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Abstract: In the modern theory of compressed concrete elements, the most attention is paid to
longitudinal deformations, whereas transverse ones are rarely considered and just within Poisson’s
coefficient limits (i.e., elastic concrete behavior in the transverse direction). However, transverse
deformations significantly develop beyond the limits corresponding to Poisson’s coefficient, where
they lead to longitudinal crack initiation and development. In-depth experimental and numerical
investigations of transverse deformations in the inelastic stage showed that it is necessary to consider
crack propagation. The present study proposes simultaneous consideration of longitudinal and
transverse deformations, as well as the appearance of cracks and their widths and depths. This
allowed us to obtain a complete compressed concrete element behavior pattern at all performance
stages in two types of limit states (based on longitudinal and transverse deformations). Consequently,
new ultimate limit states by the depth and width of cracks caused by transverse deformations are
proposed to be included in modern design practices and codes.

Keywords: experimental investigations; numerical investigations; transverse deformations; limit
states; crack width; crack depth; compressed concrete; stress–strain diagram

1. Introduction

A history of compressed concrete investigation shows that, in the first research
steps [1,2], in the 1970s and 1980s [3–6], and up to the present time [7–9], the main focus
has been on deformations developing parallel to the load direction. Studies of uniaxially
compressed concrete specimen behavior in the transverse direction are usually limited to
the elastic performance stage. In this stage, transverse deformations are generally deter-
mined by Poisson’s coefficient [10–13]. Although many experimental investigations have
been carried out to study concrete specimen behavior in the longitudinal direction, few of
them have focused on transverse deformations out of the elastic limits. For example, in one
study, a criterion for splitting crack formation and a constitutive model was presented to
predict lateral deformation in confined concrete [14]. However, confined concrete is beyond
the scope of this paper.

The authors have previously demonstrated the importance of using transverse de-
formations in addition to longitudinal ones for analyzing compressed concrete specimen
behavior both in elastic and inelastic stages [15]. Seven 15 × 30 cm cylindrical specimens
were tested under a constant loading rate of 0.2 MPa/s. The obtained results demonstrated
the efficiency of using transverse deformations to reveal inelastic concrete behavior when it
is not evident from longitudinal deformation analysis only.

Transverse deformations also more accurately indicate steel-fiber-reinforced high-
strength concrete inelastic performance. Experimental results obtained previously by
testing fourteen cylindrical specimens with 15 cm diameters and 30 cm heights subjected
to static uniaxial loading confirmed the importance of using transverse deformations for
the analysis of compressed concrete behavior.
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Sixty cylindrical specimens with 10 cm diameters and 20 cm heights made of self-
compacting normal-strength concrete with fine and coarse recycled concrete aggregate
were subjected to monotonic loading, as well as to loading–unloading tests with increasing
load magnitudes [16]. The obtained experimental data demonstrate the significantly more
pronounced inelastic behavior of specimens in the transverse direction, which is evident
from the stress–transverse deformation diagrams.

Using circumferential strains for the deep analysis of a rebar pull-out test on concrete
specimens enabled the enhanced understanding of bonding resistance mechanisms [17].
For this purpose, twelve cylindrical specimens with diameters of 100, 150, and 200 mm
and heights of 200 mm were tested. The obtained experimental results allowed for the
development of a new theoretical three-dimensional model of specimen behavior during
pull-out tests. It should be noted that, in this investigation, transverse cracks caused by
longitudinal tensile deformations were studied, while in compressed concrete elements,
longitudinal crack opening is caused by transverse deformations.

An experimental study on transverse deformations in prestressed reinforced concrete
(RC) two-layer beams (TLBs) with spans of 8 m was conducted in [18]. One of the aims
of this study was to improve concrete theory related to the Poisson ratio in the elastic and
inelastic stages. This research was focused on concrete behavior in the compressed zone
of bending RC elements. As a result, a new limit state for such elements was obtained. It
allows for a more accurate prediction of crack development. This research was preceded
by a long-term experimental program that included the investigation of 0.7 m long single-
supported; 3 m long single-supported; continuous 4 m long two-span; and pre-stressed
3 m long TLBs. It should be noted that, in all these studies, transverse deformations were
considered valuable indicators of effective concrete performance.

