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Abstract: This study investigates the improvement in the compressive strength of cellulose/cement-
based composites. Methyl cellulose (MC), carboxymethyl cellulose (CMC), and hydroxypropyl
cellulose (HPMC) are separately used as the cellulose phase with different wt%. Graphene oxide (GO)
and zoledronic acid (ZOL) are used as additives for bone regeneration for various formulations. Uti-
lizing Extreme Gradient Boosting (XGB) modeling, this research demonstrates the roles of the choice
of the cellulose phase, wt% of cement phase, % gelatin, % citric acid, degradation time, and concentra-
tion of GO and ZOL in influencing compressive strength. The XGB regression model, with an R2 value
of 0.99 (~1), shows the predictive power of the model. Feature importance analysis demonstrates
the significance of cellulose choice and the addition of chitosan in enhancing compressive strength.
The correlation heatmap reveals positive associations, emphasizing the positive influence of HPMC
and CMC compared with MC and the substantial impact of chitosan and citric acid on compressive
strength. The model’s predictive accuracy is validated through predicted compressive strength values
with experimental observations, providing insights for optimizing cellulose-reinforced cements and
enabling tailored material design for enhanced mechanical performance.

Keywords: methyl cellulose; carboxymethyl cellulose; cement; compressive strength; graphene oxide;
zoledronic acid; extreme boost modeling; chitosan

1. Introduction

In recent decades, there has been a notable focus on bioresorbable cements, for the
restoration and substitution of compromised bone tissues. Bioresorbable cements have
gained significant attention owing to their ability to occupy bone voids, eliminating the
necessity for metallic implants [1]. A key advantage lies in the natural degradation of
these implants at the implantation site, eliminating the need for subsequent surgeries to
extract the implants post-healing, which distinguishes them favorably from non-degradable
alternatives [2,3].

Calcium phosphate cements (CPC) are the focus of extensive research due to their
outstanding physical, mechanical, and biological properties [4–6]. Because of their biocom-
patibility, bioactivity, biodegradability, and osteoconductivity, there is significant interest in
advancing their development. CPCs can be injected and, subsequently, solidify in vivo, con-
forming to the shape of the defect site. Among the most commonly utilized bioceramics for
CPC production are dicalcium phosphate dihydrate (DCPD, CaHPO4.2H2O), calcium sulfate
dihydrate (CSD; CaSO4·2H2O), and tetra-calcium phosphate (TTCP, Ca4(PO4)2O) [5–7]. Upon
injection of a mixture of TTCP and DCPD into the defect site, it undergoes transformation
into hydroxyapatite (HA) [5,6,8].
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To modify the rheological characteristics, such as injectability, setting temperature,
and mechanical properties, CPC may be incorporated into a polymeric matrix. The in-
clusion of a polymeric matrix can also facilitate the penetration of body fluids into bone
substitutes, thereby supporting three-dimensional cell migration, cell growth, and ulti-
mately ossification [5,9]. In this context, the selection of an appropriate polymer is crucial
for optimizing these functions [10–15]. Cellulose stands out as a promising polymer for
this purpose; however, its lack of water solubility, attributed to intra-molecular hydrogen
bonding, limits its applicability in biomedical contexts [16–18]. Consequently, hydrophilic
and water-soluble derivatives of cellulose have been developed [19]. Methylcellulose (MC),
carboxymethyl cellulose (CMC), and hydroxypropyl cellulose (HPMC) are cellulose ether
derivatives and have undergone extensive research for biomedical applications [10,11].
Gelatin is also added to the CPC composites due to its arginine, glycine, and aspartic amino
acid sequence (RGD) groups, which improve cell–biomaterial interactions and also en-
hance mechanical properties. Nanocomposites, particularly those involving functionalized
cellulose/gelatin-reinforced cements, have attracted significant interest in the biomaterials
and tissue engineering field due to their potential for enhanced mechanical properties
and biocompatibility [12,13]. Citric acid is also incorporated into the CPC/polymeric
composites to improve their mechanical performance [1]. Citric acid (CA) stands out as
a promising candidate because of its carboxylic groups, which establish a network with
CMC chains and amide bonds with gelatin. Furthermore, citrate ions are also present in the
bone mineral; therefore, they are non-toxic and, additionally, relatively inexpensive [7,14].

