-2. By 
the fourth week, the concentration of calcium ions becomes comparable for all samples. The 
maxima in the Ca2+ concentration curves (Figure 8) may be related to the recrystallization 
processes, since HA is the most stable phase under physiological conditions: 

Amorphous Calcium Phosphate → HA. 

 
Figure 8. Ca2+ concentration curve. 

3.8. Cell Viability 
A study of the viability of monocytes in the presence of materials was carried out in 

the presence of composite materials, as well as individual components of pure hydroxy-
apatite and PVA cryogel (Figure 9). Monocytes were isolated from human blood; then, the 
samples were incubated at 37 °C for 6 days in the presence of materials. After incubation, 
Alamar Blue was added to the samples and incubated for an additional three hours. Anal-
ysis of macrophage viability showed that in the presence of pure HA, approximately 60–
80% of cells survived, and in the presence of pure PVA and composites the viability was 
comparable to the control. The results of these studies Indicate that the material does not 

Figure 7. Swelling degree of PVA/HA cryogels.

This can be explained by the ageing processes of the gel as well as changes in the con-
centration of Ca2+ ions. First, the gels swell, accompanied by the release of Ca2+ ions. By the
third week, degradation of the material leads to a significant change in structure and synere-
sis. The stability of the materials for 1–3 weeks varies in the series: K-1 ≈ K-3 < K-2. By the
fourth week, the concentration of calcium ions becomes comparable for all samples. The
maxima in the Ca2+ concentration curves (Figure 8) may be related to the recrystallization
processes, since HA is the most stable phase under physiological conditions:

Amorphous Calcium Phosphate → HA.
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3.8. Cell Viability

A study of the viability of monocytes in the presence of materials was carried out in the
presence of composite materials, as well as individual components of pure hydroxyapatite
and PVA cryogel (Figure 9). Monocytes were isolated from human blood; then, the samples
were incubated at 37 ◦C for 6 days in the presence of materials. After incubation, Alamar
Blue was added to the samples and incubated for an additional three hours. Analysis
of macrophage viability showed that in the presence of pure HA, approximately 60–80%
of cells survived, and in the presence of pure PVA and composites the viability was
comparable to the control. The results of these studies Indicate that the material does not
interfere with cell survival, suggesting that the cytotoxicity of the materials is low. Other
studies [19] have shown that when a composite is prepared by mechanically mixing the
finished HA powder with a PVA solution, the cytotoxicity of the material increases with
increasing mass fraction of HA in the material. However, it is worth noting that these
composites have a significantly higher amount of HA in the material (50–99 wt.%), which
makes the contribution of HA higher. Based on the study of other composite materials [50],
e.g., hydroxyapatite—a copolymer of lactide and glycolide (with an HA content in the final
composites of 95, 93, 83 wt.%) using the same technique—we know that the concentration
of HA is not the determining factor in the viability of macrophages. The way in which the
surface of the HA particles is coated with the polymer has a significant influence. Studies of
pure hydroxyapatite obtained from salts and neutralization reactions [51] also show lower
macrophage viability compared to HA-PVA composites; in this case, the content of HA
and PVA is 10 wt.%, which is a closer value to the present studies. This shows that it is not
just the concentration of the components that contributes to the level of cell viability in the
presence of materials. The production method and the starting components also make a
significant contribution, making it possible to obtain materials with different surface and
structural properties.
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Figure 9. Study of the viability of macrophages in the presence of composite materials K-1, K-2 and
K3, pure hydroxyapatite HA and pure PVA on three donors.

The assumption that similar values of wettability and surface energy correlate with cell
viability was confirmed. However, we can observe that the viability value of macrophages
in the presence of hydroxyapatite is slightly reduced compared to other materials. Perhaps
this is due to the fact that despite the almost identical values of the total surface energy
(Table 7), the polar component of the surface energy (σP) of hydroxyapatite is higher than
that of other materials, because on its surface there are practically no non-polar groups that
would make a greater contribution to the dispersion component of the surface energy (σD).
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4. Conclusions

Composite hydroxyapatite–polyvinyl alcohol cryogels have been obtained by in
situ synthesis. The main inorganic phase of the obtained materials is hydroxyapatite
Ca10(PO4)6(OH)2. The influence of the polymer matrix is expressed in the shift of the reflec-
tions of the crystalline phase of the antisymmetry of the change in the degree of crystallinity
of the polymer and mineral phases. The size of HA crystallites is weakly dependent on the
type of cryotropic treatment and is apparently determined by the influence of the polymer
matrix. The size of PVA crystallites decreases with a decreasing freezing temperature. An
increase in cell parameters relative to stoichiometric hydroxyapatite is observed. HA is
formed in the form of agglomerates of crystals with a size of 0.14–0.17 µm. The size of HA
particles decreases with an increasing freezing temperature and their distribution becomes
narrower. The elemental composition of the surface is dominated by carbon, oxygen, phos-
phorus and calcium; impurities of other elements not characteristic of PVA/HA cryogels
were not found. The Ca/P ratios in the samples are significantly higher than the stoichio-
metric value (1.67). This may be due to the high proportion of amorphous component. The
closest to the stoichiometric Ca/P ratio, equal to 1.87, is sample K-2. In addition, sample
K-2 has the highest melting point of PVA and the highest mechanical properties of all
the materials, which allows us to conclude that the thermal treatment mode chosen for it
makes it possible to improve the interaction between the components of the system and
improve the properties of the material. The concentration of calcium ions and the mass
of the samples in the modelling medium change in a non-linear way. The dependence
has an extreme character (maximum for a two-week exposure). The maximum calcium
release is characteristic of sample K-2. The non-linear change in calcium ion concentration
over time may indicate the processes of recrystallization and the reversible sorption of
ions by polymer chains. The change in the mass of gels may be caused by the processes
of their ageing and shrinkage, which indicates the non-equilibrium of the system under
physiological conditions, a possible influence of the modelling medium (solvent exchange).
The described technique reduces the number of steps compared to the existing methods of
PVA-HA cryogels synthesis. It can also be used to create customized bone tissue implants.
The viability study of the composite materials on three donors showed high cell viability in
the presence of the materials. The cryogenic treatment mode has little effect on the viability
of monocytes, but these materials can be considered biocompatible because the cells show
high viability in the presence of the materials, which will allow the use of such material to
fill bone defects.
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