The available literature on the initiation and development of cracks in compressed
concrete elements is rather limited. Mostly, crack width is considered the main parameter
of limit state determination in bending RC elements [19]. Research on the relationship
between crack width and depth has been conducted to investigate the importance of crack
width implementation in RC element design; however, only the tensile zone of RC bending
beams has been analyzed [20]. A study aimed at obtaining a constitutive theoretical model
of compressed concrete behavior was conducted based on the existing experimental data,
investigating the multiaxial stress states of cylindrical specimens under uniaxial, biaxial,
and triaxial loading [21]. Different from the approach presented in this paper, transverse
deformations were presented only as a part of the general damage process, which was
modeled as a function of volumetric expansion and a degree of restraint provided by
boundary conditions.

As one of the attempts to fill this gap, a theoretical model of longitudinal crack
development in compressed concrete cylindrical specimens was proposed in [15]. This
model allows to predict crack development during the entire loading process and includes
the following three main stages:

– The stage before crack initiation corresponding to linear specimen behavior, εc trans ≤
εc trans ul , where εc trans is the transverse tensile deformation value, and εc trans ul is the
ultimate elastic transverse tensile deformation;

– The stage between εc trans ul—which determines the initiation of cracks—and the
twofold ultimate elastic transverse tensile deformation value, 2εc trans ul (this stage
corresponds to nonlinear specimen behavior);

– The stage of the specimen’s ultimate limit state (ULS), when transverse tensile defor-
mations exceed 2εc trans ul (this stage corresponds to crack width development).

The above-described stages were described in previous experimental research [15].
Obviously, in the first stage, the cylindrical specimen section has an original undamaged
circular shape. In the second stage, longitudinal cracks appear, and their depth increases
under the external load. As a result, experiments show that an internal (undamaged)
cylindrical core is formed.
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The core section area before failure is equal to a part of the initial total cross-sectional
one and can be calculated using the structural phenomenon [22], which determines the
compressed concrete element limit state in the longitudinal direction. It was theoretically
predicted and experimentally confirmed in [15] that, after reaching the ULS, the area of the
specimen’s inner core is approximately half of the initial value. This experimental data will
be used in the present study for a numerical step-by-step analysis of crack width and depth
development in compressed concrete elements.

Although this study was performed for static loading, its outcomes can be used
to interpret the reasons for a residential building collapse in Mexico during a strong
earthquake in 2017 [23]. Transverse deformations that appeared in the entrance story
columns at the beginning of the earthquake (the first 8–10 s) and developed during the
earthquake (36 s) seemed to be the main reason for the collapse. As a result, longitudinal
cracks developed in columns at the slab–column joint.

2. Research Aims, Scope, and Novelty

The main aim of the present study is to carry out a numerical step-by-step analysis
of crack width and depth development due to transverse deformations in compressed
concrete specimens under uniaxial loading. This study is based on the existing theoretical
and experimental data on transverse deformation development [15]. Using this data and
effective numerical methods allows for the complex analysis of compressed concrete behav-
ior, which includes both longitudinal and transverse deformations, as well as longitudinal
crack width and depth. This analysis resulted in a more accurate determination of crack
width and depth at various loading stages. It has enabled the identification of a new
parameter for compressed concrete element limit state definition. Additionally, a graph
representing specimen behavior simultaneously in both directions is proposed. This novel
approach became possible after proposing the “Concrete constitution”, which is theoret-
ically based on the structural phenomenon and has been experimentally confirmed [22].
The proposed combination of theoretical and numerical modeling with experimental vali-
dation allows for a better understanding of concrete performance under various loading
conditions. The research outcomes will enable us to improve the theory of compressed
concrete elements in terms of limit states by transverse deformations and form a basis for
the further development of existing design methods, as well as modern codes.