Nanocomposites incorporating graphene have garnered significant attention in the
field of biomedical applications owing to their exceptional physical, electrical, and chemical
attributes, as well as their extensive surface area and high chemical purity. Consequently,
integrating graphene and its derivatives with calcium phosphate cements (CPC) repre-
sents a promising approach to enhance various aspects of CPC performance, including
mechanical properties, stability, workability, and osteoconductivity, as well as cell adhesion,
proliferation, and differentiation [15,16].

Research indicates that introducing bisphosphonates (BPs) to injectable bone substi-
tutes (IBS) can modify the physicochemical characteristics of the IBS, including hardening
time, morphology, porosity, and mechanical properties, all within acceptable ranges [17].
Specifically, the addition of BPs has been observed to slightly reduce the mechanical proper-
ties of the IBS samples with added BPs [18–20]. Boanini et al. [21] conducted a comparison
of the in vitro effects of zoledronic acid (ZOL) and alendronate using hydroxyapatite (HA)
nanocrystals. ZOL exhibited a higher affinity for the HA structure compared to alendronate,
although both showed a similar level of osteoclast apoptosis. The strong affinity of ZOL for
HA was attributed to their favorable structural compatibility. Additionally, in vivo studies
on BP-loaded calcium phosphate cement (CPC)-based scaffolds have substantiated the
enhancement of bone formation through BP incorporation [20,21].

The foundation of this investigation lies in studying the data of methyl cellulose
(MC)/cement, carboxymethyl cellulose (CMC)/cement, and hydroxypropyl cellulose
(HPMC)/cement-based composites, wherein the focus is given to the concentrations of MC,
CMC, HPMC, GO, citric acid, cement, ZOL, cellulose, and chitosan, as well as degradation
time. The significance of each component’s contribution to the resulting mechanical prop-
erties is assessed through a comprehensive computational modeling approach. Using an
advanced machine learning algorithm, specifically the Extreme Gradient Boosting (XGB)
regression model, enables a deeper understanding of the complex relationships within
these nanocomposites, offering predictive insights into their compressive strength [22,23].
The integration of computational modeling in this study is crucial not only for predictive
purposes but also for unraveling the underlying mechanisms governing the mechanical
behavior of cellulose-reinforced cements. Through an array of analyses, including cor-
relation heatmaps, feature importance assessments, and Shapley Additive Explanation
(SHAP) techniques, this study aims to elucidate the hierarchical impact of each parameter
on compressive strength [24]. Such insights are invaluable for the optimization of biomate-



Materials 2024, 17, 374 3 of 11

rials, laying the groundwork for the development of mechanically robust and functionally
tailored nanocomposites for tissue engineering applications.

2. Materials and Methods
2.1. Data Collection

In this study, data are collected from six previous papers, and 68 datasets are collected [7,25].
Following this, the mechanical properties of the composites were covered for different formula-
tions. The eight independent variables in this study include choice of cellulose phase as either
MC, CMC, or HPMC; % of cellulose; wt% of cement; wt% of citric acid; wt% of gelatin; wt% of
GO; ZOL concentration; and degradation time (in days). The dependent variable is compressive
strength. Table 1 below shows the composition of the biomaterials. Detailed parameters are
provided in Table 1 in Supplementary Table S1.

Table 1. Wt% of each component in the prepared composites.

Choice of
Cellulose

wt% of Gelatin
in Polymeric
Phase (wt%)

wt% of Citric
acid in

Polymeric Phase
(wt%)

wt% of Cellulose
in Polymeric
Phase (wt%)

Bioceramic Phase in
(Liquid Phase +

Bioceramic Phase) (%)

Bioceramic Phase
CSD/(TTCP+ DCPD) (Ref.)

MC (in polymer) 2.5 3 8 0, 20, 30, 50 25/75 [1,20,26]
CMC (in
polymer) 10 20 2 62.5, 65, 67.5, 70 20/80 [7,25]

HPMC 0 20–40 0–4 64.3 20/80 [10]

2.2. Computational Modeling

The implementation of machine learning algorithms in this study was conducted
using Python 3.9, leveraging key libraries such as Pandas, Numpy, Scipy, Matplotlib,
Seaborn, and Scikit-learn. Specifically, the analysis involved the application of an XGB
regression model [27]. The Python codebase for this study is accessible at https://github.
com/duyguege/machine-learning.git (accessed on 15 October 2023).

