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Abstract: Electromagnetic rail launch technology has attracted increasing attention owing to its
advantages in terms of range, firepower, and speed. However, due to electricity-magnetism-heat-
force coupling, the surface of the armature–rail friction pair becomes severely damaged, which
restricts the development of this technology. A series of studies have been conducted to reduce
the damage of the armature–rail friction pair, including an analysis of the damage mechanism and
protection strategies. In this study, various types of surface damage were classified into mechanical,
electrical, and coupling damages according to their causes. This damage is caused by factors such as
mechanical friction, mechanical impact, and electric erosion, either individually or in combination.
Then, a detailed investigation of protection strategies for reducing damage is introduced, including
material improvement through the use of novel combined deformation and heat treatment processes
to achieve high strength and high conductivity, as well as surface treatment technologies such as
structural coatings for wear resistance and functional coatings for ablation and melting resistance.
Finally, future development prospects of armature–rail friction pair materials are discussed. This
study provides a theoretical basis and directions for the development of high-performance materials
for the armature–rail friction pair.

Keywords: armature–rail friction pair; damages of materials; material properties; surface treatment
technology; electromagnetic rail launch

1. Introduction

Electromagnetic rail launch is an advanced launch method that uses electromagnetic
energy to accelerate a projectile to super-speed. Compared with the traditional launch
methods that use mechanical and chemical energy, the launch speed of an electromagnetic
rail launch can exceed 2 km/s [1]. With advantages such as considerable firepower input,
great range, ample bomb storage, and flexible combat use, electromagnetic rail launch
technology has become an essential part of future weapon systems and has been widely
studied by science and technology departments worldwide. The electromagnetic rail
launcher consists of a high-power supply, two metal rails, and an armature that conducts
electricity between the rails to form a conductive loop. During the launch process, the
current-carrying armature is driven by Lorentz force generated by a high-intensity magnetic
field to a high-speed slide on the rail surface [2]. As a result, good electrical contact is
necessary for a successful electromagnetic launch [3]. To achieve this, an interference fit
is used between the armature and rails [4,5]. Owing to the high-speed relative motion
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and friction between the armature and rails, their combination is usually referred to as the
armature–rail friction pair (A&R), as shown in Figure 1.
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Figure 1. Schematic diagram of electromagnetic rail launcher and A&R. (a) Electromagnetic railgun.
(b) Railgun barrel. (c) A&R.

During the launching process, the extreme environment of high electrical current
density, high mechanical shock, high temperature rise, and strong strain pose great chal-
lenges to the material of the A&R and its contact stability. Because of the interaction within
the A&R, a series of complex surface behaviors occur on the surface of the A&R, such as
Joule heating, arc electrical behavior [6–8], and changes in contact status (solid–arc–solid,
solid–liquid–solid, and solid–solid contact). Several types of damage can occur on the A&R
surface (friction and wear, deposition, gouge, grooving, transition, the arc ablation of the
rail, and melting of the armature) [9–14]. These extreme service environments and complex
surface behaviors extensively reduce service life and work efficiency, which has become a
bottleneck that restricts the development of electromagnetic rail launch technology.

This review aims to summarize the research progress on the surface damage of the
A&R surface, focusing on determining the characteristics and formation mechanism, and
then introducing protection strategies for these damages.

2. Surface Damage of A&R

Due to the coupling of electricity, magnetics, heat, and forces, various types of damage
occur on the surface of the A&R. Overall, the damage can be divided into three types, as
illustrated in Figure 2. The first type is mechanical damage caused by contact, such as
gouging, friction, and wear. The second type is the electrical damage caused by currents
and arcs, such as transition and arc ablation. The third type includes deposition, armature
melts, and grooves. This type of damage is considered to be caused by the coupling of
mechanical and electrical damage.