3. Background for Transverse Deformation Investigations
3.1. Longitudinal Deformations as a Background for Transverse Ones

A theoretical model for compressed concrete stress–strain relationships (including
descending branch) without empirical coefficients is proposed below (Figure 1, σc − εc
axis). This model represents the above-mentioned “Concrete constitution”. The structural
phenomenon [22] is one of the basic principles of this model and allows us to find the
following features of the stress–strain diagram for concrete classes of up to C60 [24]:

– Maximum value of elastic deformations, εc el = 0.5‰ (see point 1 in Figure 1);
– Deformation, εc el ul = 1‰, corresponding to the limit elastic potential of concrete (see

point 2 in Figure 1);
– Ultimate elastic stress, σc el = 0.5 fc (see point 1 in Figure 1);
– Diagram’s descending branch ends at σc ul = 0.5 fc, which means that the descending

branch is symmetric to the ascending one (see point 4 in Figure 1).

Other parameters determining compressed concrete behavior in the longitudinal
direction are defined as in modern codes [24,25]:

εc1 is the compressive strain in concrete at peak stress, equal to 2‰ (see point 3 in
Figure 1);
εcu is the ultimate compressive strain in concrete, equal to 3.5‰.
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crete ULS in the longitudinal direction. 
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used: 𝑓  is concrete tensile strength in the transverse direction under longitudinal compression, 
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imens were divided into two series and marked as Sp3.1, Sp3.2, Sp3.3, Sp4.1, Sp4.2, and 
Sp4.3. The concrete strength corresponded to classes C35/45 (ready-mix) and C20/25 (la-
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cies [22], are used for numerical analysis, which is based on the known theoretical de-
pendence (see Figure 1). A comparison of the corresponding experimental and numerical 
data using 𝜎 − 𝜀   diagrams is presented in Figure 2. The results of comparing the 

Figure 1. Compressed concrete stress–strain diagram: 1—the limit of the concrete section’s elastic
stage; 2—the limit elastic potential of a section; 3—concrete strength; 4—the final point of the de-
scending branch; 5—the border between nonlinear transverse deformation and compressed concrete
ULS in the longitudinal direction.

Compressed concrete specimen behavior in the transverse direction is also presented
in Figure 1 (see σc − εc trans axis). According to the diagram, the following parameters
are used:

fct is concrete tensile strength in the transverse direction under longitudinal compres-
sion, corresponding to the appearance of longitudinal cracks in the specimen;
εc trans ul is the ultimate elastic transverse strain determined by Poisson’s coefficient
and is equal to 0.1‰ [15], which is approximately 20% of the corresponding longitudi-
nal deformation value.

A detailed description of the main stages of transverse deformation development is
provided in Section 4, below.

An experimental investigation of six cylindrical specimens subjected to axial loading
was carried out to obtain a complete stress–strain relationship for normal-strength con-
crete [22]. The main aim of the investigation was to verify the theoretical stress–strain
model, which forms the basis of the proper analysis of transverse deformations. The
specimens were divided into two series and marked as Sp3.1, Sp3.2, Sp3.3, Sp4.1, Sp4.2,
and Sp4.3. The concrete strength corresponded to classes C35/45 (ready-mix) and C20/25
(laboratory-produced) for each series. The obtained data showed good convergence with
the theoretical data; therefore, it was used for further numerical investigation.

3.2. Numerical Investigation of the Stress–Strain Model Based on Experimental Results

The available experimental values of stresses and strains, as well as their depen-
dencies [22], are used for numerical analysis, which is based on the known theoretical
dependence (see Figure 1). A comparison of the corresponding experimental and numerical
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data using σc − εc diagrams is presented in Figure 2. The results of comparing the numerical
and experimental potential values of the stress–strain diagrams are presented in Table 1.
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Table 1. Concrete elastic and plastic potentials and relationships between them.

Specimen
Elastic Potential, kPa

D, %
Plastic Potential, kPa

D, %
UNum

el
UNum

pl

Average
UNum

el
UNum

pl
Numerical Experimental Numerical Experimental

Sp3.1 30.86 32.87 6.13 54.58 65.81 17.06 0.52

0.51

Sp3.2 37.27 38.72 3.74 75.62 63.13 16.52 0.49
Sp3.3 36.09 36.69 1.64 72.07 71.95 0.17 0.50

Sp4.1 18.38 18.87 2.60 35.62 39.54 9.91 0.52
Sp4.2 16.50 17.14 3.73 31.90 37.54 15.02 0.52
Sp4.3 20.68 21.72 4.79 40.41 37.07 8.27 0.51

Note: UNum
el and UNum

pl are concrete elastic and plastic potentials, calculated based on numerical results; UExper
el

and UExper
pl are concrete elastic and plastic potentials, calculated based on experimental results; D is relative error.