2.2.1. XGB Regressor

The XGB regressor, developed by Guestrin and Chen in 2016, stands as an ensemble
gradient-boosting algorithm [28,29]. This model enhances predictive capabilities by se-
quentially incorporating trees, creating a robust learner from weaker ones [29]. Predictions
are then derived by aggregating scores from individual leaf nodes [30]. Renowned for its
efficiency and accuracy, XGB is a prevalent choice in regression tasks. To mitigate over-
fitting to outliers, the model applies a second-order Taylor expansion to the loss function
and normalizes the objective function [28–31].

2.2.2. Training, Hyper-Tuning, and Validation Processes

The dataset underwent division into training (80%) and test (20%) sets, with the
former used for model development and the latter for evaluation. The Scikit-learn library in
Python facilitated the application of models. Optimal parameters for the XGB model were
determined through hyperparameter tuning, considering factors such as the subsample
ratio of columns, number of estimators, maximum depth, and learning rate (shrinkage
factor). To ensure a balance between underfitting and overfitting, optimal parameters
were selected for both training and test sets [32]. Performance evaluation involved 10-fold
cross-validation, with the model ultimately used for predicting stiffness values [33,34].

2.2.3. Correlation Heatmap

A correlation heatmap, generated using the Seaborn module in Python, served to
evaluate the relationships among independent factors (choice of CMC, HPMC, or MC;
degradation time; % of cement; wt% of GO; % citric acid; % chitosan; and ZOL concentra-
tion) and the dependent variable, compressive strength. A higher correlation coefficient (r)

https://github.com/duyguege/machine-learning.git
https://github.com/duyguege/machine-learning.git
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indicated multicollinearity among the independent variables [22]. MC is coded as 0, CMC
is coded as 1, and HPMC is coded as 2 in the dataset to analyze their correlation. A value
above 0.8 indicates a very strong correlation and a value between 0.6 and 0.8 indicates a
strong correlation. A value between 0.4 and 0.6 shows that there is a moderate correlation.
A value between 0.2 and 0.4 demonstrates a weak correlation. If the value is below 0.2, there
is only a very weak correlation. Finally, a negative value indicates a negative correlation,
and the relevant strength of values is also true for negative correlation values.

2.2.4. Feature Importance

Feature importance was assessed by calculating the significance of features through
an integrated function in the Scikit-learn implementation of the XGB model. Features were
ranked based on their importance [23,35].

2.2.5. Model Performance Assessment

The success of the models was gauged based on higher coefficients of determination
(R-squared or R2) with lower root mean square error (RMSE) and mean absolute error
(MAE) indicative of superior performance. Model assessment encompassed the evaluation
of R2, RMSE, and MAE [22–24].

2.2.6. Shapley Additive Explanation

The Shapley Additive Explanation (SHAP) technique, introduced by Lundberg and
Lee in 2017, was employed for unraveling complex relationships in machine learning
models [36]. Utilizing SHAP as a Python model interpretation tool, this study delved
into the marginal relationship between predicted compressive strength values and each
feature. SHAP values elucidated the contribution of each feature to compressive strength
prediction, with negative and positive values signifying negative and positive contribu-
tions, respectively. The SHAP summary plot depicted the impact of each parameter on
compressive strength, with the primary y-axis displaying SHAP values and the secondary
y-axis featuring a color bar indicating high feature values.

3. Results and Discussion

In this study, we use XGB boosting to study the effect of processing parameters on the
compressive strength of cellulose/cement-based composites. The mechanical properties of
these biocomposites are influenced by many factors and the choice of the components is
critical. This study explores how material choice intricately shapes the mechanical charac-
teristics of cellulose/cement composites. The investigated factors are ZOL concentration;
wt% of GO, wt% of cement, wt% of citric acid, wt% of chitosan, and choice of cellulose.

Figure 1a shows the correlation heatmap for the dependent variable (compressive
strength), ZOL concentration, wt% of GO, wt% of cement, wt% of citric acid, wt% of
chitosan, and choice of cellulose (MC_CMC_HPMC) as the cellulose phase; Figure 1b
shows the correlation coefficient ®of the parameters and the dependent variable.