2.1. Mechanical Damage

A gouge is a typic of mechanical damage to the rail that degrades the contact perfor-
mance and shortens the service life of an electromagnetic rail launcher [15]. It is widely
believed that gouges are caused by the high-speed oblique impact of the armature on the
rail. When the strength of the rail material is insufficient to resist the shear force, a teardrop-
shaped defect, called a gouge, is produced on the rail, as shown in Figure 3a. Gouges were
first found in railguns by Barber and Bauer in 1982 [16]. In addition, the occurrence of
gouges on the rail followed a specific pattern. The gouges mainly occurred in the middle
and lower regions near the outer edge of the rail. This phenomenon is attributed to the
higher contact forces experienced in the middle region of the rail [17]. Most researchers have
used simulation and computational methods to study the gouging mechanisms. Lin [18]
developed a dynamic model to investigate the mechanism of rail gouging. In this dynamic
model, the armature underwent lateral balloting and rotation. With rapid wear and tear
at the A&R interface contact, the armature gradually tilted towards one side of the rail,
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leading to an inclined impact on the guide rail, which may result in a gouge. Furthermore,
Wu et al. [19] established a 3D numerical model to simulate and analyze the mechanism
and evolution of the gouging phenomenon on a rail. Their findings indicated that surface
protrusions on the rail played a significant role in causing gouges. The high-density and
high-pressure material flowing on the contact surface could lead to a gouge when the
armature is accelerated to high speeds and obliquely extruded into the rail. Watt et al. [15]
studied the effect of surface indentations on gouging by carrying out launch tests. They
found that the threshold velocity for gouging largely appeared unaffected by the presence
of macroscopic surface indentations; however, the shape of the gouges was significantly
affected by the indentations. Both the experimental and simulation results showed that the
essence of the gouge is the plastic deformation of the rail material. Strengthening materials
should be a fundamental method to avoid the generation of gouges.
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Owing to the preload and high relative sliding speed, serious friction and wear occurs
between the A&R during the launch process, as shown in Figure 4. Surface wear also
weakens the contact state of the A&R. Brown et al. [20] used a mesoscale friction tester to
measure the friction coefficient of the A&R contact interface and found that the friction
coefficient decreased by approximately 50% under the action of a current. During the
emission process, the wear of the armature was typically more severe than that of the rail.
In addition, considerable efforts have been made to investigate the wear of the armatures.
Stefani and Parker [21] measured the wear quantity of an armature through an aluminum
alloy armature wear test experiment and established an initial wear model for the armature.
Wu et al. [22] constructed mathematical models of wear, nonlinear electrical contact, and
aerodynamic resistance, and obtained the relationship between the armature stress, wear
rate, and time. The results showed that the armature wear mainly occurred at low speeds,
particularly within 1 m of the breach. Gao et al. [4] established a 3D simulation model to
study the wear characteristics of the A&R under the action of an interference fit and Lorentz
force. The maximum contact pressure is distributed on both sides of the armature tail.
Furthermore, the location of the wear concentration and the interference play a significant
role in determining the wear volume, preferably between 0.2 and 0.25 mm. Ren et al. [23]
utilized a finite element simulation to predict wear. Their results revealed that the wear of
the armature was influenced by the wear coefficient. When the friction coefficient increased
from 1 × 10−6 to 1 × 10−3, the wear of the armature increased by approximately 190 times.
Therefore, to reduce the degree of wear between the armature and the guide rail, it is
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essential to reduce the friction coefficient by improving the lubrication conditions as much
as possible.
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Based on the aforementioned research results, the mechanical damage to the A&R
surface can be attributed to the interaction forces. When the inherent strength of a material
cannot resist these interaction forces, two types of mechanical damage occur on the surface.
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Therefore, in addition to optimizing the structure of the A&R, enhancing the inherent
strength of the material and improving the interface lubrication characteristics between the
A&R are effective approaches for reducing the mechanical damage to them.

2.2. Electrical Damage

Electrical damage is the phenomenon of a solid contact transforming into an arced
contact. When plastic deformation occurs on the A&R and the armature softens at high
temperatures, there is a clearance between the A&R, leading to plasma and arc formation.
Common forms of electrical damage include transition and ablation.