As is evident from Figure 2, there is a good agreement between the experimental
and numerical σc − εc relationships. Values of relative error, D, presented in Table 1,
also show proper convergence between experimental and numerical data for the elastic
potentials, describing the elastic stage of concrete behavior. Considering the inelastic stage,
the maximum value of the relative error reaches 17%, which is satisfactory for materials like
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concrete. A comparison of the relationship between UNum
el and UNum

pl , obtained from the
experimental results and equal to 0.51, also confirms the structural phenomenon concept.

3.3. Complex Comparison of Theoretical, Experimental, and Numerical Results

Stress–strain diagrams, based on the obtained numerical data, as well as on previ-
ously presented theoretical (see Figure 1) and experimental [22] stress–strain models, are
combined in Figure 3. This approach enables a complex comparison of the results and
leads to a more accurate identification of compressed concrete specimen performance in
the longitudinal direction.
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concrete.

The obtained results show high convergence in all three graphs. Therefore, based on
these data, further consideration of transverse deformations as a function of longitudinal
ones is proposed.

4. Step-by-Step Analysis of Concrete Specimen Longitudinal Crack Width and Depth
Based on Transverse Deformations
4.1. Background

As mentioned above, Figure 1 presents the performance of compressed concrete in
both the longitudinal and transverse directions. It shows the relationship between the
following three dependencies: longitudinal and transverse strains, εc long and εc trans, and
compression stresses, σc. Therefore, it is a 3D diagram, where only two main projections
are presented for better clarity. According to Figure 1, the nonlinear concrete behavior in
the transverse direction is presented by the ascending branch of the diagram, which starts
at fct and continues up to point 5, corresponding to the 2εc trans ul deformation value (see
Figure 1, σc − εc trans axis). This stage determines the longitudinal crack-opening process.
After reaching concrete compressive strength, fc (see point 3 in the σc − εc axis and point
5 in the σc − εc trans axis), further crack development corresponds to the specimen failure
process (the descending branch in longitudinal stresses, εc el = 2.0 − 3.5‰).

The described model of compressed concrete specimen behavior in the transverse
direction was experimentally confirmed in [15]. Additionally, experimental investigations
of specimen behavior were carried out in transverse and longitudinal directions in [22].
Both elastic and inelastic stages (including concrete post-peak response) were analyzed.
Transverse deformations were measured with two strain gauges (SGs) with 60 mm bases
located in the specimen central zone. To measure longitudinal deformations, eight 30 mm
and 60 mm long SGs and two longitudinal, highly accurate transducers (HATs) with 50 mm
measurement bases were used. Additionally, four linear displacement transducers (LDTs)
with 50 mm strokes were placed between the testing machine loading plates to obtain an
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accurate descending branch for the stress–strain diagram. A general view of the test setup
is shown in Figure 4.
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Figure 4. Test setup: 1—cylindrical concrete specimen; 2—transverse SG sensors; 3—longitudinal
SG sensors; 4—HAT devices; 5—LDT devices for measuring displacement between testing machine
plates, following [22].

According to the obtained experimental data, the development of transverse deforma-
tions causes longitudinal cracks in compressed concrete cylindrical specimens. The typical
failure pattern with vertical cracks and the internal undamaged cylindrical core, described
above, is shown in Figure 5 (following [22]).
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Figure 5. Typical pattern of a cracked specimen: (a–f)—crack propagation after specimen failure
(view from all sides); (g)—failure pattern of the specimen upper surface.
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The obtained experimental results for transverse and longitudinal deformations are
used in further step-by-step analysis.

4.2. The Step-by-Step Analysis: Description and Application

The analysis is based on crack width and depth step calculations, wi and hi (i = 1 . . . 5
is a step number), defining the undamaged circular element width in the cylindrical
specimen section, ti, in each calculation step (Figures 6 and 7). Figure 6 presents the
calculation algorithm diagram. Schemes of the performed analysis are demonstrated in
Figure 7.
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(b) step 2—the first circle element calculation; (c) final step—the last circle element calculation when
the crack width tends to zero.

