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Abstract: Microwave maintenance technology, as a new development trend, can realize the envi-
ronmentally noninvasive and rapid repair of asphalt pavement and gradually replace traditional
maintenance methods. Iron tailings were used as a self-healing material in this study to investigate
the temperature response matching of microwave maintenance technology. Firstly, the physical
properties and the mechanism of iron tailings were elaborated through macroscopic physical index
testing and microscopic X-ray diffraction (XRD) analysis. Secondly, the applicability of aggregates
to microwave heating was demonstrated by analyzing the temperature rise characteristics of the
granules using infrared imaging. Then, the temperature field variation rules of the iron tailing asphalt
mixture were summarized by microwave heating Marshall specimens. Finally, the road performance
was assessed by conducting high-temperature dynamic stability, low-temperature tensile, water
immersion Marshall, and freeze-thaw splitting tests. The experimental results showed that the iron
tailings can be used as an aggregate for high-grade asphalt pavement and as the preferred aggregate
for microwave maintenance technology. The iron tailings temperature field was radial from the
inside out to provide different temperature response states for different pavement diseases, so the
asphalt was dissolved and precipitated in a short time. The particle size of iron tailings was inversely
proportional to the wave-absorbing heating rate, and the heating efficiency of the small particle size
(0–4.75 mm) was the highest. The specimens doped with 4.75–13.2 mm iron tailings showed the best
heating performance and road performance, with the average surface temperature of the specimens
reaching 126.0 ◦C within 2 min. In summary, according to different disease types and construction
needs, iron tailings can be used as an aggregate for asphalt pavement, providing an appropriate
temperature field and improving the efficiency of the microwave maintenance of asphalt pavements.

Keywords: road engineering; asphalt mixture; temperature field; iron tailing; microwave heating

1. Introduction

Cracks, potholes, and rutting are common issues that affect the structural stability and
traveling comfort of asphalt pavements [1]. To address these problems, various mainte-
nance methods have been employed. Traditional methods often involve cutting the pave-
ment, creating construction waste, and causing traffic disruptions and increased costs [2,3].
In contrast, microwave heating maintenance technology offers a more environmentally
friendly, noninvasive, and efficient repair alternative without the need for pavement cutting.
Consequently, it has become a promising trend in pavement maintenance [4–6]. During the
microwave maintenance process, asphalt does not directly absorb microwaves. Instead, the
metal molecules in the aggregate of the asphalt mixture absorb the microwaves and then
generate heat. This heat is then transferred to the asphalt, causing it to dissolve and resolid-
ify, resulting in the restoration of its mechanical properties [7–10]. There are many factors
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affecting the mechanical properties of asphalt mixtures; temperature, aggregate properties,
construction conditions, etc. have a certain influence on them. At present, many experts
use nondestructive evaluation techniques for the investigate and monitor the damage,
mechanical properties, cracking mechanisms, and damage development process of asphalt
mixtures [11,12]. The selection of suitable wave-absorbing materials and their effective
integration with microwave maintenance technology have become essential considerations
in achieving optimal construction temperature fields for different pavement conditions and
ensuring the longevity of the asphalt.

To enhance the microwave sensitivity of asphalt mixtures, researchers have explored
the addition of high-performance wave-absorbing materials such as steel fibers, steel slag,
steel chips, ferrite, and carbon nanotubes [13–19]. These additives facilitate the rapid
warming of asphalt mixtures, as demonstrated by studies conducted by Nalbandian, Yu,
Khan, and others [20–22]. Furthermore, modified asphalt pavements with wave-absorbing
materials have shown promising healing effects and significant energy savings [23,24].
Currently, most scholars focus on optimizing the wave-absorbing performance of asphalt
mixtures through the development of new materials [25–27]. However, they often overlook
the high cost of wave-absorbing materials and the challenges associated with achieving
uniform temperature distribution and aggregate gradation in the asphalt mixtures. Hence,
it is necessary to identify aggregates that are cost-effective, possess good gradation, exhibit
excellent wave-absorbing performance, and can be widely used in road projects to address
these limitations.

