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Abstract: Optoelectronic components are crucial across various industries. They benefit greatly from
advancements in 3D printing techniques that enable the fabrication of intricate parts. Among these
techniques, Material Extrusion (MEX) stands out for its simplicity and cost-effectiveness. Integrating
3D printing into production processes offers the potential to create components with enhanced
electrostatic discharge (ESD) resistance, a critical factor for ensuring the reliability and safety of
optoelectronic devices. Polyethylene terephthalate glycol-modified (PET-G) is an amorphous copoly-
mer renowned for its high transparency, excellent mechanical properties, and chemical resistance,
which make it particularly suitable for 3D printing applications. This study focuses on analyzing
the mechanical, structural, and electrostatic properties of pure PET-G as well as PET-G doped with
additives to evaluate the effects of doping on its final properties. The findings highlight that pure
PET-G exhibits superior mechanical strength compared to doped variants. Conversely, doped PET-G
demonstrates enhanced resistance to electrostatic discharge, which is advantageous for applica-
tions requiring ESD mitigation. This research underscores the importance of material selection and
optimization in 3D printing processes to achieve desired mechanical and electrical properties in
optoelectronic components. By leveraging 3D printing technologies like MEX and exploring material
modifications, industries can further innovate and enhance the production of optoelectronic devices,
fostering their widespread adoption in specialized fields.

Keywords: additive manufacturing; material extrusion; PET-G; tensile test; digital image correlation;
electrostatic discharge resistance

1. Introduction

Optoelectronic components play a crucial role in various industrial sectors, facilitating
advancements in telecommunications, medical technology, lighting, photography, and
many other fields [1,2]. Given the complex structure of these components, the application
of 3D printing techniques may be beneficial. Three-dimensional printing revolutionizes the
production of small, intricate elements [3,4]. One of the most commonly used 3D printing
methods is Material Extrusion (MEX), also known as Fused Deposition Modeling (FDM) or
Fused Filament Fabrication (FFF) [5,6]. This technique uses thermoplastic polymer extru-
sion to create three-dimensional parts. Since its inception, MEX technology has become
one of the most popular and recognizable additive manufacturing methods due to its ease
of use and cost-effectiveness [7]. The use of this technology allows for the combination of
Electrostatic Discharge Resistance (ESD) in polymer materials with appropriate additives
while meeting the geometric requirements of optoelectronic components. Filament materi-
als are readily available, and the extrusion process is precise, relatively inexpensive, and
straightforward.
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The authors of [8] produced diffusion tubes with Ion Mobility Spectrometry (IMS)
using the MEX method. They demonstrated the possibility of single-run 3D printing of
an IMS drift tube with integrated gate and aperture grids using a three-fiber 3D printing
system, which provided better quality and less waste than traditional methods. The im-
portance of testing printing parameters such as temperature and extrusion speed was also
emphasized, as these affect the ESD conductivity of the filament and can yield different
results on various 3D printers. Hauck et al. [9] designed a one-piece drift tube for IMS
using 3D printing, consisting of alternating conductive and insulating layers. The goal was
to increase the accuracy and repeatability of the measurements compared to traditional
drift tubes assembled manually, which can introduce errors in calculating mobility. The
results showed that the 3D printed drift tubes had uniform lengths and minimal weight
differences, leading to accurate and repeatable calculations. It was confirmed that 3D
printing could be an effective method for producing drift tubes of consistent length, thus
improving measurement precision in IMS. Su et al. [10] developed a method for fully 3D
printing flexible Organic Light-emitting Diode (OLED) displays. Through a multimodal
printing approach that combines extrusion and spraying methods, they constructed devices
with significantly improved uniformity of active layers and more stable polymer–metal
connections. Spray printing, which was used to deposit active layers, improved their unifor-
mity by reducing the directional mass transport. Additionally, mechanical reconfiguration
of the liquid metal surface increased the contact area of the polymer–metal connections.
The patent [11] describes an advanced LED lighting device that provides improved con-
vergence of light beams and increased radiation range compared to traditional reflectors.
The design includes a high thermal conductivity base with a curved upper portion, an
internal container with a flat mounting surface, and a curved shield with an internally
reflective surface. These components enable the focusing of LED light beams and minimize
dispersion, significantly enhancing the device’s lighting efficiency.

In the context of optoelectronic devices, there is a risk of ESD, which poses a threat
to both operators and the devices themselves [12,13]. Phenomena such as separation and
induction can generate excess electrostatic charges, which can lead to damage, especially
in devices sensitive to ESD [14,15]. The electronics industry has numerous standards that
define methods for controlling, testing, and taking preventive actions to ensure the safe
handling of electronic components, including during production. Using materials with
adequate surface resistance and good mechanical properties to manufacture structural
components and enclosures of optoelectronic devices is crucial to ensuring the proper
functioning and safety of these devices and their users [9]. The patent [16] presents
innovative applications of electrostatic discharge-resistant enclosures, particularly for
optoelectronic devices. One example of a patented enclosure includes a reflecting element
designed to both reflect electromagnetic radiation emitted by the semiconductor device and
absorb electromagnetic radiation directed toward the device. The reflecting part is covered
with the same material as the rest of the enclosure, but the internal reflective part remains
partially uncovered. The reflecting element is made of a different type of synthetic material
than the rest of the enclosure, differing in at least one significant material property, such
as thermal stability or resistance to electromagnetic radiation. A key aspect of the design
is that the reflecting part is not connected to the rest of the enclosure using adhesives or
mechanical macroscopic connections but, rather, joins directly through contact. The patent
also presents a series of other solutions related to various materials and structural elements
of enclosures used in different applications.