As shown in the algorithm diagram (see Figure 6), the calculation runs in reverse
order, starting with the specimen limit state (σc = fc and εc = εc1), when the section area of
the specimen’s inner undamaged core is equal to half of its initial value [15] (see cell 11 in
Figure 6; see also Figure 7a). The calculation ends at the stage corresponding to the crack
initiation because of transverse deformations (the end of the specimen’s elastic behavior)
when the following parameters are obtained:

– The crack width is theoretically equal to zero;
– The experimental value of the transverse deformation corresponds to concrete tensile

strength in the transverse direction, fct [26] (cells 19–21 in Figure 6).

The following hypotheses are proposed by the authors as a basis for the step-by-step
analysis:

1. The crack shape in the horizontal section is an isosceles triangle (see Figure 7).
2. Each calculation step of the crack width, ∆w, and depth, ∆h, is determined as a

function of longitudinal deformation development.
3. The triangle angles, α and β, remain constant from step to step.

At the initial calculation stage, preceding calculation step 1, a certain longitudinal
compression strain step is selected equal to εc long i/1.44 (1.44 is selected to obtain an
integer number of calculation steps) based on the experimental limit value, εc1 (see cell
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2 in Figure 6). This determines the calculation steps number, n, obtained using geometric
progression (see cell 3 in Figure 6):

n = 1 +
log εc el

εc1

log 1
1.44

(1)

For example, for the limit and maximal elastic longitudinal deformation values,
εc1 = 2‰ and εc el = 0.5‰, respectively; the number of steps is n = 5. Further, given
the longitudinal strain experimental values, εc long, the corresponding transverse strains,
εc trans, are taken (see cell 6 in Figure 6). Thus, the basic calculation parameters are deter-
mined (see cells 1–3 and 6–7 in Figure 6).

At the next stage, the first step of analysis (i = 1 ) starts (see cells 8, 10, and 12 in
Figure 6 and also Figure 7a). At this step, the specimen limit state by transverse deforma-
tions is considered. In the beginning, the maximum specimen crack width, w1 = wmax,
is calculated using a known expression (Equation (5) in [26], describing concrete tensile
behavior in different stress–strain conditions). The crack width calculation is based on
the ultimate transverse strains, εc trans ul , and the transverse strain corresponding to the
maximal crack width at peak stress, εc trans max (see cells 7–9 in Figure 6). Next, the crack
depth, h1 = hmax, is calculated: it is equal to the difference between the specimen section
radius before loading, R, and after reaching the limit state in the longitudinal direction,
r (which is equal to the undamaged core radius) (see cells 10 and 11 in Figure 6 and also
Figure 7a). After that, triangle angles α and β are calculated based on hypothesis 1, which
determines the crack shape in the horizontal section as an isosceles triangle (see cells 12 and
13 in Figure 6 and also Figure 7a).

The second step of the analysis (i = 2 ) starts with the calculation of the crack width,
w2 < w1 (because of the calculation’s reverse order) using hypothesis 2 (see Figure 7b and
cells 14 and 15 in Figure 6). According to the hypothesis, the incremental change in crack
width is assumed to be twice the longitudinal strain change (according to the structural
phenomenon [15]). In general, the expression for crack width calculations is

wi = wi−1/(2·1.44) (2)

Next, the crack depth, h2 < h1, is calculated based on hypothesis 3 (see cells 16 and
17 in Figure 6 and also Figure 7b). After that, the width of element 1, t1, is calculated—
it is equal to the difference between the crack depths from steps 1 and 2 (see cell 18 in
Figure 6 and also Figure 7b). In general, the equation for element width calculation has the
following form:

ti−1 = hi−1 − hi (3)

The process described in step 2 is repeated (n − 1) times. The step-by-step analysis
ends with step n (see Figure 7c), at which point, the calculated crack width is theoretically
equal to zero, and the transverse strain value is equal to εc trans ul (see cells 19–21 in Figure 6).