Iron tailings, a byproduct of iron ore production, have attracted significant attention
as a potential solution to environmental pollution and land resource occupation caused by
largescale stockpiling [28,29]. Iron tailings exhibit excellent mechanical properties, includ-
ing roughness, shape, angularity, hardness, polish, and abrasion resistance, making them
suitable for road construction [30,31]. Previous studies by Gao, Figueiredo, and others have
demonstrated the superiority of using modified iron tailings in roadbeds and their conver-
sion into code-compliant building materials through geopolymerization technology [32,33].
Shamsi proves iron ore has excellent mechanical properties and economic benefits [34] Ad-
ditionally, the recovery of valuable elements from iron tailings has been explored, increasing
their reuse rate and creating economic value [35–37]. Despite the research conducted on the
secondary resource utilization of iron tailings, their comprehensive utilization rate remains
low. Most studies have focused on separating the physical and chemical properties of iron
tailings [38–41], overlooking their potential as a wave-absorbing material for microwave
maintenance technology. Currently, there is a lack of research on the combination of iron
tailings with asphalt pavements and microwave maintenance. Therefore, the integration
of iron tailings with microwave maintenance technology presents an opportunity to fully
utilize their potential value while addressing environmental concerns. We systematically
investigated the potential advantages of utilizing iron tailings as a self-healing material for
asphalt surfaces, considering key factors such as durability, cost-effectiveness, and environ-
mental sustainability. In contrast to conventional self-heating repair materials, iron tailings,
derived as a byproduct from mining operations, present a compelling environmentally
sustainable option for asphalt rehabilitation. This strategic alignment reflects the contem-
porary emphasis on ecologically responsible practices within the realm of construction
materials, contributing to a reduction in reliance on traditional nonrenewable resources. A
distinctive aspect of our study is the novel integration of the physicochemical properties
of iron tailings, allowing us to explore an entirely unprecedented heat transfer mecha-
nism. This pioneering approach involves an in-depth examination of the temperature field
compatible with pavement distress conditions. Unlike previous research that primarily
focused on short-term evaluations, our study pioneers a comprehensive analysis of the
long-term performance and durability of asphalt pavements repaired with iron tailings.
This analytical depth offers a fresh perspective on the sustained benefits derived from the
application of iron tailings for asphalt rehabilitation, thereby introducing a paradigm shift
in our understanding of the long-term efficacy of such materials.
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In this study, we propose using the iron tailings as a new type of aggregate and
investigating their compatibility with asphalt pavement and microwave maintenance tech-
nology. Through microscopic and macroscopic analysis methods, we demonstrate the
wave-absorbing properties and physical characteristics of iron tailings, confirming their
suitability as a high-grade asphalt concrete aggregate. Furthermore, by employing infrared
thermography, we analyze the impact of temperature changes and particle properties, by
preparing iron tailings specimens with different particle sizes, we observe and summarize
the temperature field changes in iron tailings asphalt mixtures. Finally, by preparing Mar-
shall specimens of iron tailings asphalt mixtures with different particle sizes, we verify
and summarize their macroscopic road properties. These findings provide an experimen-
tal foundation for future research on iron tailings and microwave heating maintenance
technology, as well as practical guidance for construction applications.

2. Materials and Methods
2.1. Materials
2.1.1. Iron Tailings

Iron ore is mainly composed of various iron-bearing minerals. Due to the different
geological conditions, iron ores are mainly categorized into limonite, magnetite, hematite,
and rhodochrosite according to the chemical composition and crystal structure of the iron
compounds. Different iron ores have different external forms and physical properties.
Compared with other types of iron ores, such as limonite, magnetite is less reducible and
usually contains some other impurity minerals. Iron tailings and basalt were selected as
coarse aggregates. The selected basalt is made in Jinan, Shandong Province, China. The
selected iron tailings are of the Anshan-type iron ore, which is produced in Benxi, Liaoning
Province, China. The rock assemblage type is silica–iron-built, hornblende, and siliciclastic;
the whole ore body is large and poor, the mineral composition of the ore is relatively simple,
and it contains a high content of metallic components, with an average iron content of
27–34%. According to the standard JTG E42-2005 [42] on the coarse aggregate requirements
of asphalt mixture, the physical indicators of iron tailings and basalt were tested, and the
test items and results are shown in Table 1.

Table 1. Properties of coarse aggregate.

