Shrinkage and Creep Properties of Low-Carbon Hybrid Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. H-Cement and CEM II/B-S
2.2. Mix Design
2.3. Isothermal Calorimetry
2.4. Autogenous and Drying Shrinkage
2.5. Creep
3. Results and Discussion
3.1. Isothermal Calorimetry
3.2. Autogenous Shrinkage
3.3. Drying Shrinkage
3.3.1. Basic Creep
3.3.2. Total Creep
4. Conclusions
- Autogenous shrinkage shows similar values up to 7 days between H-cement and CEM II/B-S 32.5 R pastes. After 7 days, H-cement shows smaller autogenous shrinkage.
- Drying shrinkage evolves similarly for mortars made from H-cement and CEM II/B-S 32.5 R cement. For the same shrinkage, H-cement loses approximately twice as much water. The reason for this likely stems from the coarser capillary pores and lower capillary pressure.
- The ultimate value of H-cement’s total shrinkage reached on mortar samples of size mm. Similar values were achieved by a comparable mortar made from CEM II/B-S 32.5 R.
- Basic and total creep of H-cement concrete falls within the standard deviation margins of B4 and EC2 models for structural concrete. H-cement concrete exhibits similar total creep as high-volume fly ash concrete.
- Overall, the shrinkage and creep properties of H-cement showed similar values to comparable structural concretes, displaying potential for having low-carbon applications in the construction industry.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soomro, M.; Tam, V.W.; Jorge Evangelista, A.C. 2—Production of cement and its environmental impact. In Recycled Concrete; Tam, V.W., Soomro, M., Jorge Evangelista, A.C., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Cambridge, UK, 2023; pp. 11–46. [Google Scholar] [CrossRef]
- Nilimaa, J. Smart materials and technologies for sustainable concrete construction. Dev. Built Environ. 2023, 15, 100177. [Google Scholar] [CrossRef]
- Angst, U.M.; Hooton, R.D.; Marchand, J.; Page, C.L.; Flatt, R.J.; Elsener, B.; Gehlen, C.; Gulikers, J. Present and future durability challenges for reinforced concrete structures. Mater. Corros. 2012, 63, 1047–1051. [Google Scholar] [CrossRef]
- Krivenko, P. Why Alkaline Activation—60 Years of the Theory and Practice of Alkali-Activated Materials. J. Ceram. Sci. Technol. 2017, 8, 323–334. [Google Scholar] [CrossRef]
- Amer, I.; Kohail, M.; El-Feky, M.; Rashad, A.; Khalaf, M.A. A review on alkali-activated slag concrete. Ain Shams Eng. J. 2021, 12, 1475–1499. [Google Scholar] [CrossRef]
- Palomo, A.; Monteiro, P.; Martauz, P.; Bilek, V.; Fernandez-Jimenez, A. Hybrid binders: A journey from the past to a sustainable future (opus caementicium futurum). Cem. Concr. Res. 2019, 124, 105829. [Google Scholar] [CrossRef]
- Pol Segura, I.; Ranjbar, N.; Juul Damø, A.; Skaarup Jensen, L.; Canut, M.; Arendt Jensen, P. A review: Alkali-activated cement and concrete production technologies available in the industry. Heliyon 2023, 9, e15718. [Google Scholar] [CrossRef]
- Janotka, I.; Martauz, P.; Bačuvčík, M. Preferable use of hybrid cement in concrete intended for industrial application. In Proceedings of the 10th ACI/RILEM International Conference on Cementitious Materials and Alternative Binders for Sustainable Concrete (ICCM 2017), Montreal, QC, Canada, 2–4 October 2017; pp. 2.1–2.13. [Google Scholar]