4.3. Results and Discussion

As described previously, the existing experimental longitudinal and transverse de-
formations for the compressed concrete cylindrical specimen [22] are used in the present
step-by-step analysis. Relationships between stresses and longitudinal strains and stresses
and transverse strains (including basic points 1, 3, 4, and 5, described previously in Figure 1)
are shown in Figures 8 and 9, respectively.
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To obtain a more accurate representation of compressed concrete behavior, we propose
combining the relationships shown in Figures 8 and 9 (Figure 10). The obtained diagram
demonstrates the relationship between the following three dependencies: longitudinal
and transverse strain development in a concrete cylindrical specimen (σc − εc long and
σc − εc trans axis) and the relationship between them (εc trans − εc long axis) as a function of
compression loading.
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Table 2 presents selected experimental data for the initial step-by-step analysis stage.
The number of calculation steps is selected to be equal to five, where step 1 corresponds to
the concrete limit state. Additionally, the modulus of deformability, Ec, is calculated for
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each step based on the experimental data presented in Table 2. The result obtained in step 1
demonstrates a twofold decrease in the modulus magnitude after reaching peak stress
(from 36.1 to 18 MPa), which corresponds to the above-mentioned structural phenomenon.

Table 2. Basic experimental data.

Step Number σc, MPa εc long, ‰ Ec, MPa εc trans, ‰

1 38.96 2.16 18.0 1.703
2 23.88 0.72 33.1 0.230
3 30.63 1.04 29.5 0.373
4 23.88 0.72 33.1 0.230
5 18.05 0.50 36.1 0.156

The experimental data presented in Table 2 are used for the step-by-step numerical
analysis. According to the above-described analysis algorithm (see Figure 6), the following
parameters of compressed concrete behavior are calculated at each step: crack width, wi;
crack depth, hi; and element width, ti. The obtained results are presented in Table 3. The
table includes a comparison of crack widths, wTheor and wExper, calculated using theoretical
deformation values [26] and experimental ones (see Table 2), respectively. A graphical
representation of the stress and crack width relationship is shown in Figure 11.

Table 3. Numerical results of the step-by-step analysis.

Step Number wTheor, mm wExper, mm D, % h, mm t, mm

1 0.85 0.73

14.02

22.00 14.36
2 0.30 0.25 7.64 4.99
3 0.10 0.09 2.65 1.73
4 0.04 0.03 0.92 0.60
5 0.01 0.01 0.32 0.32
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Figure 11. Stresses vs. crack widths due to transverse deformations: A—step 1; B—step 2; C—step 3;
D—step 4; E—step 5.

In step 1, the crack width corresponds to the element limit state. In this case, the
calculation of wTheor is based on transverse deformation, εc trans max: 2 − 0.2 = 1.8‰, where
0.2‰ is the theoretical value of the ultimate transverse deformations, εc trans ul , and 2‰ is
the transverse deformation value corresponding to the maximal crack width. These values
correspond to the experimental transverse deformations in steps 5 (εc trans = 0.156‰) and
1 (εc trans = 1.703‰) (see Table 2), which were used to determine wExper. The obtained
relative error, D = 14.02 %, shows a good convergence between theoretically and experi-
mentally based results for crack width at the limit state of the compressed concrete element.
The same numerical data are shown in Figure 12.
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The maximum crack depth, hmax = h1, is also defined in step 1 as equal to 22 mm
(see Table 3 and Figure 12). This value is calculated according to the above-described
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experimentally verified theoretical model of the concrete cylindrical specimen section at
its ULS, based on the structural phenomenon [15] (the specimen section area is two times
higher compared with the inner undamaged core one). Correspondingly, the sum of all
element widths is

n

∑
i=1

ti = h1 (4)

According to the obtained numerical results, the crack width reaches 0.3 mm in step 2
(this step is the pre-ultimate stage before the element limit state). This value complies with
modern code requirements for the maximum crack width in concrete elements [24,25]. At
the last calculation step (σct trans = fct), the crack width tends to be zero when transverse
deformations correspond to crack initiation (see Table 2 and Figures 9 and 10).

Thus, a complex numerical analysis of compressed concrete element behavior was
conducted based on an investigation of crack development caused by transverse defor-
mations. The research outcomes justify the efficiency of the proposed approach for the
investigation of compressed concrete in the limit state by using its behavior parameters not
only in the longitudinal direction but also in the transverse one.