Index Technical Quality Requirements 5~10 10~15 Basalt Test Method

Aggregate crushing value/% ≤26 - 18.2 20.3 JTG E42 T0316
Apparent relative density ≥2.6 2.813 2.886 2.621 JTG E42 T0304

Gross volume relative density Actual measurement records 2.726 2.834 2.596 JTG E42 T0304
Water absorption rate/% ≤2.0 1.32 0.49 1.1 JTG E42 T0304

<0.075 mm particle content/% ≤1.0 0.08 0.01 0.56 JTG E42 T0310

According to the experiment results listed in Table 1, compared with the common
aggregate basalt, there is a 2.1% reduction in the crushing value of iron tailings, and the
compressive capacity improves. In addition, there is an increase of 5%~10% in the apparent
relative density and gross volume relative density. By contrast, the porosity decreases.
In principle, the theory reflects a higher strength and a better durability performance,
with all its indices meeting the requirements for road performance. Thus, iron tailings are
considered applicable as high-grade asphalt pavement aggregates.

2.1.2. Asphalt

The asphalt used in this experiment is SBS class I-C modified asphalt (Shandong
Luqiao Group Co., Ltd., Jinan, China), which meets the standard JTG E20-2011 [43] and the
requirements of the relevant tests through the detection of the technical indicators. The test
results are shown in Table 2.
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Table 2. Properties of SBS-modified asphalt.

Index Unit Technical Quality Requirements Result Test Method

Needle penetration (25 ◦C) mm 60–80 70.7 JTG E20 T0604
Needle penetration index PI - −0.4~1.0 0.46 JTG E20 T0604

Softening point (R and B) ◦C ≥55 68 JTG E20 T0606
Latency (5 cm/min, 5 ◦C) cm ≥30 51 JTG E20 T0605

Kinematic viscosity (235 ◦C) Pa.s ≤3 1.9 JTG E20 T0625
Resilient recovery (25 ◦C) % ≥65 79 JTG E20 T0662
Softening point difference ◦C ≤2.5 1.6 JTG E20 T0661

Residues after
RTFOT

Quality change % ≤±1.0 −0.07 JTG E20 T0610
Needle penetration ratio % ≥60 81 JTG E20 T0604
Residual latency (15 ◦C) cm ≥20 34 JTG E20 T0605

2.1.3. Fine Aggregate and Mineral Powder

The fine aggregates and mineral powders used to conduct the tests were made of
limestone. All provided by Shandong Luqiao Group Co., Ltd. As shown in Tables 3 and 4,
the technical specifications followed by the fine aggregates and mineral powders used in
these tests are all aligned with the current national standard of China, JTG E42-2005 [42].

Table 3. Properties of fine aggregate.

Index Unit Technical Quality Requirements Test Result Test Method

Apparent density g/cm3 ≥2.50 2.813 JTG E42 T0328
Angularity s ≥30 49.2 JTG E42 T0345

Sand equivalent % ≤3 1.37 JTG E42 T0334

Table 4. Properties of mineral powder.

Index Unit Technical Quality Requirements Test Result Test Method

Apparent density g/cm3 ≥2.50 2.717 JTG E42 T0352
Water content % ≤1 0.19 JTG E42 T0103

Particle size range
<0.6 mm

%
100 100

JTG E42 T0351<0.15 mm 90~100 94.3
<0.075 mm 75~100 80.3

Hydrophilic coefficient - <1 0.69 JTG E42 T0353
Plasticity index - <4 2.4 JTG E42 T0355

2.2. Mixture Design
2.2.1. Grading Design

The Marshall method was used to determine the proportion of basalt asphalt mixes
for the control group. Figure 1 shows the selected grades. Based on past experience, a
mineral aggregate gradation comparable to the mean value of the SMA-13 gradation range
was selected as the target mineral aggregate.

2.2.2. Optimal Asphalt Content Design

According to the requirements of the standard (JTG F40-2004) [44], the optimum
asphalt mix ratio of SMA-13 basalt asphalt mixture was determined. Taking the asphalt–
aggregate ratio of 6.0% as the base value, The void volume (VV), voids in mineral aggregate
(VMA), voids filled with asphalt (VFA), stability, and other indicators of four groups of
Marshall specimens with asphalt–aggregate ratios of 5.8%, 6.0%, 6.2%, and 6.4% were
measured, as shown in Table 5. The optimum asphalt content was calculated as 6.038%.
For the convenience of the test process, the optimum asphalt content of 6% was adopted in
subsequent experiments.
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Table 5. Basalt asphalt mixture test.