In the model, MC, CMC, and HPMC are coded as 0.1 and 2, respectively. The corre-
lation coefficient ranged from −1 to 1. Meghanathan et al. [37] indicate that a value from
0.8 to 1 for the correlation coefficient reveals a very strong correlation and a value from
0.6 to 0.8 indicates a strong correlation. A value between 0.4 and 0.6 shows that there is
a moderate correlation. A value between 0.2 and 0.4 demonstrates a weak correlation. If
the value is below 0.2, there is only a very weak correlation. As there is a strong positive
correlation (correlation coefficient = 0.79) for the choice of cellulose (MC_CMC_HPMC)
parameters with compressive strength, this indicates that CMC leads to higher compressive
strength than MC, and HPMC leads to higher compressive strength than CMC. Citric
acid and chitosan concentration also have a strong positive correlation with compressive
strength. Zhang et al. [38] incorporated chitosan in β-tricalcium phosphate and observed
significant improvement in mechanical properties. This was explained to be due to the com-
plexation of the calcium ions of the calcium phosphate phase with the functional groups of
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chitosan. Citric acid improves mechanical properties by interacting with hydroxyl groups
of the carboxymethyl or hydroxypropyl methyl cellulose phases, which forms an ester
crosslink [10]. Citric acid also has a “salting-out” effect, which increases the packing of
the cements and reduces porosity [39]. The % of cement has a comparatively weaker
positive correlation with compressive strength. For degradation time (days), there is a
positive correlation of 0.28. This means that, generally, degradation increases compressive
strength; however, as this value is low, this means that there is only a weak correlation. The
correlation coefficients for ZOL and GO are quite low and negative, and this shows that
they have a weak correlation with the compressive strength of the composites. This means
that their effect on compressive strength is much less effective. The literature indicates
that GO increases compressive strength significantly when added in a polymeric phase
due to hydrogen bonding; however, this effect is found to be much less pronounced in
cements [25,40,41]. An increase in the concentration of cellulose and gelatin is also observed
to have a negative correlation. Figure 2 shows (a) RMSE, R2, and MAE for training and
testing compressive strength data, (b) predicted and observed (test) compressive strength
values, (c) SHAP values for each feature, and (d) SHAP values for independent variables
for the prediction of compressive strength.
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Figure 1. Relationship between parameters. (a) Correlation heatmap for compressive strength,
independent parameters degradation time (day), ZOL and GO concentration, % of cement phase
(cement), and whether the choice of polymer is MC, CMC, or HPMC. (b) Correlation coefficient (R)
of the components and dependent variable, compressive strength.

Figure 2 shows that R2 for the XGB model is 0.99 (~1). This is an excellent fit of the
test values to the model trained by the training dataset [42]. R2 for testing and training are
also very similar, which shows that the model works similarly for training and testing data.
However, RMSE and MAE values are higher for testing data than for training data. This
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shows that there is a degree of overfitting of the model for the dataset. Despite this, the
RMSE and MAE values are quite low even for test data (MAE = 0.4, RMSE = 0.7); therefore,
the model can still provide satisfactory knowledge for analyzing the importance of each
factor and the mechanical behavior of the composites [42]. Figure 2c shows that SHAP
values are positive for all the features. This shows that the model gives predictions with
higher values than experimental data. The highest SHAP value is observed for the choice
of cellulose. According to Figure 2d, higher values of the dataset for % cement phase, wt%
citric acid, wt% of cellulose, and degradation time increase the SHAP value. This shows
that higher values of % of cement, wt% citric acid, wt% of cellulose, and degradation time
improve the compressive strength prediction. For other data values (GO, ZOL, chitosan,
gelatin), the effect is not as distinct. Figure 3 shows the feature importance implemented
from the XGB model.
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According to Figure 3, the most important factor affecting compressive strength is
the addition of chitosan. Chitosan’s positive amine groups may interact via ionic bonds
with negatively charged carboxyl groups of cellulose. It may also form complexes with the
cement phase, improving the mechanical strength [43]. The choice of type of cellulose is
also found to be effective. HPMC leads to higher compressive strength than CMC, and
CMC is observed to lead to higher compressive strength than MC. This could be due to the
presence of the hydroxypropyl group, which improves the solubility of the cellulose phase,
which leads to a more homogeneous blending of cellulose with the cement and gelatin
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phase [7,14,44]. The wt% of cellulose, citric acid, and cement are observed to have much
less importance on compressive strength. As citric acid can form amide bonds with gelatin
and also crosslinks with HPMC, CMC, and MC, it increases the compressive strength
of the composites; however, this effect is quite insignificant in comparison to chitosan
and cellulose components. GO, ZOL, gelatin concentrations, and degradation time are
observed to have a much less significant effect on compressive strength than the other
factors. Figure 4 shows predicted compressive strength for various % of the cement phase.
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Figure 4. Predicted compressive strength versus % of cement phase for (4% cellulose and 0% chitosan).