- Janotka, I.; Martauz, P.; Bačuvčík, M.; Václavík, V. Fundamental Properties of Industrial Hybrid Cement Important for Application in Concrete. In Compressive Strength of Concrete; Kryvenko, P., Ed.; IntechOpen: Rijeka, Croatia, 2019; Chapter 7. [Google Scholar] [CrossRef]
- Šejna, J.; Šulc, S.; Wald, F. Fire Protection of Steel and Concrete Structures by Alkali-Activated Cement—Adhesion and Fire Experiment. In Proceedings of the Architecture and Sustainable Development 22, Prague, Czech Republic, 16–20 December 2022; pp. 123–132. [Google Scholar]
- Dolado, J.; Goracci, G.; Martauz, P. Thermal properties of cementitious materials. In Proceedings of the 15th International Congress on the Chemistry of Cement, Prague, Czech Republic, 16–20 September 2019. [Google Scholar]
- Li, Z.; Chen, Y.; Provis, J.L.; Cizer, Ö.; Ye, G. Autogenous shrinkage of alkali-activated slag: A critical review. Cem. Concr. Res. 2023, 172, 107244. [Google Scholar] [CrossRef]
- Mastali, M.; Kinnunen, P.; Dalvand, A.; Mohammadi Firouz, R.; Illikainen, M. Drying shrinkage in alkali-activated binders—A critical review. Constr. Build. Mater. 2018, 190, 533–550. [Google Scholar] [CrossRef]
- Herath, C.; Gunasekara, C.; Law, D.W.; Setunge, S. Performance of high volume fly ash concrete incorporating additives: A systematic literature review. Constr. Build. Mater. 2020, 258, 120606. [Google Scholar] [CrossRef]
- Mehta, P.K. High-performance, high-volume fly ash concrete for sustainable development. In Proceedings of the International Workshop on Sustainable Development and Concrete Technology, Beijing, China, 20–21 May 2004; Iowa State University Ames: Ames, IA, USA, 2004; pp. 3–14. [Google Scholar]
- CEN/TC 51; EN 196-1 Methods of Testing Cement—Part 1: Determination of Strength. The European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- ASTM C1698-19; Standard Test Method for Autogenous Strain of Cement Paste and Mortar. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019.
- CEN/TC 250; Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules—Rules for Buildings, Bridges and Civil Engineering Structures, FprEN 1992-1-1:2022. The European Committee for Standardization (CEN): Brussels, Belgium, 2022.
- RILEM Technical Committee TC-242-MDC (Z.P. Bažant, Chair). Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability (RILEM Technical Committee TC-242-MDC multi-decade creep and shrinkage of concrete: Material model and structural analysis). Mater. Struct. 2015, 48, 753–770. [Google Scholar] [CrossRef]
- Mohamed, R.; Abd Razak, R.; Abdullah, M.M.A.B.; Abd Rahim, S.Z.A.; Yuan-Li, L.; Subaer; Sandu, A.V.; Wysłocki, J.J. Heat evolution of alkali-activated materials: A review on influence factors. Constr. Build. Mater. 2022, 314, 125651. [Google Scholar] [CrossRef]
- Li, Z.; Lu, T.; Liang, X.; Dong, H.; Ye, G. Mechanisms of autogenous shrinkage of alkali-activated slag and fly ash pastes. Cem. Concr. Res. 2020, 135, 106107. [Google Scholar] [CrossRef]
- Termkhajornkit, P.; Nawa, T.; Nakai, M.; Saito, T. Effect of fly ash on autogenous shrinkage. Cem. Concr. Res. 2005, 35, 473–482. [Google Scholar] [CrossRef]
- Vlahinić, I.; Jennings, H.M.; Thomas, J.J. A constitutive model for drying of a partially saturated porous material. Mech. Mater. 2009, 41, 319–328. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]