Grading
Type

Asphalt
Dosage/%

Void Ratio
VV/%

Gap Rate
VMA/%

Saturation
VFA/% Stability/kN

Gross Volume
Relative

Density/(g/cm3)

Theoretical
Maximum
Relative

Density/(g/cm3)

SMA-13

5.8 4.0 18.3 78.7 10.87 2.637 2.757
6.0 3.4 17.6 80.1 11.40 2.655 2.740
6.2 3.2 17.4 83.6 13.28 2.674 2.728
6.4 2.8 16.7 86.3 11.51 2.668 2.714

Technical
requirements - 3~4.5 ≥16.5 70~85 ≥6.0 - -

2.3. Experimental Design
2.3.1. Micro-Mechanical Analysis

To further explore the degree of matching between iron tailings as asphalt pavement
aggregates when microwave maintenance technology was applied, the mechanism of action
was demonstrated from a microscopic perspective. After the iron tailings were ground
and flaked, a Leica DM2700P high-magnification microscope lens was used to analyze
the internal structure through single-polarized and reflected-light observation. The iron
tailings were ground using a vibrating disc grinder, and then the specimens were sieved
using a sieve with 325 meshes. The physical phase analysis of the samples was performed
using a D8 ADVANCE X-ray diffractometer from Bruker, Germany [45].

2.3.2. Characterization of Iron Tailings

The microwave maintenance technology applied for asphalt pavement requires ag-
gregates to perform well in wave-absorption and temperature transfer properties. For this
reason, three groups of tests were conducted on the iron tailing granules.

A. The analysis was performed on the characteristics shown in terms of temperature
field variation. Basalt aggregate served as the control group. Two groups of minerals
(a. iron tailing, b. basalt), weighing 20 ± 0.5 g at room temperature (19 ◦C), were used
to ensure uniform microwave heating.

B. The analysis of effect caused by granule characteristics was performed on 20 ± 0.5 g
of three groups iron tailing with different particle sizes (c. 0–4.75 mm, d. 4.75–9.5 mm,
e. 9.5–16 mm). Uniform microwave heating was performed for comparison tests.
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C. The analysis of the effect caused by asphalt wrapping was performed. Half of the
iron tailings were wrapped, using basalt as the control group, and then placed in a
microwave heating environment. A thermocouple digital thermometer was used to
read the temperature of the exposed part of the iron tailings and the wrapped asphalt.

In the three groups of tests above, the microwave heating instrument used was the
Toshiba ER-SS20CNW. The main parameters are shown in Table 6. Sampling was performed
for 3 min at an interval of 30 s. The data were collected from groups A and B using a Xinsite
HTH8 infrared imager.

Table 6. Microwave heating apparatus main parameters.

Volume Rated Volt-
age/Frequency

Microwave
Input Power

Microwave
Output Power

Microwave
Frequency

Overall
Dimensions

(mm)

Oven Cavity
Size (mm)

Product Net
Weight

20L 220 V/50 Hz 1270 W 800 W 2450 MHz 440 × 330 × 259 306 × 304 × 206 1.2 kg

2.3.3. Road Performance and Temperature Field Pattern

Marshall specimens were designed using the volumetric method. With basalt asphalt
mixes as the reference group, the iron tailings of three different particle sizes (a. 4.75–9.5 mm;
b. 4.75–13.2 mm; c. 9.5–13.2 mm) were mixed to prepare the asphalt mixture specimens
according to the standard JTG E20-2011. To facilitate the continuation of the subsequent tests
and in case of test errors, the total number of specimens produced in the mix design and
production is shown in Table 7. Referring to the current Chinese standard JTG E20-2011, the
road performance of asphalt mixture was tested, and the specific test indexes and reference
protocols are as follows: the rutting (60 ◦C, 0.7 MPa, T0719-2011), low-temperature bending
(−10 ◦C, 50 mm/min, T0715-2011), water immersion Marshall (T0709-2011), freeze-thaw split
(T0729-2000), and three-wheel accelerated wear tests (0.7 MPa, 60 r/min). We plan to conduct
the DMA test in a future study. An HTH8 infrared thermal imager was used to measure
the variation in temperature rise and distribution of surface temperature within 2 min of the
admixtures given different particle sizes of iron tailings and basalt Marshall specimens. The
initial temperature in the four groups of Marshall specimens was restricted to the range of
19 ± 0.3 ◦C, and the sampling interval was set to 30 s to prevent the effect of temperature
heat transfer dissipation while ensuring that the experimental environment was airtight.
The Marshall specimen was separated from the microwave oven tray by placing isothermal
porcelain (poor wave absorption) at the bottom of the specimen. The collected infrared
thermal images of the specimen surface were processed using the HTH8 Tools software V2.0
to determine the average surface temperature of the specimen.