When the electrical contact changes from a perfect solid contact to an arc contact, a
transition appears between the A&R [24], as shown in Figure 5. Currently, there are two
widely recognized transition mechanisms [25], the “melt-wave” and the “electrodynamic”
mechanisms. The “melt-wave” refers to the movement of the melting layer from the near
part to the front part of the contact surface caused by the velocity skin effect. When the wave
penetrates the contact surface, there is a gap between the A&R and the transition occurs.
Due to the difficulty of experimental observation, the “melt-wave” mechanism has been
mainly researched through numerical analysis research methods [26–28]. The changes in
mechanical properties and electrical contact characteristics caused by varying pulse currents
belong to the “electrodynamic” mechanism and are mainly caused by reverse Lorentz force
during the current decrease stage [29–31]. Some researchers believe that the transition
is a complex process, caused by multiple factors. Barber et al. [25] explained in detail
the degree to which factors such as preload and electromagnetic contact force, armature
strength and current-carrying capacity, the velocity skin effect, inductance, the magnetic
giant effect, and wear affect transition. Tang et al. [32] established coupled 3D models of
the electromagnetism, temperature, and structure to study the transition mechanism in an
electromagnetic launch. They found that the melting wave and electromagnetic force lead
to the occurrence of a transition and that the two are inextricably linked.
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This transition has many disadvantages, of which surface ablation is the most common.
From the initial position to the muzzle end, initial ablation, planning ablation, twisting
ablation, and muzzle arc ablation sequentially occur on the rail. Zhang et al. [33] conducted
launch experiments under the conditions of a launch current of ~800 kA, more than
100 launches, and an armature mass of 140 g. They observed the damage at the initial
position of the rail and analyzed the ablation problems caused by insufficient initial contact
pressure, large rail spacing, and insufficient rail strength. In addition, damage caused the
muzzle velocity to decrease by 200 m/s and the launch efficiency to decrease by nearly 5%
with the same launch conditions. The planning ablation of the rail was led by concentrated
pressure, and current density resulted from too small of an area of the A&R contact [34].
When the contact pressure reached the critical strength of the rail, plastic deformation, such
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as a planning pit, occurred on the rail surface. Electrical current is concentrated in the
planning area, leading to the generation of electric arcs, which cause planning ablation
phenomena [35]. Twisting ablation is generated by the loss of contact between the A&R
caused by the twisting of the rail during the launching process. The two rails are typically
considered parallel and symmetric. However, owing to the influence of the structural
deformation of the barrel, it often leads to nonideal A&R matching, such as space curving
or twisted rails [36]. Muzzle arc ablation refers to the phenomenon of ablation by arcing
owing to the breakdown of air by the muzzle voltage when the armature comes out of
the bare. Cai et al. [37] analyzed the factors contributing to the muzzle arc formation and
performed numerical simulations. The results indicated that the temperature was the
highest, the electromagnetic field was the strongest, and the airflow was the most intense
when the muzzle arc was formed.

Overall, the transition and ablation phenomena were caused by changes in the contact
between the A&R. Therefore, maintaining a stable contact and enhancing the materials
resistance to ablation are effective ways to mitigate electrical damage in the A&R.

2.3. Coupling Damage

In extremely complex environments, certain forms of damage are not only attributed
to a single factor but also arise from the interaction of multiple factors. For instance, friction
and Joule heating cause armature melting and deposition, and the grooves are formed
owing to thermal stress and aluminum liquid erosion.

