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Abstract: A new wicking geotextile is proposed to control the water content of fine-grained soil
subgrade. By comparing the spatial distribution of volumetric water content and matric suction before
and after the installation of the wicking geotextile, the effectiveness of the geotextile in controlling
the subgrade humidity is evaluated. Firstly, the hydraulic parameters of the wicking geotextile are
obtained through laboratory tests using a pressure plate apparatus. Then, a numerical model for water
flow in the subgrade is established using COMSOL to obtain the spatial distribution characteristics of
humidity in the subgrade under different groundwater levels (2~8 m). The results show the wicking
geotextile exhibits strong hydrophilicity, low water retention, and high horizontal permeability.
Compared to the subgrade without geotextile, the water content of the soil above the geotextile
decreases significantly by 7.6~9.6% at groundwater levels of 4~8m, while the saturation decreases
by 18.3~23.0%, and the matric suction increases by 2~2.3 times. The wicking fabric functions as an
effective drainage material to serve as a capillary barrier in the cross-plane direction and an effective
drainage tunnel to transport water in the in-plane direction. The dynamic resilient modulus of the
subgrade increases by 23.2~43.6%. The wicking geotextile effectively absorbs and drains weakly
bound water in unsaturated soil due to the matric suction difference and its horizontal drainage
capacity to improve the bearing capacity of the subgrade. It suggests that using wicking geotextile
for drainage and reinforcement in fine-grained soil subgrades with groundwater levels ranging from
4 to 8 m is beneficial.

Keywords: wicking geotextiles; numerical simulation; humidity control; fine-grained soil; matric
suction

1. Introduction

A report showed that 60% of China’s expressways require major repairs or renovations
after 10~12 years of service, and 17% require such repairs after 6~8 years, indicating a
shorter-than-expected service life for expressways [1]. Studies have found that subgrade
moisture is one of the main causes of this problem [2–4]. Typically, the subgrade is com-
pacted at its optimal moisture content to achieve optimal performance. However, during
actual service, precipitation infiltration and capillary rise may cause the subgrade moisture
content to reach an equilibrium humidity higher than the optimal moisture content, leading
to the degradation of subgrade support performance [5,6], further resulting in a decline
in the pavement’s service life. Rahman et al. [7,8] revealed that specimens compacted at
+2%wopt showed a lower modulus than specimens compacted at wopt. The soil moisture
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condition significantly influenced the subgrade modulus and the resulting subgrade rutting,
which led to the severe degradation of road service performance.

Effectively controlling the internal humidity of the subgrade is the key to ensuring
its support performance. Pooni et al. [9,10] examined the durability performance of the
enzymatic stabilization of expansive soils in road pavements, revealing its ability to main-
tain the material stiffness over moisture fluctuation subjected to moisture fluctuation. The
current method of controlling the internal humidity of the subgrade is mainly through
the use of a drainage layer of sand and gravel, relying on gravity potential to drain water
within the road structure. However, for the vast majority of its service life, the subgrade
is in an unsaturated state, and the soil skeleton produces capillary suction to water, such
as the fine-grained clay commonly used in road construction, which can generate suction
of over 100 kPa at a moisture content of 12%, rendering conventional drainage methods
ineffective [11–15]. The wetting of subgrade will greatly reduce its supporting performance;
Lin et al. [16] performed resilient modulus tests for a base course material containing 10%
fine grains. Test results indicated that the resilient modulus value reduced from 98 MPa
to 56 MPa when the water content increased from 8.9% (optimum water content 8.5%) to
10.8%. To control the internal moisture content of unsaturated subgrades, a new type of
wicking geotextile has been developed, with a unique grooved cross-sectional structure [17]
and hydrophilic groups that can produce capillary force, generating “core suction” to the
water in the soil and actively draining it in unsaturated soil. Galinmoghadam et al. [18]
used wicking geotextiles to solve the pumping and sucking problem and concluded that the
drainage capacity of the wicking geotextile under unsaturated conditions was superior to
traditional drainage methods. Lin et al. [19] determined the geotextile–soil–water character-
istic curve of the wicking geotextile through experiments and demonstrated the superiority
of the wicking geotextile in soil drainage. Guo et al. [20] designed different geotextile
scenarios, including wicking geotextiles, non-wicking geotextiles, and no geotextile, in
different subgrades and compared the drainage and deformation effects of subgrades under
cyclic loading. They found that a core suction geotextile had the best drainage and defor-
mation control effects. Bai et al. [21] studied the influence of parameters such as the number
and spacing of fibers on the drainage performance of wicking geotextiles and found that a
geotextile with a single core suction fiber with a fiber yarn spacing of 3 mm had the best
effect, reducing the soil water content by 11.31% from the initial value of 18%. Zornberg
et al. [22] combined field and laboratory tests and summarized the numerous benefits of
the new wicking geotextile in water absorption and drainage. Through field model tests,
Lin et al. [16] further found that the water absorption and drainage effect of a new wicking
geotextile was twice that of the initial design when combined with a plant system (i.e.,
planting vegetation at the exposed end of the wicking geotextile). Guo et al. [23] learned in
soil column tests that the effective drainage range of a wicking geotextile in granular base
layers was 180~250 mm, and the water content of the granular material could be reduced
to 0.6% below the optimal water content. Through numerical simulations, Lin et al. [24]
reported that adding wicking geotextiles to the subgrade reduced the moisture content
by 2.2%.