Table 7. Number of specimens.

Specimen Type Basalt Iron Tailings Iron Tailings Iron Tailings

Particle size (mm) - 4.75–9.5 4.75–13.2 9.5–13.2

Quantity 2 4 4 6

3. Results and Discussion
3.1. Physical Properties and Chemical Components

The physical properties of the iron tailings pellets were tested, as described in
Section 2.1.1. Figure 2 shows the findings of microscopic observation, and Figure 3 shows
the image of XRD diffraction for iron tailings.

The mineralogical composition of the iron tailings employed in our investigation,
as depicted in Figures 2 and 3, reveals a diverse range of minerals, including magnetite
(Mag), actinolite (Act), quartz (Qtz), chlorite (Chl), apatite (Ap), hematite (Hem), mica,
feldspar, and other constituents. Notably, magnetite emerges as the predominant metallic
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mineral, exhibiting commendable crystallization properties and constituting a substantial
proportion of the overall mineral content in the iron tailings. The prevalence of magnetite
in the mineral assemblage suggests pronounced magnetic characteristics within the iron
tailings. This observation leads us to infer that the material possesses inherent magnetic
properties, an attribute that holds significance in the context of microwave maintenance
technology. Specifically, owing to the abundance of magnetite, which has well-defined
crystalline structures, the iron tailings are expected to exhibit notable wave absorption
capabilities within a microwave environment.
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Consequently, our findings support the contention that iron tailings can serve as a
preferred aggregate for microwave maintenance technology. The magnetic properties
conferred by the abundance of magnetite imply the potential for effective wave absorption,
positioning iron tailings as a viable and advantageous choice for applications in microwave-
assisted pavement maintenance. This aligns with the premise that the composition and
characteristics of iron tailings make them conducive to facilitating microwave-induced
repairs in asphalt surfaces.
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3.2. Analysis of Microwave Properties of Iron Tailing Pellets
3.2.1. Analysis of Temperature Change Characteristics

Figure 4a–f show the heating state of iron tailings with basalt in a microwave environ-
ment in the group A tests in Section 2.3.2. The confidence level (95%) for the presented data
is represented as “e = 0.95”.
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The examination of Figure 4a–f elucidates the material absorption heating states
under microwave exposure. When subjected to a 30 s microwave treatment at an identical
initial temperature, the iron tailings demonstrated a significant temperature elevation
exceeding 61 ◦C, contrasting with the marginal increase of approximately 10 ◦C observed
in basalt aggregates. Subsequently, following a 60 s exposure, the central temperature of
the iron tailings surpassed 170 ◦C, marginally exceeding the temperature at the aggregate’s
periphery by 155 ◦C. Remarkably, the temperature gradient remained relatively constant,
and the radial temperature evolution within the iron tailings exhibited a consistent increase
from the interior to the exterior. This behavior can be attributed to the rapid movement
of dielectric molecules within the iron tailings induced by the microwave electromagnetic
field, facilitating a microscopic and uniform heating pattern throughout the spatial entity.

Further observations revealed that the temperature of the iron tailings exceeded 300 ◦C,
a notable contrast to the modest rise to approximately 80 ◦C observed in ordinary basalt.
This discrepancy underscores the remarkable efficiency of iron tailings in energy utilization
during microwave heating, with the temperature of the iron tailings reaching 3–4 times
that of basalt.

A comprehensive analysis of these results supports the assertion that iron tailings
exhibit elevated energy utilization efficiency, swift absorption of microwave heating, and
uniform temperature distribution throughout the microwave exposure process. This collec-
tive behavior significantly abbreviates the required heating duration, thereby enhancing
the overall construction efficiency of microwave-assisted pavement maintenance. The
observed temperature profiles underscore the potential of iron tailings as an efficient and
effective aggregate for applications in microwave-based repair technologies.