4.4. Example of Using the Step-by-Step Analysis Algorithm

The purpose of this example is to identify the limit state of a cylindrical compressed
concrete specimen of 300 mm in height and 150 mm in diameter by transverse deformations.
The following theoretical data, as well as the experimentally obtained data, are provided
for step-by-step analysis: εTheor

c trans ul = 0.200‰, ε
Exper
c trans ul = 0.156‰, εTheor

c trans max = 2.000‰,

ε
Exper
c trans max = 1.700‰, R = 75 mm, r = 53 mm.

In the first analysis step (i = 1 ), the maximum specimen crack width is calculated:

wTheor
1 =

(2.000 − 0.200)·π·150
1000

= 0.85 mm (5)

wExper
1 =

(1.700 − 0.156)·π·150
1000

= 0.73 mm (6)

The maximum crack depth is h1 = 75 − 53 = 22 mm. The triangle angles of crack
shapes α and β are calculated, where the hypotenuse lengths are aTheor = 22.0041 mm and
aExper = 22.0030 mm:

α = cos−1
( w

2a

)
; β = 180◦ − 2α (7)

The obtained results are shown in Table 4.

Table 4. Theoretical and experimental values of triangle angles α and β.

Theoretical ◦ Experimental ◦

α 88.90 89.05
β 2.21 1.90

In the second analysis step (i = 2 ), the crack width is calculated according to Equation (2):

wTheor
2 =

0.85
2·1.44

= 0.30 mm (8)

wExper
2 =

0.73
2·1.44

= 0.25 mm (9)

The crack depth at this step is

h2 =
w2

2 cos α
· cos

(
β

2

)
= 7.64 mm (10)
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The first element width is calculated using Equation (3):

t1 = 22 − 7.64 = 14.36 mm (11)

Steps 3, 4, and 5 of the analysis repeat procedures described in step 2. The results of
the analysis are presented in Table 3.

Thus, in the calculation example, the final theoretical and experimental values of
crack width and depth in the compressed concrete element are obtained at all stages of its
performance, including the limit state. The next stage compares the specified values with
modern code requirements for the final formulation of the limit state calculation based on
transverse deformations in a real element.

It should be noted that a compressed element limit state by the crack depth, caused
by transverse deformations, is proposed for the first time and should be associated with a
protective coating of reinforcement. The maximum crack depth obtained in the example
is equal to 7.64 mm, which corresponds to the maximum crack width value required by
modern codes [24,25]. This depth value is usually acceptable for compressed elements
where the concrete coating layer is at least 1 cm. This parameter is especially critical for
thin-walled RC structures, particularly for shells.

5. Conclusions

A complex analysis of compressed concrete limit states was conducted based on
the existing theoretical and experimental data, including longitudinal and transverse
deformations and longitudinal crack width and depth. Based on the obtained results, the
following conclusions are evident:

1. A numerical investigation of compressed concrete element behavior in the longitudi-
nal direction based on theoretical and experimental results was conducted, and the
high accuracy of the theoretical stress vs. longitudinal strain relationship was justified.
This, in turn, formed the basis of a numerical investigation of compressed concrete
limit state in the transverse direction.

2. A new approach for the simultaneous consideration of compressed concrete ele-
ments limit states based on transverse deformations was proposed. A corresponding
graph of concrete behavior in the longitudinal and transverse directions was used for
this analysis.

3. For the first time, reverse-order step-by-step analysis was proposed, starting with the
compressed concrete element’s ULS and finishing at the end of its elastic stage, which,
at the initial stage, allowed us to obtain data for the width and depth of cracks caused
by transverse deformations.

4. A diagram simultaneously representing specimen behavior in the longitudinal and
transverse directions was proposed as a tool for the comprehensive study of com-
pressed concrete performance.

5. For the first time, the limit state by the crack depth was introduced as a function
of crack width development. This allows for the theoretical determination of the
minimum concrete coating value for reinforcement in compressed elements (or in
the compressed concrete zone of bending elements), which is currently proposed in
modern codes as an empirical value.

This research reveals additional potential for further limit state investigations based
on the depth and width of cracks caused by transverse deformations in compressed con-
crete elements.
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