The successful application of the new type of drainage system using wicking geotex-
tiles has been further confirmed in some practical engineering projects. For example, Zhang
et al. [25] laid two layers of new wicking geotextiles in an 18.3 m long section of the Dalton
Highway in the United States, where the pumping phenomenon was the most severe, and
found that the wicking geotextile could effectively eliminate the pumping phenomenon.
Lin et al. [26] analyzed the long-term performance of new wicking geotextile based on
five years of temperature and humidity data from the Dalton Highway test section and
found that the wicking geotextile still worked effectively after five years. Using wicking
geotextiles, Delgado [27] solved the problem of pavement life deterioration caused by
differential settlement using the wicking geotextile.

It can be seen that current research mainly focuses on the drainage effect of geotextiles
in coarse-grained soils, while its effectiveness in fine-grained soils requires further study.
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Moreover, geotextiles have enormous potential for solving roadbed wetting problems, and
the study of water migration in fine-grained soils under the action of geotextiles has great
research value and application significance. Therefore, in this paper, we explore the humid-
ity control effect of a new wicking geotextile in fine-grained soil subgrades, using typical
silty clay fillers. Based on theoretical and experimental results, the hydraulic properties
of the wicking geotextile are quantified, and the absorption and drainage mechanisms
are revealed. A subgrade water migration model considering the wicking geotextile is
established, and the spatial distribution of subgrade water content before and after the
installation of the wicking geotextile is obtained. The improvement in the subgrade support
state before and after laying wicking geotextiles is compared.

2. Materials and Methods
2.1. Soil Parameters

The soil sample used in this study was a subgrade filler taken from the Ji-Qing
Highway at a depth of 3 m in Jinan, China. A series of laboratory tests were conducted in
accordance with the “Code for Geotechnical Testing of Highways” (JTG 3430-2020) [28] to
obtain the basic physical properties of the soil samples, as shown in Table 1. The silty clay
used in the test had a silt content of 85.92% and clay content of 11.08%. The liquid limit and
plastic limit of the silty clay were 31.19% and 19.98%, respectively, with a plasticity index
IP of 11.21. The maximum dry density was 1.91 g/cm3, and the optimal water content
was 12.0%.

Table 1. Physical properties of the soil sample.

Maximum Dry
Density/(g/cm3)

Optimal Water
Content/%

Liquid
Limit/%

Plastic
Limit/%

Plasticity
Index

Particle Size Distribution/%

<5 µm 5~75 µm 75~250 µm

1.91 12 31.19 19.98 11.21 16.9 80.1 3.0

2.2. Wicking Geotextile Parameters

The new type of wicking geotextile is made by cross-weaving longitudinal polyester
material and transverse green water-absorbing and draining yarn, as shown in Figure 1a.
Yang et al. [29] found that the absorbing fibers provided capillary channels for water
discharge and changed the matric potential in the soil through its capillary channels, and
the difference in suction between inside and outside the soil provided the driving force for
water discharge. The scanning electron microscopy experiment was carried out on the new
wicking geotextile treated by liquid nitrogen-freezing the transverse water-absorbing and
draining yarn. It was found that it was composed of bundles of fibers with approximately
circular cross-sections, as shown in Figure 1b. Yao et al. [30] proposed a formula for
calculating the equivalent diameter of inter-fiber pores in the textile yarns as,