According to Figure 4, with the increase of compressive strength, compressive strength
increases. More distinctly, HPMC leads to higher compressive strength following CMC
and MC. The higher compressive strength is because of the presence of ionic interactions
between negatively charged carboxyl and hydroxyl groups of HPMC and positive amine
groups of the gelatin phase. Moreover, the cement phase and CMC may also interact
via ionic interactions [7,25,45]. On the other hand, MC has hydrophobic interactions
and hydrogen bonding occurs between MC chains [1]. This shows that the presence of
ionic interactions leads to a composite with higher strength than MC. Figure 5 shows the
predicted compressive strength for various wt% of GO.

GO’s hydroxyl, carboxyl, and epoxy groups carboxylate ions of CMC to form hydrogen
bonding. This interaction increases the strength of the biomaterial [45]. According to
Figure 5, GO increases compressive strength up to 1 wt% loading in CMC. This dosage
goes down to 0.5 wt% for MC. This is possibly because of the easier mixing of GO in
CMC than MC due to CMC’s carboxyl groups. Above these concentrations, compressive
strength decreases, and this is because of the agglomeration of GO at higher loadings.
This trend is frequently observed in research papers [25,46,47]. Moreover, the increase
here is not very significant compared to the effect of the choice of cellulose type. This is
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also previously shown in Figure 3, as GO was shown to have little effect on compressive
strength. In Figure S1, the predicted values and experimental values are provided for GO
and MC-added 50 wt% cement biocomposites. According to this figure, the values are
quite similar for most of the predictions and experimental groups for studied compositions.
The difference was relatively more pronounced for the addition of 0.5 and 1.5 wt% of GO.
The difference was 5 and 6% off for 0.5 and 1.5 wt% of GO-added samples; however, even
this difference was considerably small. Figure 6 shows predicted and experimental values
of the compressive strength for various concentrations of ZOL and degradation time.
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According to Figure 6a, ZOL minimally increases compressive strength with a concen-
tration of 1 µM; however, with an increase of concentration to 5 µM, an abrupt increase in
compressive strength was observed. As seen in Figure 6b, degradation initially reduces
compressive strength; however, with further degradation time, compressive strength in-
creases. This is because the cement phase hardens over time, significantly increasing the
compressive strength on day 7 [1]. When experimental values and predictions are com-
pared, it is observed that values are quite similar except for day 3. A higher prediction is
observed compared to the experimental value. This increase may also be explained by the
positive SHAP values, which indicate that predictions are higher than experimental values.

Overall, according to this study, many parameters are demonstrated to be effective
on compressive strength. The most effective parameters are the addition of chitosan and
the choice of cellulose phase. The RMSE and MAE values for the test set are greater than
those for the training set, indicating the presence of overfitting. However, the difference
is not substantial. Therefore, the obtained results appear to be meaningful. Nonetheless,
conducting additional machine learning studies in the future with larger datasets would be
valuable to further analyze relationships between parameters.

For example, for the compressive modulus and % strain at break, there is not enough
data for the prepared composites. Once there is enough data in the literature, the effect of
the studied parameter may also be applied to analyze their effect on compressive modulus
and % strain at break. Additionally, as can be observed in Table 1, the initial concentration
of gelatin and cellulose is not the same. This may affect the outcome of the model. In the
future, it would be more effective if initial concentrations are kept the same for gelatin, citric
acid, and cellulose to be able to compare the effect of the type of cellulose on mechanical
strength. Despite this, the data obtained from the XGB modeling is fruitful and open doors
for future studies to further optimize the mechanical properties of the cellulose/cement-
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based composites. Since the dataset on stiffness and % strain were more constrained so
far, we could only study compressive strength. In the future, it would also be beneficial to
study the effect of each parameter on the stiffness and % strain of the prepared composites.
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4. Conclusions

The XGB regression model exhibited strong predictive capabilities with an R2 value of
0.99, underscoring the pivotal roles of many factors influencing the mechanical properties
of the cements. Feature importance analysis emphasized the significant contributions of
cellulose choice and chitosan to the observed improvements in compressive strength. The
predictive accuracy of the model was validated through the congruence of predicted com-
pressive strength values with experimental observations, providing actionable insights for
the optimization of cellulose-reinforced cements. These findings offer a valuable foundation
for tailored material design, allowing for the enhancement of mechanical performance in
cellulose-reinforced biocomposites.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17020374/s1, Figure S1: Compressive strength of predicted
and experimental MC loaded samples versus wt% of GO; Table S1: Compressive strength of the
samples in relation to the composition of the ceramic-based composites.
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