For armature melting (as shown in Figure 6), Xia et al. [38] used a payload-separation
method to keep the recovered armatures intact. The experimental conditions included
an armature and payload mass of 395.05 g, with a peak current ranging from 249.40
to 403.40 kA. They believed that Joule heating was predominant in the melting process.
Because the experimental methods are difficult to use when analyzing the effects of multiple
factors on the state of contact during launch, numerical simulation is another important
research method. Zhang et al. [39] found that a typical butterfly-shaped failure interface
appeared in the recovered armature and used the 3D finite method to explain that the
non-uniform distribution of current density, heat flux, and Lorentz force density, which was
caused by the pulse current, were the main causes of the butterfly-shaped failure interface.
Li et al. [40] developed a thermoelastic magnetohydrodynamic model that analyzed the
effects of the supply current waveform, armature tail length, and angle on the melting
rate of the armature surface as well as the minimum liquid metal film between the contact
surfaces. Additionally, some studies have shown that, owing to the current skin effect and
tail deformation of the armature caused by stress and structural characteristics, the current
is more likely to be concentrated in the armature tail, causing the armature to start melting
in the tail [41].
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In comparison with other forms of damage, the deposition covers almost the entire sur-
face of the rail and occurs throughout the launch process. The formation of the deposition
layer is primarily attributed to the transfer of material from the armature owing to friction,
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melting, and splattering caused by the accumulation of heat [42]. The surface deposition
layer on the rail exhibits a variety of typical structures, such as multilayer structures, peel-
ing structures, pores, and surface cracks [10,43,44]. In addition, the deposition exhibited
space–time distribution characteristics, with different characteristics observed for varying
numbers of shots along the lateral and radial directions of the rail [45]. The deposition
layer not only improves the surface roughness of the rail and reduces the electrical contact
performance between the A&R, but also creates a solid-state flow regime by dynamic
recrystallization at the aluminum/copper interface, which also leads to the erosion-product
deposition and damage of the rail, as shown in Figure 7 [46].
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Grooves are a common type of damage to the rail surface that occur after several
launches. Grooves typically start with sharp indentations and gradually diffuse, as shown
in Figure 8. Grooves are located at the part of the rail exposed to the highest currents
and longest armature dwell times and are concentrated in the rail area near the insulator,
coinciding with the location of the armature where the damage is the greatest [47]. The
formation of grooves is generally attributed to the cumulative effects of thermal softening
of the rail material and erosion caused by liquid aluminum from the molten armature [48].
Gee and Persad [49] proposed that this was a plastic deformation phenomenon caused by
the chemical action of the rail and molten aluminum. Hsieh [50] used EMAP3D calculations
to demonstrate that groove formation was caused by the material softening due to high
local temperatures and material yielding. Cote [51] proposed the clamping or shrinkage
effects of magnetic pressure on a liquid metal as the cause of groove erosion. The simulation
results obtained by Geng et al. [52] indicated that electrical explosions were the primary
cause of rail groove formation. The explosion blows off the rail surface, similar to the
electric-arc-cutting conductor technique, leaving craters on the rail surface.

2.4. Summary of Surface Damage

From the above summary, it can be inferred that the three types of damage to the A&R
surface primarily resulted from a series of complex reactions caused by changes in the
stress and contact conditions between the A&R during the launch process. Therefore, to
mitigate these damages, apart from modifying the structure of the A&R to adjust its stress
and contact conditions, enhancing the intrinsic resistance of the material to damage and
surface treatment are fundamental and effective approaches for ameliorating the surface
damage between the A&R.
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3. Protection Strategies for Surface Damage

As the demand for a high-speed electromagnetic rail launcher continues to increase,
both of the A&R materials face significant challenges. In recent years, Cooper-based rails,
such as those made from electrolytic tough pitch copper and oxygen-free high-conductivity
copper [53–55], and armatures made from Al alloys such as 6061 and 7075 Al [56,57],
have been used. Although the materials used for the A&R exhibit high performance, they
still fall short of meeting the demand for prolonged lifespans and enhanced reliability
in electromagnetic rail launch systems. Thus, there is still a long way to go before A&R
materials can be further refined. As a current-carrying friction pair, the contact state and
martial strength of the A&R are critical factors in protection strategies for surface damage,
which can be achieved by adjusting the structure and pairing, improving the material, and
the use of surface treatment technology. Structure and pairing adjustments can improve
the distribution of heat and current, avoid contact failure between the A&R caused by
high-temperature softening and the deformation of materials, reduce the concentration of
current density, and increase the velocity threshold for the transition [58–61]. Although the
adjustment of the structure and pairing can be effective for transition and ablation because
the material is the basis of the engineering equipment, the most fundamental guarantee for
the long life of an electromagnetic rail launch system is to improve the damage resistance
of the A&R materials through material improvement and surface treatment technology.