dey f = d f

[
εy f /

(
1 − εy f

)]
(1)

where d f is the fiber diameter, equal to 28.775 µm; εy f is the porosity of inter-fiber pores,
equal to 0.236. According to Equation (1), the equivalent diameter of the pores between
fibers is 8.88 µm. The contact angle tests on the water-absorbing and draining yarn showed
a contact angle of 62.04◦, indicating that it is a hydrophilic material with strong water-
absorbing ability.

According to “Specification for test and measurement of geosynthetics” (SL 235-
2012) [31], we performed a vertical permeability coefficient test and horizontal permeability
coefficient test. The vertical and horizontal permeability coefficients of wicking geotextiles
were measured, which were 1.3 × 10−2 cm/s and 2.2 cm/s, respectively. It can be seen
that the horizontal permeability of wicking geotextiles is much greater than the vertical
permeability. As a result, horizontal drainage is the main function.
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Figure 1. The morphology of wicking geotextile: (a) physical example of wicking geotextile and
(b) microstructure of wicking and drainage yarn.

2.3. Hydrophilic Properties of Wicking Geotextiles

The contact angle is an important indicator of the wetting ability of a liquid on a solid.
When the contact angle θ < 90◦, it indicates that the surface of the solid material is easily
wetted and is a hydrophilic material. In this study, we used the dynamic capillary method
to measure the contact angle of the wicking geotextile. The Washburn equation proposed
by Lucas–Washburn, which describes the capillary flow of porous materials, states that the
square of the rise height of the liquid is proportional to time, as shown in Equation (2),

H2 =
ra cos θ

2ε
t (2)

where H is the height of liquid diffusion in the capillary (m); ε is the viscosity of water,
equal to 1.139 × 10−3 Pa·s; a is the interfacial tension between liquid and gas, equal
to 0.07346 N/m; r is the equivalent radius of the pore between the fibers, equal to
4.44 × 10−6 µm; θ is the contact angle between the solid and the liquid; and t is time.

After testing the vertical capillary rise of the water, we plotted the relationship between
the square of the liquid capillary rise height H2 and time t, as shown in Figure 2. The
average slope of the two fitting curves was 6.714 × 10−5. Using the Washburn equation,
the contact angle was calculated to be 62.04◦, indicating that the new wicking geotextile
has good wettability and is a hydrophilic material.
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2.4. Analysis of Water Content Characteristics of Silty Clay and Geotextiles

Through the pressure plate test, we obtained the volumetric water content of the silty
clay and wicking geotextile at different matric suction levels. Based on the Van Genuchten
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model, the soil–water characteristic curves of the silty clay and wicking geotextile were
established, as shown in Figure 3, and expressed by Equations (3) and (4).

θ1 = 0.194 +
0.246[

1 + (0.17h)4.013
]0.751 (3)

θ2 = 0.172 +
0.162[

1 + (0.012h)2.202
]0.546 (4)
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Figure 3. Water absorption characteristic curve of silty clay and wicking geotextile: (a) silty clay and
(b) wicking geotextile.

Compared with the soil–water characteristic curve of the silty clay, the wicking geo-
textile had a lower suction value and worse water-holding capacity. The air entry values
of the two materials were 20 kPa and 3 kPa, respectively. In addition, the linear change
segment of the matric suction for the wicking geotextile was 3~15 kPa. When the matric
suction reached 15 kPa, the volumetric water content rapidly decreased to 22.9%, while
the volumetric water content of the silty clay was 32.8%. Such differences ensure that the
wicking geotextile can continuously drain water from the soil.

2.5. Constitutive Equations of Numerical Model

According to the law of conservation of mass (5) and the generalized Darcy’s law
(6), the Richard Equation (7) describing water flow in soil can be obtained. This equation
is applicable to water flow in both saturated and unsaturated soils and can be used to
investigate water flow under the combined effects of gravity potential, pressure potential,
and matric suction.