3.2.2. Analysis of the Influence of Granule Characteristics

Figure 5 shows the test data of group B, as described in Section 2.3.2.
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According to experimental results presented in Figure 5, the particles with different
sizes behave in the same way in terms of heating by microwave absorption, The reason
is that the internal structure of iron tailings is proportional to the particle size, which
makes the impact of particle size on absorption and warming performance less apparent.
However, as particle size increases, the heating rate gradually decreases. The heating
efficiency is highest for small particles (0–4.75 mm), reaching 113 ◦C/min, which is about
5% higher than that of medium-sized particles and 12% higher than that of coarse particles.
The dielectric constant of the material is constant, and the temperature difference is due
to the increase in particle size, which reduces the effective area of aggregate subjected to
microwave radiation, resulting in the decrease in its microwave absorption capacity and the
decrease in the heating rate. In actual construction, we should comprehensively consider
the particle size distribution and the applicability of microwave conservation, and choose
the best proportion.

3.2.3. Analysis of the Impact of Bitumen-Coated Iron Tailings

There is also a significant difference in the capacity of wave absorption between asphalt
and aggregate in the presence of microwaves. To explore the performance of the aggregate
in heat transfer to asphalt during construction, the group C tests described in Section 2.3.2
were analyzed. Figure 6 demonstrates the impact of heating basalt and iron tailings on the
heat transfer to asphalt.

According to the comprehensive analysis shown in Figure 6, there is no significant
difference in temperature between basalt aggregates and asphalt. However, the overall
pace of temperature rise is slow, and the temperature difference shows consistency. Upon
analysis, it can be determined that this is due to the fact that asphalt and basalt both contain
very few polar metal molecules, thus leading to a slow warming pace. The final asphalt
temperature reached a low of 77.9 ◦C. The comparison between iron tailings and basalt
shows the characteristics of extremely strong wave-absorption warming, with a significant
difference between asphalt and aggregate temperatures. However, asphalt temperature
also shows regular growth. At 30 s, when the asphalt was in an optimal heating load state,
its temperature reached about 60% of the surface temperature of iron tailings. This is due to
the initial heating conditions, in which a small number of asphalt’s polar molecules interact
with the basalt surface, enhancing the magnetite and wave absorption heating activity.
This results in relatively fast asphalt warming. Subsequently, the asphalt temperature
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reached about 45% of the temperature of iron tailings. Considering the analysis described
in Section 3.2.1, it is known that this is because the temperature field of iron tailing is
radiating from the inside out. Therefore, the temperature difference between asphalt and
basalt gradually stabilizes. However, the asphalt temperature increased far more rapidly
than the wrapped basalt. It reached 167.4 ◦C when heated for 3 min, which is about two
times that of the wrapped basalt.
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Iron tailing shows excellent heat transfer performance to asphalt, which meets the
requirements of microwave heating maintenance technology for aggregate. In spite of
this, this is only a preliminary judgment made on a single aggregate. In the next phase,
it is necessary to explore the actual pavement structure by considering the state of the
microwave heating law of authenticity.
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3.3. Asphalt Mixture Temperature Field Characteristics Study