3.1. Material Improvement

Mechanical damage, such as gouging, friction, and wear, is caused by the plastic
deformation of materials. This type of damage is attributed to the inability of the material
to withstand interaction forces. Enhancing the material strength of the A&R is an effective
strategy for addressing this issue. In Copper-based materials, methods of strengthening in-
clude alloying techniques such as solid-solution strengthening, precipitation strengthening,
grain refinement, and deformation strengthening, as well as composite methods involving
the addition of second-phase particles, whiskers, or fibers. Although these approaches can
enhance the strength of the matrix material, they may sacrifice its electrical conductivity.

The strength and conductivity of Cooper-based materials are influenced by their or-
ganization and microstructure, including the precipitated phase, grain boundary, twin
boundary, and solute atoms. In terms of strength, the precipitated phase, grain bound-
ary [62], twin boundary [63], and solute atoms [64] hinder the dislocation movement,
resulting in a strengthening effect. While, for the conductivity, the total resistivity of the
metal can be expressed by the following equation [65]:

ρtotal = ρ0 + ∆ρdis + ∆ρGB + ∆ρTB + ∆ρSS + ∆ρP,
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where ρ0 is the resistivity of pure copper; and ∆ρdis, ∆ρGB, ∆ρTB, ∆ρSS, and ∆ρP are the spe-
cific resistance conducted by the grain boundary, dislocation, twin boundary, solute atoms,
and precipitated phase, respectively. Grain boundary, dislocation, and twin boundary
cause lattice distortion, and impurities are added to the alloy by solute atoms, aggravating
the scattering of free electrons and seriously damaging conductivity. For example, Sun
et al. [66] added Co and Si to the Cu-Cr alloy, and the results revealed that the addition of Co
and Si led to a decrease in electrical conductivity by approximately half. Among the influ-
encing factors, solute atoms have the greatest influence on conductivity compared with the
precipitated phases, twin grain boundaries, grain boundaries, and dislocations [64,67–69].
Therefore, the typical microstructures of copper alloys with high strength and conductivity
include nano-precipitated phases [70], ultra-fine grains and nano-precipitated phases [71],
nano-crystals [72], nano-growth twins [73], and nano-deformation twins [74]. The relation-
ships between typical microstructures and properties are shown in Figure 9.
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strength and conductivity [70–74].

The CuCrZr alloy, which represents a high-strength and high-electrical-conductivity
alloy system, is one of the preferred choices for rail materials owing to its excellent per-
formance. To further enhance the strength and electrical conductivity of CuCrZr alloys,
researchers have extensively investigated process optimization and strengthening mecha-
nisms to adjust typical microstructures during their preparation. Li et al. [75] prepared Cu-
CrZr alloys with high strengths and electrical conductivity through aging and cryorolling.
The prepared material exhibited a tensile strength of 712 MPa (a 44.72% increase compared
to the aged samples), while maintaining a conductivity level of 70.2%. Li et al. [76] per-
formed a two-step cryorolling and aging process (CRA) on the Cu-1Cr-0.1Zr (mass fraction)
alloy, and a desired balance between the high tensile strength (648 MPa) and electrical
conductivity (79.80% IACS) was achieved due to the coexistence of refined deformation
bands, nanoscale deformation twins, and nanoprecipitates (Figure 10). Sun et al. [77] em-
ployed the dynamic plastic deformation method at liquid-nitrogen temperature to fabricate
block-like CuCrZr nanocomposites consisting of nanotwins and nanograins. The CuCrZr
nanocomposite subjected to a single-step deformation and no aging treatment exhibited a
tensile strength of up to 700 MPa and an electrical conductivity of 78.5%. Kulczyk et al. [78]
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carried out experiments on CuCrZr alloy, including severe plastic deformation (SPD), such
as hydrostatic extrusion (HE), equal-channel angular pressing (ECAP), and a combination
of these processes, all followed by a precipitation hardening stage (solution treatment
before the deformation and post-deformation aging). The alloy obtained a high ultimate
tensile strength (UTS = 630 MPa) and a high electrical conductivity of 78% IACS.

Materials 2024, 17, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 10. Microstructures and properties of Cu-1Cr-0.1Zr (mass fraction) alloys subjected to two-

step CRA. (a) Bright-field TEM and (b) HR-TEM images; (c) table of mechanical properties and elec-

trical conductivity [76]. 