Mass conservation:

−(
∂qx

∂x
+

∂qy

∂y
+

∂qz

∂z
)ρl =

∂ρθ

∂t
(5)

where qx is the flux of water in the direction of x; qy is the flux of water in the direction
of y; qz is the flux of water in the direction of z; ρl is the density of liquid water; and θ is
volumetric water content.

Generalized Darcy’s Law: 
qx = −kx

∂H
∂x

qy = −ky
∂H
∂y

qz = −kz
∂H
∂z

(6)

where kx is the permeability coefficient in the direction of x; ky is the permeability coefficient
in the direction of y; kz is the permeability coefficient in the direction of z; and H is the total
water head.
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Substituting Equation (6) into Equation (5) yields Richard’s equation as:

ρl

[
∂

∂x

(
kx

∂H
∂x

)
+

∂

∂y

(
ky

∂H
∂y

)
+

∂

∂z

(
kz

∂H
∂z

)]
=

∂(ρθ)

∂t
(7)

Water storage capacity S is defined as the volume of water stored (or released) per
unit volume of porous medium when the pore water pressure rises (or falls) by one unit:

S = ρg((1 − n)λ + nβ) (8)

where λ is the compressibility of the soil skeleton; β is the compressibility of the fluid; and
n is porosity.

Substituting Equation (8) into Equation (7), the Richard equation is extended to the
saturated–unsaturated seepage equation with the variable being the pore water pressure
p as,

ρl

(
C
ρg

+ SeS
)

∂p
∂t

−∇ρ

[
Kskr

ρg
(∇p + ρg∇H)

]
= 0 (9)

where ∇ is the gradient operator; H is the height difference; C is the specific storage coeffi-
cient; and Se is saturation. When the saturation is 1 (fully saturated), the specific storage
coefficient is 0, and the equation becomes the differential equation for saturated flow.

2.6. Numerical Analysis and Feasibility of Water Flow Model

A numerical model for water flow considering the wicking geotextile was established
based on the Richard equation in COMSOL. The soil parameters include saturated vol-
umetric water content θs = 33.4%, residual volumetric water content θr = 17.2%, Van
Genuchten model parameters α = 0.012, m = 0.546, n = 2.202, and permeability coeffi-
cient 5.5 × 10−6 cm/s. The wicking geotextile has the following parameters: saturated
volumetric water content θs = 44%, residual volumetric water content θr = 19.4%, Van
Genuchten model parameters α = 0.170, m = 0.751, n = 4.013, vertical permeability co-
efficient 1.3 × 10−2 cm/s, and horizontal permeability coefficient 2.2 cm/s, as shown in
Table 2.

Table 2. Parameters of the VG numerical model.

Parameter
Value

Soil Wicking Geotextile

saturated volumetric water content 33.4% 44%

residual volumetric water content 17.2% 19.4%

VG model parameters
α 0.012 0.170
m 0.546 0.751
n 2.202 4.013

vertical permeability coefficient 5.5 × 10−6 cm/s 1.3 × 10−2 cm/s

horizontal permeability coefficient 5.5 × 10−6 cm/s 2.2 cm/s

To validate the water flow model, we designed a chamber for silty clay with wicking
geotextile laboratory tests. The size of the test chamber was 30 cm × 30 cm × 30 cm, as
shown in Figure 4a. In order to realize the continuous monitoring of soil moisture content,
the EC-5 moisture sensor was used in this experiment. A rectangular gap for the wicking
geotextile was set at 10 cm from the surface of the soil on the front side. On the back side of
the chamber, circular holes were drilled at distances of 3 cm, 8 cm, 12 cm, and 17 cm from
the soil surface, corresponding to MS1, MS2, MS3, and MS4, respectively, where humidity
sensors were placed. The specific positions of the geotextile and the humidity sensors are
shown in Figure 4b. The optimal water content was used for layered compaction, and the
compaction degree was controlled at 96%. After the entire test chamber was prepared, it
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was saturated with water, sealed, and the wicking geotextile was horizontally unfolded,
while simultaneously recording the values of the humidity sensors in the chamber.
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Figure 4. Water flow test chamber: (a) specimen saturation process and (b) schematic diagram of the
test chamber.