Further exploration of the response state of asphalt pavement to microwave heating
technology was necessary to provide the appropriate temperature for different construction
conditions and pavement diseases. The specific experimental results are given in Figures 7–9.
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As shown in Figures 7–9, the Marshall specimens mixed with different grades of
iron tailings showed significant warming characteristics. The basalt specimen surface
heating trend was relatively slow because basalt contains fewer metal mineral components
and polar molecules, leading to its weak microwave absorption ability. Consequently,
the heating phenomenon was less pronounced. Additionally, the lower efficiency of heat
transfer results in a surface heating rate that is much lower than that of the specimen doped
with iron tailings. The specimens mixed with 4.75–9.5 mm iron tailings reached 117 ◦C after
heating for 2 min, and the surface temperature was relatively uniform. The temperature
of the specimens mixed with 9.5–13.2 mm iron tailings reached the maximum value of
134 ◦C, but the surface temperature distribution was not uniform due to the slow increase
in the temperature of fine aggregates, with an average surface temperature of 116.8 ◦C. The
specimens mixed with 4.75–13.2 mm iron tailings had a stable warming trend and the most
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uniform surface temperature. After 2 min, the average temperature reached 126.0 ◦C, and
the average surface temperature increase rate reached a maximum value of 0.892 ◦C/s. This
proved that the higher the content of wave-absorbing aggregates, the faster the warming
rate. From the temperature rise curve, the temperature rise of the blended specimens with
fine gradation and 4.5–13.2 mm blended specimens was more stable.
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Combined with the analysis of the temperature rise characteristics of iron tailings
pellets in Section 3.2, it has been demonstrated that the finer the blended aggregate, the
more stable the temperature rise tends to be and the more uniform the surface temperature
distribution is. Although the heating effect of the basalt specimen was not as good as
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that of doped specimen, it also shows good heating characteristics in the microwave
environment in combination with the usual traditional heating test, which proves that the
microwave heating technology has great advantages in the road thermal regeneration and
the eradication of pavement diseases.

3.4. Road Performance of Iron Ore Tailing Asphalt Mixes

To investigate the road performance of the iron tailing asphalt mixture, the test speci-
mens were prepared by mixing and replacing the iron tailings of different particle sizes, as
described in Section 2.3.3. The high temperature stability was evaluated using the dynamic
stability index in a high-temperature rutting test. The low-temperature performance was
evaluated using low-temperature bending maximum tensile strain in −15 ◦C, the water
stability was evaluated using residual stability and the TSR index in an immersion Marshall
test and the freeze-thaw splitting test, and the wear resistance performance was evaluated
using the dynamic friction tester (DFT) in a three-round accelerated loading test. The test
results are shown in Figure 10a–e.

Materials 2024, 17, x FOR PEER REVIEW 14 of 19 
 

 

 

6324
6851

6533

5878

SMA-13(4.75-9.5)

SMA-13(4.75-13.2)

SMA-13(9.5-13.2)

SMA-13(Basalt)
0

1000

2000

3000

4000

5000

6000

7000

8000

D
yn

am
ic

 st
ab

ili
ty

/(t
im

es
/m

m
)

 
(a) 

2535

2857
2649

2411

SMA-13(4.75-9.5)

SMA-13(4.75-13.2)

SMA-13(9.5-13.2)

SMA-13(Basalt)
0

500

1000

1500

2000

2500

3000

3500

M
ax

im
um

 te
ns

ile
 st

ra
in

/μ
ε

 
(b) 

Figure 10. Cont.



Materials 2024, 17, 372 14 of 18Materials 2024, 17, x FOR PEER REVIEW 15 of 19 
 

 

SMA-13(4.75-9.5)

SMA-13(4.75-13.2)

SMA-13(9.5-13.2)

SMA-13(Basalt)
0

5

10

15

9.63 9.34 9.58 9.77
8.94

8.27
8.81 9.26

92.83

88.54

91.96
94.78

 MS  MS1  MSO

St
ab

ili
ty

/k
N

60

64

68

72

76

80

84

88

92

96

100

Re
sid

ua
l s

ta
bi

lit
y/

%

 
(c) 

0.822 0.801 0.814 0.837

0.695
0.646 0.677

0.734

84.55

80.65
83.17

87.69

SMA-13(4.75-9.5)

SMA-13(4.75-13.2)

SMA-13(9.5-13.2)

SMA-13(Basalt)
0.0

0.2

0.4

0.6

0.8

1.0

1.2
 RT1  RT2  TSR

A
ve

ra
ge

 te
ns

ile
 st

re
ng

th
/M

pa

50

60

70

80

90

Fr
ee

ze
-th

aw
 sp

lit
tin

g 
str

en
gt

h 
ra

tio
/%

 
(d) 

0 5 10 15 20 25 30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

0.46

0.48

dy
na

m
ic

 fr
ic

tio
n 

co
ef

fic
ie

nt

Abrasion times/×104

 Basalt
 Iron tailings

 
(e) 

Figure 10. Iron tailings road performance. (a) Dynamic stability results of different mixtures.
(b) Maximum bending tensile strain. (c) Water immersion Marshall test. (d) Freeze-thaw splitting
test. (e) Three-round accelerated loading test.
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Figure 10a–e show that:

(1) The asphalt mixture supplemented with the iron tail ore with particle sizes of
4.75–13.2 mm performs best in high-temperature stability, and the dynamic stability
reaches 6851 times/min, which is 16.55% higher than basalt. This is because iron
tail ore outperforms ordinary basalt in angularity and roughness, which meets the
requirements of the road performance. Therefore, it is applicable in the construction
of pavement that the iron tailing granular material with a wide range of gradation
and good grade should be selected for actual construction.