In addition to the aforementioned results, numerous researchers have achieved sim-

ultaneous improvements in strength and conductivity by combining various processes 

(Table 1). Strengthening processes involve achieving a balance between crystal size, pre-

cipitation, and twinning through fabrication techniques. This allows for the attainment of 

high strength and conductivity in the material. 

Table 1. Mechanical properties and electrical conductivity of CuCrZr alloys subjected to different 

processes. 

Processing σUTS (MPa) Cond. (%IACS) Ref. 

Aging + cryorolling 712 70.2 [75] 

Two-step cryorolling + aging 648 79.8 [76] 

Annealing + LNT-DPD a 700 98.5 [77] 

ST b + ECAP c×2 + HE d + aging 625 78.0 [78] 

ST b + HE d + aging 630 79.0 [78] 

ST + CEF e + drawing + aging 590 77.6 [79] 

ST + cold drawing + aging 550 78.7 [79] 

ST + ECAP×4 + aging 577 78.5 [80] 
a Dynamic plastic deformation at liquid-nitrogen temperature. b Solution treatment. c Equal-channel 

angular pressing. d Hydrostatic extrusion. e Continuous extrusion formation process. 

The high strength of the rail material determines its service life, and its conductivity 

ensures launch accuracy and efficiency. Both are indispensable for the advancement of 

electromagnetic rail launch technology. From the existing research results, the process to 

achieve high strength and high conductivity in copper alloys has the characteristics of 

combining heat treatment with an ultra-low-temperature dynamic plastic deformation or 

multi-step deformation process, so that there are nano-scale grains, nano-precipitated 

phases, or nano-twins in the alloy. However, copper alloys with high strength and con-

ductivity still cannot meet the current development requirements. Therefore, new mate-

rial systems and processing technologies are the primary focus in the continued develop-

ment of rail materials. 

Figure 10. Microstructures and properties of Cu-1Cr-0.1Zr (mass fraction) alloys subjected to two-step
CRA. (a) Bright-field TEM and (b) HR-TEM images; (c) table of mechanical properties and electrical
conductivity [76].

In addition to the aforementioned results, numerous researchers have achieved si-
multaneous improvements in strength and conductivity by combining various processes
(Table 1). Strengthening processes involve achieving a balance between crystal size, pre-
cipitation, and twinning through fabrication techniques. This allows for the attainment of
high strength and conductivity in the material.

Table 1. Mechanical properties and electrical conductivity of CuCrZr alloys subjected to differ-
ent processes.

Processing σUTS (MPa) Cond. (%IACS) Ref.

Aging + cryorolling 712 70.2 [75]
Two-step cryorolling + aging 648 79.8 [76]

Annealing + LNT-DPD a 700 98.5 [77]
ST b + ECAP c × 2 + HE d + aging 625 78.0 [78]

ST b + HE d + aging 630 79.0 [78]
ST + CEF e + drawing + aging 590 77.6 [79]

ST + cold drawing + aging 550 78.7 [79]
ST + ECAP × 4 + aging 577 78.5 [80]

a Dynamic plastic deformation at liquid-nitrogen temperature. b Solution treatment. c Equal-channel angular
pressing. d Hydrostatic extrusion. e Continuous extrusion formation process.

The high strength of the rail material determines its service life, and its conductivity
ensures launch accuracy and efficiency. Both are indispensable for the advancement of
electromagnetic rail launch technology. From the existing research results, the process to
achieve high strength and high conductivity in copper alloys has the characteristics of
combining heat treatment with an ultra-low-temperature dynamic plastic deformation
or multi-step deformation process, so that there are nano-scale grains, nano-precipitated
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phases, or nano-twins in the alloy. However, copper alloys with high strength and conduc-
tivity still cannot meet the current development requirements. Therefore, new material
systems and processing technologies are the primary focus in the continued development
of rail materials.

3.2. Surface Treatment Technology

Mechanical, electrical, and coupling damage to the A&R pose a great challenge for
the material. To prevent this damage from causing the launch to fail, the electromagnetic
rail launcher requires the use of materials with a much higher level of thermomechanical
stability. In addition to the material improvement, surface treatment technologies, such
as structural coatings for wear resistance and functional coatings for ablation and melt
resistance, can also play a role in preventing damage.