The entire model test took 51 days. After water was added, the positions 3cm and
8cm away from the soil surface (sensors MS1 and MS2) quickly reached saturation, and
the volume water content increased to 38.1% and 37.8%, respectively. However, saturation
was slightly delayed at positions 12 cm and 17 cm from the soil surface (sensors MS3
and MS4), and the volumetric water content increased to 37.2% and 34.4%, respectively.
This phenomenon was caused by the interception of some upper infiltration water by the
geotextile, which reduced the infiltration rate of water. As the test progressed, the volume
water content at positions 3 cm and 17 cm from the soil surface (MS1 and MS4) decreased
significantly, while the volume water content at positions 9 cm and 12 cm (MS2 and MS3)
remained unchanged or slightly fluctuated, as shown in Figure 5. At the end of the test, the
volume water content at positions 3 cm, 8 cm, 12 cm, and 17 cm away from the soil surface
(MS1, MS2, MS3, and MS4) decreased by 3.62%, 2.54%, 1.64%, and 2.80%, respectively,
compared with the saturated state. The decrease in volumetric water content was more
significant at positions 3 cm and 17 cm away from the soil surface (MS1 and MS4) than
at positions close to the wicking geotextile. This indicates that while the geotextile drains
water from the adjacent soil to the external environment, it also continuously receives
upper gravity water and lower capillary water.
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Figure 5. Volumetric water content as a function of time.

The same size of two-dimensional soil column model was built in COMSOL based on
the laboratory model described above, and the model was meshed and transiently solved
using triangular elements. Four specific time points were selected to compare and analyze
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the simulation results with the experimental results (13 d, 26 d, 39 d, and 51 d), as shown in
Figure 6. Generally, the soil column volumetric water content showed an increasing and
then decreasing pattern in the depth direction. The simulation results were in agreement
with the experimental measurements, and the volumetric water content reached its peak
value near the geotextile. Table 3 shows the comparison of soil column volume water
contents at different depths and time points. The maximum error between the simulated
and measured volumetric water content was 3.6%, and the average error was 1.8%, which
was within a reasonable range. This further demonstrates the feasibility of the water flow
model based on the COMSOL software, version 5.6.
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Figure 6. Comparison of volumetric water contents of subgrade at different time points: (a) t = 13 d,
(b) t = 26 d, (c) t = 39 d, and (d) t = 51 d.

Table 3. Volumetric water contents of soil at different time points.

Time/d Measurement Point Measured Result/% Simulated Result/% Error/%

13

MS1 34.3 35.1 2.3
MS2 37.0 36.6 1.1
MS3 37.5 36.7 2.1
MS4 34.0 34.3 0.9

26

MS1 33.6 34.8 3.6
MS2 37.4 36.7 1.9
MS3 37.2 36.6 1.6
MS4 32.8 33.9 3.6
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Table 3. Cont.

Time/d Measurement Point Measured Result/% Simulated Result/% Error/%

39

MS1 33.6 33.9 0.9
MS2 35.8 35.2 1.7
MS3 35.7 35.3 1.1
MS4 32.3 33.2 2.8

51

MS1 33.3 33.7 1.2
MS2 35.6 35.1 1.4
MS3 35.6 35.2 1.1
MS4 32.6 33.2 1.8

3. Numerical Results and Discussion

An unsaturated soil subgrade water flow model was selected for a typical two-way
four-lane highway structure with a roadbed width of 28 m, a height of 4 m, and a slope of
1:1.5. The groundwater level in the Yellow River flood-prone area is usually 2~10 m below
the ground surface. Four working conditions were selected in the analysis: a groundwater
table of 2 m, 4 m, 6 m, and 8 m below the subgrade base. A layer of geotextile was laid at
the bottom of the roadbed. The road structure was symmetric, and the model was built for
the right side. A COMSOL numerical model was established as shown in Figure 7. The
geotextile was divided by free quadrilateral mesh, and the rest was divided by mapped
mesh. The total number of elements was 1,246,752. Four characteristic sections were
selected for analysis: x = 0 m (centerline of the subgrade), x = 6 m (outer edge of the first
lane), x = 9.75 m (outer edge of the second lane), and x = 13.25 m (outer edge of the hard
road shoulder).
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The initial mass water content of the subgrade was 12%, which translates to a volu-
metric water content of 22%. The initial suction can be calculated using Equation (3) as
220 kPa. As the model is for the right side of a symmetrical subgrade structure, the left
boundary of the model was set as a symmetric boundary. It was assumed in this study
that the pavement structure was not cracked and did not allow water flow; thus, the upper
boundary of the model was set as a no-flow boundary. The relevant input parameters of
the model are described in previous sections. The relevant parameters of the model are
described in Table 2.