- Arezoumandi, M.; Volz, J. A comparative study of the mechanical properties, fracture behavior, creep, and shrinkage of high-volume fly ash concrete. J. Sustain. Cem.-Based Mater. 2013, 2, 173–185. [Google Scholar] [CrossRef]
- Vinkler, M.; Vítek, J. Drying and shrinkage of massive concrete wall segments—3 years experiment and analytical observations. Mater. Struct. 2019, 52, 29. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Najjar, L.J. Nonlinear water diffusion in nonsaturated concrete. Mater. Struct. 1972, 5, 3–20. [Google Scholar] [CrossRef]
- Šmilauer, V.; Dohnalová, L.; Jirásek, M.; Sanahuja, J.; Seetharam, S.; Babaei, S. Benchmarking Standard and Micromechanical Models for Creep and Shrinkage of Concrete Relevant for Nuclear Power Plants. Materials 2023, 16, 6751. [Google Scholar] [CrossRef] [PubMed]
- Kristiawan, S.A.; Nugroho, A.P. Creep Behaviour of Self-compacting Concrete Incorporating High Volume Fly Ash and its Effect on the Long-term Deflection of Reinforced Concrete Beam. Procedia Eng. 2017, 171, 715–724. [Google Scholar] [CrossRef]
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | SO3 | K2O | Na2O | |
---|---|---|---|---|---|---|---|---|
Clinker (20%) | 66.13 | 21.69 | 5.31 | 2.83 | 1.44 | 0.53 | 1.00 | 0.04 |
Fly ash (65%) | 3.36 | 51.42 | 26.93 | 7.27 | 2.10 | 0.87 | 3.28 | 0.17 |
Slag (10%) | 34.92 | 35.85 | 8.36 | 0.43 | 6.15 | 1.61 | 0.74 | 0.21 |
Alkali activator (5%) | - | - | - | - | - | 55.78 | - | 43.02 |
H-cement | 17.09 | 46.91 | 16.91 | 6.47 | 1.68 | 3.65 | 3.17 | 2.52 |
CEM II/B-S 32.5 R | 54.87 | 26.33 | 6.06 | 2.56 | 4.08 | 2.34 | 0.67 | 0.26 |
w/c | Compressive Strength [MPa] | Flexural Strength [MPa] | |||||
---|---|---|---|---|---|---|---|
2 Days | 28 Days | 90 Days | 2 Days | 28 Days | 90 Days | ||
H-cement | 0.40 | 17.5 ± 3.0 | 36.5 ± 4.0 | 41.5 ± 3.0 | 3.5 ± 0.5 | 4.4 ± 0.4 | 9.0 ± 0.3 |
CEM II/B-S 32.5 R | 0.50 | 13.4 ± 1.0 | 46.5 ± 0.9 | 60.0 ± 1.1 | 3.1 ± 0.3 | 8.9 ± 0.2 | 10.2 ± 0.3 |
Item | Reference, Mortar (kg/m3) | H-Cement, Mortar (kg/m3) | H-Cement, Concrete (kg/m3) |
---|---|---|---|
H-cement | 490 | 350 | |
CEM II/B-S 32.5 R | 516 | ||
Water | 232 | 221 | 158 |
Normal sand 0/2 | 1548 | 1470 | |
Fine aggregate 0/4 mm, Dobříň | 835 | ||
Coarse aggregate 4/8 mm, Zbraslav | 320 | ||
Coarse aggregate 8/16 mm, Zbraslav | 713 | ||
Plasticizer (lignosulfonates) | 3.4 | 2.4 | |
Water/cement | 0.45 | 0.45 | 0.45 |
Aggregate/cement | 3.00 | 3.00 | 5.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šmilauer, V.; Dohnalová, L.; Martauz, P. Shrinkage and Creep Properties of Low-Carbon Hybrid Cement. Materials 2024, 17, 4417. https://doi.org/10.3390/ma17174417
Šmilauer V, Dohnalová L, Martauz P. Shrinkage and Creep Properties of Low-Carbon Hybrid Cement. Materials. 2024; 17(17):4417. https://doi.org/10.3390/ma17174417
Chicago/Turabian StyleŠmilauer, Vít, Lenka Dohnalová, and Pavel Martauz. 2024. "Shrinkage and Creep Properties of Low-Carbon Hybrid Cement" Materials 17, no. 17: 4417. https://doi.org/10.3390/ma17174417
APA StyleŠmilauer, V., Dohnalová, L., & Martauz, P. (2024). Shrinkage and Creep Properties of Low-Carbon Hybrid Cement. Materials, 17(17), 4417. https://doi.org/10.3390/ma17174417