3.2.1. Structural Coating for Wear Resistance

When the A&R slides, wear phonemes such furrows and Al adhesion, occur on the
surface. Increasing the surface strength of the friction pair and improving the lubrication
of the friction interface can reduce the degree of wear of the A&R. Watt et al. [81] pre-
coated an Al layer on rails. They conducted practical launch validation experiments with
a peak current of ~1200 kA and a maximum muzzle voltage of 700 V, with a ∼140 g
lightweight projectile. The result showed that this pre-coating significantly delayed the
occurrence of plowing. Lu et al. [82] achieved a significant reduction in the interface
energy between the A&R by depositing a W layer on the armature surface using magnetron
sputtering, which substantially alleviated the adhesion and mechanical damage on the rail
surface (Figure 11). Siopis et al. [83] performed a systematic investigation using the Ashby
method to select a rail material that would maximize the magnetic energy for performance,
durability, and economic viability. Their results suggested that a hybrid rail material with
an electrically conductive substrate and a damage-resistant surface layer consisting of
tungsten, chromium, nickel, or tantalum could accomplish these two goals.
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Figure 11. Image of the W coating and Cu rail surface after one shot with and without a W film on the
Al alloy armature. (a) Surface and (b) cross-section image of W coating. (c,d) Pictures of wear damage
and Al adhesion on Cu rail after one shot with and without the W film on the Al alloy armature [82].

3.2.2. Functional Coating for Ablation and Melt Resistance

The results of theoretical calculations have shown that the critical transition speed of
pure copper rails was less than 0.5 km/s [84], which means that the arc is inevitable for
the copper rail system when the launch speed exceeds 2 km/s. Although copper alloys
have outstanding strength and conductivity, their resistance to thermal erosion remains
insufficient. The application of an appropriate coating to a rail to enhance its thermal
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resistance and maintain excellent electrical and thermal conductivities is the primary focus.
In addition, owing to the low melting temperature of the Al alloy, a large amount of heat
accumulated at the friction interface leads to the melting of the armature surface. Coating
the armature surface can improve the lubrication condition of the friction interface of the
A&R, which can effectively alleviate the melting of the armature and reduce the generation
of the deposition layer to a certain extent.

The coating material for the ablation resistance of rails must have a high melting
point, conductivity, wear resistance, and interface compatibility with the rail substrate
material. Harding et al. [85] in 1986 used chemical vapor deposition to prepare tungsten
and tungsten-rhenium alloy coatings on copper rails. The results showed that the rail
performance was significantly better than that of the bare copper rails, and the arc ablation
resistance was high. Colombo et al. [86] reported that the wear and spark erosion of
copper rails were reduced after the rails were coated with TaN and TiN using Plasma
Source Ion Implantation and Ion-Beam-Enhanced Deposition. Hsu et al. [87] applied nickel–
phosphorus and nickel–molybdenum coatings to rails and conducted launch experiments
with a lightweight armature (27 g). The results showed that the annealed Ni-Mo coating
exhibited the best electrical ablation wear resistance (Figure 12). Liu et al. [88,89] used a
supersonic plasma spraying technique to prepare Mo-based coatings on copper rail surfaces.
This coating exhibited high hardness and excellent ablation resistance.
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(c) surface ablation morphology of different rails with different coatings. The yellow line area in the
figure corresponds to the ablation area of the rail [87].