3.1. Matric Suction and Volumetric Water Content Distribution

When the groundwater level was 4 m from the bottom of the subgrade, based on the
steady-state analysis using COMSOL, the distribution contours of the volumetric water
content and matric suction inside the subgrade before and after the installation of the
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wicking geotextile were obtained, as shown in Figures 8 and 9. Overall, the distribution of
volumetric water content and matric suction at the same depth in the subgrade varied along
the cross-sectional direction, with higher matric suction and lower volumetric water content
further away from the subgrade centerline, and higher matric suction and lower volumetric
water content with increasing distance from the groundwater level. Moreover, before the
installation of the wicking geotextile, the volumetric water content of the subgrade reached
26.9~29.5%, much higher than the optimal value of 22%. After the installation of the
wicking geotextile, there were apparent changes in both the matric suction and volumetric
water content above and below it, with the increase in matric suction in the subgrade
ranging from 68.9 kPa to 107.4 kPa and the volumetric water content above the geotextile
decreasing to 17.9% to 21.9%, indicating that wicking geotextiles play a significant role in
water insulation.
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Figure 9. Distribution contour of subgrade matric suction: (a) without wicking geotextile and (b) with
wicking geotextile.

3.2. Matric Suction Distribution

Figure 10 shows the distribution of subgrade matric suction along the depth of the four
specific sections with a groundwater table of 4m. Without the geotextile, the matric suction
at the centerline of the subgrade increased linearly with the depth from the groundwater
table, from 40 kPa to 71.1 kPa. At the same time, the matric suction in the direction of the
cross-section at the same depth decreased with the increase in distance from the subgrade
centerline, and the matric suction at the top surface of the subgrade increased from 71.1 kPa
at the centerline to 94.6 kPa at the shoulder. Because the volumetric water content of
subgrade is controlled by matric suction, without geotextiles, the volumetric water content
in the entire depth of the subgrade exceeded the initial optimal volumetric water content
of 22%.
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Figure 10. Vertical distribution of matric suction of the subgrade.

After the installation of the wicking geotextile at the bottom of the subgrade, the
volumetric water content at different depths changed significantly. This is mainly due to
the presence of the wicking geotextile, which significantly increased the matric suction
within the subgrade. The maximum increase in matric suction for each characteristic section
is shown in Figure 11. At distances of 0 m, 6 m, 9.75 m, and 13.25 m from the centerline of
the subgrade, the maximum increases in matric suction were 62.3 kPa, 69.1 kPa, 82.5 kPa,
and 107.4 kPa, respectively. The matric suction in the entire subgrade increased from
71.1~94.6 kPa to 134.3~203.9 kPa, indicating that the wicking geotextile has a strong ability
to block the invasion of capillary water from the lower layer. Lin et al. [32] found that the
soil close to the wicking geotextile was further dried as time passed by and the average
suction of the overlying soil reached 252.0 kPa after 1 month, indicating the wicking
geotextile has the capability to impede water from passing through in the cross-plane
direction. In addition, the volumetric water content of the subgrade within the range of
6~13.25 m from the centerline already reduced to below the initial optimal water content of
22%. This is because a certain suction gradient is formed laterally along the geotextile, and
water inside the subgrade can migrate to the subgrade slope through the fiber channels and
finally evaporate into the surrounding atmosphere. This further indicates that the wicking
geotextile has the ability to absorb and drain water and can effectively absorb and drain
weakly bound water in unsaturated soil.
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3.3. Volumetric Water Content Distribution