(2) The asphalt mixture supplemented with iron tail ore demonstrates greater low-
temperature stability. The critical strain caused by damage is 1.05~1.18 times that of
basalt, and low-temperature stability is improved compared with lighter basalt binder
asphalt components. As a result, the flexibility of the asphalt mixture is enhanced.
Therefore, the iron tail ore asphalt mixture meets the road performance requirements
on low-temperature stability.

(3) According to the test results, the incorporation of iron tail ore affects the water stability
of asphalt mixes to some extent, and the residual stability of iron tail ore asphalt mixes
with a particle size of 4.75–13.2 mm is reduced to 88.54%, which is 6.58% lower than
basalt. In addition, the ratio of splitting strength to freeze-thaw splitting strength is
reduced by 8%, which is because the quartz and mica content in iron tail ore is more
comparable to basalt, and the degree of crystallization is higher. Despite a reduction
in the water stability of the iron tail ore asphalt mixture, it still meets the standard JTG
F40-2004, has a residual stability over 80% in the Marshall test, and even meets the
requirements of the wet area of not less than 85%. Therefore, the iron tail ore asphalt
mixture meets the requirements of construction on water stability and can be applied
to road construction.

(4) The peak friction coefficient of iron tailing is 0.47, which is a slight increase compared
with the 0.44 of basalt. It peaked and then declined, showing a trend of gradual
stabilization until 150,000 iterations. In addition, the difference between these two
friction coefficients stabilized at about 0.02. In contrast, the iron tailing ore asphalt
mixture continued demonstrating better anti-slip properties than those of the basalt
asphalt mixture, which meets the relevant requirements.

According to a comprehensive analysis of the road performance of iron tailings asphalt
mixtures, iron tailing blending reflects the variability of road performance. However, it
should be noted that the results meet the current construction specifications for higher
asphalt pavement requirements (JTG F40-2004). It is demonstrated that iron tailing can
replace basalt as an asphalt aggregate for use on high-grade road surfaces.

4. Conclusions

In this paper, a low-cost and simple-process iron tailing asphalt aggregate is proposed,
which can provide the corresponding temperature field for different pavement diseases
and construction needs. By studying the properties of iron tailing pellet components, the
law of wave absorption, and temperature rise, asphalt mixture design and temperature
field distribution have been determined. The main conclusions obtained are as follows:

1. Iron tailing aggregate can be used for the paving asphalt mixture of high-grade
pavement. Iron tailings contain a large amount of metallic mineral components (i.e.,
magnetite) and have a certain degree of magnetic properties and wave absorbing
ability in microwave maintenance technology.

2. The temperature field of iron tailings radiates from inside out, and there is a balance
reached in heat transfer. The asphalt can be dissolved before rapid precipitation. The
particle size of iron tailings was inversely proportional to the wave-absorbing heating
rate. Moreover, heating efficiency is the highest for small-sized particles (0–4.75 mm),
reaching 113 ◦C/min.

3. The iron tailing asphalt mixture supplemented with iron tailings (4.5–13.2 mm)
meets long-term road performance requirements. Compared with basalt, the high-
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temperature dynamic stability is improved by 16.55%, the maximum low-temperature
tensile strain reached 1.18 times the original level, and there was a reduction in water
stability, despite meeting the relevant requirements.

4. The specimen mixed with iron tailings with particle sizes of 4.75–13.2 mm displayed a
consistent warming trend and uniform distribution of surface temperature, which can
provide different temperature response states for different pavement diseases.

This study is currently in the laboratory test stage. Because the actual generation
mechanism of road disease and maintenance environment are complicated, the onsite test
is of great necessity. Therefore, in the next step, we will lay a certain length of experimen-
tal sections in different environments to investigate and verify the effects of microwave
maintenance on iron tailing asphalt mixtures and analyze the degree of asphalt aging.
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