For the armature surface coating, Zhou et al. [90] performed numerical simulations
of armatures with various types of coatings. The results showed that the coating on the
rail surface could improve the degree of the concentration of the current density on the
contact surface between the A&R, and the maximum temperature was significantly reduced,
which could reduce the melting degree of the armature. Lubrication coatings for armatures
primarily contain polytetrafluoroethylene (PTFE), graphene, and low-melting metals and
alloys. Singer et al. [91] selected PTFE as the coating material to lubricate the contact
surface, and their results showed that PTFE not only increased the launching speed, but also
effectively reduced armature damage and A&R contact ablation. This plays an important
role in improving the launch performance of the system. However, because PTFE is an
insulator, the contact resistance and other properties were not considered in the experiment.
Du et al. [92] coated a layer of graphene on an armature and conducted emission tests
to study the effect of the graphene coating on the surface melting of the armature. After
recovering the armature, it was found that the melting area after coating was smaller.
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Hsieh et al. [93] added low-melting-point alloys such as bismuth, tin, and indium to
the surface of an aluminum armature to form boundary lubrication and conducted an
experimental study on the melting wear characteristics of the materials on the surface of the
armature controlled by the type of coating. The results showed that the armature exit speed
slightly increased. However, the experimental speed was only 360 m/s, and a high-speed
launch test has not been verified.

At present, the research on the preparation process and microscopic mechanism
coatings for electromagnetic rail launch is still in its infancy, especially in mechanical
and thermal shock tests of surface coatings to simulate electromagnetic launch processes.
Among various kinds of coating preparation technologies, laser cladding technology has
the advantages of high flexibility, small thermal influence on the workpiece, and high
bonding strength between the coating and the substrate. A fine-grained, high-performance
coating can be obtained with this technique. Thus, laser cladding technology is a promising
surface treatment technology for the A&R.

3.3. Summary of Protection Strategies for Surface Damage

Much progress has been made in the material improvement and surface treatment
technology for A&R materials for electromagnetic rail launch. Although considerable
research has been conducted on the strength and electrical conductivity of rail materials,
current copper alloy materials still cannot meet the requirements for continuous long-
term applications in special environments, such as extreme mechanical wear and high-
temperature thermal shock. While various new wear-, ablation-, and melting-resistant
coatings on the surfaces of the A&R can indeed mitigate mechanical, electrical, and partial
coupling damage, such as armature melting and deposition, to some extent, the coatings
on the surface still pose certain challenges in practical launch systems. On the one hand,
the current coating fabrication processes struggle to ensure uniformity over large surface
areas, particularly for increasingly long rail surfaces. On the other hand, the coatings on
the surface often reduce the electrical conductivity of the A&R surfaces, and the disparities
between the coating and substrate materials lead to poor interface bonding, impacting
the precision of the launches. With respect to rail grooving, the formation mechanism of
grooves is currently in the qualitative research stage and cannot fully explain the process.
The relationship between groove damage and material characteristics, as well as whether
surface treatment techniques such as coatings can effectively suppress groove formation,
remains unclear. Further research is required to address the issue of groove protection.

4. Conclusions and Outlook

This study examined different damage forms in A&R materials, summarized their
damage mechanisms, and analyzed protection strategies for these damages. Although
structural improvements are possible, addressing material issues is fundamental for achiev-
ing long service life and efficiency. Existing rail materials require further enhancement
in terms of their strength and wear resistance without compromising their conductivity.
Coating technology can effectively mitigate the damage to A&R materials, but current coat-
ing techniques still face challenges, such as the uniform preparation of large-area coatings,
imbalances in coating conductivity, wear resistance, and interface bonding properties with
A&R materials.

Considering the increasing demand for a higher performance in electromagnetic rail-
gun launch, the main research and development prospects of A&R materials are as follows:

(1) In terms of material, more severe environments result in higher requirements for the
A&R materials. High strength and conductivity and wear resistance are the goals
of A&R materials. The research on new material systems and combined treatment
technology are the direction of the future development of A&R materials.

(2) In terms of coating and preparation technology, large-area uniform coating prepara-
tion technology and new materials with high conductivity, wear resistance, ablative
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resistance, and strong binding forces should be explored to further optimize the
quality of the coating.

(3) In terms of the friction pair system, most current research has been aimed at separating
the armature from the rail, and different pairing mechanisms should be considered
during material development.

(4) In terms of material testing, due to the relatively large cost of electromagnetic emis-
sions, it is necessary to develop material-equivalent test methods to evaluate whether
new materials meet actual emission requirements.

(5) In terms of the mechanism of wear and ablation, the understanding of conductive
wear resistance and ablation resistance should be deepened. Research on the mecha-
nism of current-carrying tribology and the arc ablation under extreme conditions is
highly required.
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