For the condition of groundwater level between approximately 2 and 8 m, the average
humidity of the subgrade area with and without geotextile is shown in Figure 12. As
the groundwater level decreased, the average volumetric water content of the subgrade
area decreased approximately linearly, but it always remained higher than the optimal
volumetric water content. For example, the volumetric water content of the outside edge
of the first lane at the groundwater levels of 2 m, 4 m, 6 m, and 8m was 30.9%, 29.1%,
27.5%, and 26.1%, respectively, and the increase in water content led to a decrease in the
modulus of the subgrade. Although the average volume water content of the roadbed at
a groundwater level of 2 m was still higher than the optimal water content, it decreased
rapidly as the groundwater level dropped from 2 m to 4 m. Then, as the groundwater level
fell from 4m to 6~8 m, the volumetric water content remained almost constant. For example,
the volumetric water content of the outside edge of the second lane at the groundwater
level of 2 m, 4 m, 6 m, and 8 m was 24.9%, 21.6%, 21.5%, and 21.4%, respectively. The
results show that the drainage effect of the wicking geotextile is related to the depth of the
groundwater level, and under the condition of high groundwater level, multiple layers of
geotextile may be required.
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Figure 13 shows the distribution of the volumetric water content of the subgrade along
the depth over four cross-sections at a groundwater level of 4 m. Without the geotextile,
the volumetric water content at the centerline of the subgrade decreased linearly with
increasing depth from the groundwater level, from 31.0% to 26.4%. This decrease was
closely related to the linear increase in matric suction of the subgrade with respect to
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the distance from the groundwater level. Similarly, at the same depth, the volumetric
water content across the subgrade decreased with increasing distance from the subgrade
centerline, from 28.9% at the centerline to 26.9% at the shoulder of the road. Overall,
without the geotextile, the volumetric water content throughout the entire depth of the
subgrade exceeded the initial optimal value of 22%.
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After the installation of the wicking geotextile at the bottom of the roadbed, there
was a notable change in the distribution of volumetric water content along the depth of
the subgrade. The water content in the roadbed above the wicking geotextile decreased
significantly, with maximum reductions of 7.6%, 8.0%, 8.8%, and 9.6% observed at the
four selected cross-sections, as shown in Figure 14. The average water content above
the wicking fabric was 4.2% lower than the initial optimal value of 22%. Lin et al. [16]
used numerical models to evaluate the performance of pavement structures with wicking
fabric. The simulation results showed that the soil–geotextile system was able to reduce
the water content of the base course by 2.2% (volumetric water content 4.8%) from the
optimum value.
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3.4. Distribution of Saturation

Saturation is commonly used to describe the degree to which the pores in a soil are
filled with water. Based on the conversion relationship of soil three-phase properties,
saturation can be written as

Sr =
Gsωv

γde
(10)

where Sr is saturation; Gs is the specific gravity of soil particles; ωv is the volumetric water
content; γd is the maximum dry density; and e is the void ratio.

Figure 15 shows the distribution of saturation of the subgrade along the depth at the
four selected cross-sections. Without the geotextile, the saturation at the centerline of the
subgrade decreased linearly with increasing depth from the groundwater level, reducing
from 85.9% to 79.0%. Similarly, at the same depth, the saturation decreased with increasing
distance from the subgrade centerline, reducing from 79.0% at the subgrade centerline to
74.3% at the shoulder. Overall, without the geotextile, the saturation remained relatively
high throughout the depth of the subgrade.
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After the installation of the geotextile at the bottom of the roadbed, the distribution of
saturation along the depth underwent significant changes, and there was a sharp transition
in saturation at the interface of the geotextile. The saturation in the roadbed area above the
geotextile decreased significantly, with the maximum reduction in saturation at the four
cross-sections reaching 18.3%, 19.7%, 21.4%, and 23.0%, as shown in Figure 16.
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3.5. The Dynamic Resilient Modulus of the Subgrade

The dynamic resilient modulus of the subgrade is an important parameter for the
design of pavement structures. The “Code for Geotechnical Testing of Highways” (JTG
3430-2020) gives an empirical equation for the dynamic resilient modulus of the subgrade as:

MR = k1 pa

(
θ

pa

)k2
(

τoct

pa
+ 1

)k3

k3 (11)

where MR is the dynamic resilient modulus; pa is atmospheric pressure, equal to 101 kPa; θ
is the body stress; τoct is the octahedral shear stress; and k1, k2, and k3 are model parameters.

For fine-grained soils, k1, k2, and k3 are defined as:
k1 = −0.096ω + 0.3929ρd + 0.0142Ip + 0.0109P0.075 + 1.01
k2 = −0.0005ω − 0.0069Ip − 0.0026P0.075 + 0.6984
k3 = −0.2180ω − 3.0253ρd − 0.0323Ip + 7.1474

(12)

where ω is mass water content of the specimen, ρd is the dry density of the specimen, Ip is
the plasticity index of the specimen, and P0.075 is the fine particle content of the specimen.

For the silty clay filler used in this study, the dynamic resilient modulus at the optimal
mass water content of 12% was 133 MPa. The dynamic resilient modulus of the subgrade
under different groundwater levels can be calculated using Equation (11), as shown in
Figure 17. When the groundwater level was 2 m, the dynamic resilient modulus of the
subgrade for the inner before and after the installation of the geotextile was 86.2 MPa
and 112.5 MPa, respectively, indicating an increase of 30.5%. When the groundwater level
dropped to 4~8 m, the dynamic resilient modulus of the subgrade before and after the
installation of the geotextile ranged from 94~110 MPa to 135.3~136.8 MPa, respectively,
representing an increase of 24.4~43.9%. Lin et al. [16] validated the ability of a soil–geotextile
system to reduce the water content of the base course, and the corresponding resilient
modulus could be increased by 2–3 times from the optimum value. This indicates that a
geotextile, by controlling the water content in the roadbed, can effectively improve the
dynamic resilient modulus of the subgrade and extend the service life of the road.
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Figure 17. Dynamic resilient modulus of the subgrade with or without geotextiles corresponding
to different groundwater levels: (a) 9.75 m from the subgrade centerline and (b) 13.25 m from the
subgrade centerline.

4. Conclusions

This study demonstrated the working mechanism of a wicking geotextile with lateral
drainage abilities. Based on a physical model of wicking geotextile-reinforced silty clay, we
investigated the development of soil moisture content, matric suction, and the dynamic
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round modulus with or without the wicking geotextile under different water tables. The
major conclusions are summarized as follows:

(1) The new type of wicking geotextile has an equivalent pore diameter of 8.88 µm,
contact angle of 62.04◦, air entry pressure of only 3 kPa, and vertical and horizontal
permeability coefficients of 1.3 × 10−2 cm/s and 2.2 cm/s, respectively. This indicates
that the new wicking geotextile has strong hydrophilicity, low water-holding capacity,
and high horizontal permeability.

(2) A numerical model considering water flow with the presence of the wicking geotextile
was established based on Richard’s equation. By comparing the volumetric water
content of each layer of the soil column from the finite element software COMSOL
and laboratory experiments, it was found that the numerical model and experimental
results exhibited a similar trend in volumetric water content. The maximum error
was found to be 3.6%, and the average error was 1.8%, demonstrating the feasibility
of the water flow model.

(3) The wicking geotextile is effective for controlling the water content of the subgrade.
After the installation of the geotextile, there was a noticeable abrupt change in the
volumetric water content above and below the geotextile. At a groundwater level
of 4m, the volumetric water content above the geotextile decreased significantly by
7.6% to 9.6%, and the saturation decreased significantly by 18.3% to 23.0%. The matric
suction increased by a large factor of 2~2.3 times, indicating that the wicking geotextile
effectively acts as a barrier to water infiltration.

(4) By controlling the internal water content, the wicking geotextile can effectively in-
crease the dynamic resilient modulus of the subgrade. When the groundwater level
was 4 m or below, the dynamic resilient modulus of the subgrade increased from
94.2~111 MPa without the geotextile to 135.3~136.8 MPa with the geotextile, repre-
senting an improvement of 23.2~43.6%.

In summary, the typical silty clay subgrade in Shandong Province was selected in this
paper to study the moisture-controlling effect of wicking geotextiles under different ground-
water levels, providing an effective solution to the wetting problem of the unsaturated
subgrade of fine-grained soil.
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