The polymers most commonly used in electronic applications are Acrylonitrile Buta-
diene Styrene (ABS), Polylactic Acid (PLA), Polyetheretherketone (PEEK), Polybutylene
Terephthalate (PBT), and polyethylene terephthalate glycol-modified (PET-G) [17–24].

Polyethylene terephthalate glycol-modified (PET-G) is an amorphous copolymer with
good transparency, mechanical properties, and chemical resistance, which is used in 3D
printing. It is characterized by high mechanical strength and thermal stability. PET-G shows
better thermal degradation and higher thermal stability compared to other materials used
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in 3D printing, making it suitable for producing components that require high strength and
flexibility [25,26]. The patent [11] proposes an advanced optoelectronic device utilizing a
housing made from two different types of plastics with specific properties. The first material,
such as polybutylene terephthalate (PBT), PET-G, or polyetheretherketone (PEEK), is chosen
for its high resistance to electromagnetic radiation and thermal stability. The second
material, such as polyamides or polyphenylene sulfone, is selected for other structural
aspects. The reflecting part of the housing is made from the first type of material, to which
a white pigment like titanium dioxide is added to enhance its ability to reflect radiation.
The enclosure provides a suitable environment for optoelectronic components such as
light-emitting diodes (LEDs) or lasers that emit electromagnetic radiation. These elements
are mounted in the housing in a manner that allows controlled reflection or scattering of
radiation. The use of materials with increased resistance to electrostatic discharge, such as
PET-G, enables the implementation of this solution using additive manufacturing methods,
potentially increasing production flexibility and efficiency.

Given the benefits of PET-G compared to other widely used 3D printing materials,
this study aims to investigate selected strength properties of PET-G and evaluate whether
doping the material positively affects its final properties. There is a lack of available research
results of this type; therefore, the novelty lies in compiling strength and structural analysis
results with surface resistance data. This allows us to address whether the additively
manufactured component will provide adequate strength while maintaining ESD resistance.

2. Materials and Methods
2.1. Materials for the Research

The first material selected for research was the ESD-resistant PET-G filament. This
material is relatively easy to print with and does not require a heated chamber. The
manufacturer claims that the filament is resistant to electrostatic discharge. The next
material chosen was pure PET-G, which was selected to investigate whether the addition
of compounds improves the properties of the final filament. The last material selected
was PET-G doped with carbon fiber (up to 10% carbon fiber content). This material has
high mechanical strength and is designed to operate in extreme temperatures. It is an
industrial-grade filament that can be processed and used on 3D printers. It is safe for
both humans and the environment, as it does not emit toxic fumes and exhibits minimal
shrinkage. This selection of materials allowed us to compare and assess how doping affects
the final mechanical and electrostatic properties of PET-G. All materials were supplied by
Spectrum Filaments (Spectrum Filaments, Pęcice, Poland).

2.2. Manufacturing Process

The 3D models of the test samples were designed using SolidWorks CAD software (Das-
sault Systems; Waltham, QC, Canada) (version 2023). Dogbone-shaped samples were designed
for static tensile strength according to the relevant standard ASTM D638-14:2022—Standard
Test Method for Tensile Properties of Plastics [27] (Figure 1).
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Rectangular samples measuring 200 mm × 200 mm × 3 mm for surface resistance
testing were designed according to the appropriate standards [28].

The test samples were fabricated using the Material Extrusion (MEX) technique. The
manufacturing process was carried out using a Prusa i3 MK3s 3D printer (Prusa Research,
Prague, Czech Republic). The print codes were prepared in advance using the dedicated
3D printing software Prusa Slicer v2.5.2. The process parameters for all types of samples
were kept consistent and are detailed in Table 1. Figure 2 shows printed samples.

Table 1. Printing parameters of the MEX.

Filament
Diameter

[mm]

Nozzle
Diameter

[mm]

Printing
Temperature

[◦C]

Bed
Temperature

[◦C]

Print Speed
[mm/s] Infill Pattern Infill

[%]
Number of
Contours

1.75 0.4 230 80 70 linear 100 3
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 Figure 2. Printed models of samples, prepared for testing: (a). PET-G; (b). Carbon fiber PET-G;
(c). ESD PET-G.

2.3. Testing Methods

The static tensile test of the fabricated samples was performed according to the stan-
dard ASTM D638-14:2022—Standard Test Method for Tensile Properties of Plastics [27].
Experiments were performed using a classic INSTRON 8802MTL tensile testing ma-
chine (Norwood, MA, USA) equipped with WaveMatrix software (version 2.0) (Instron,
Norwood, MA, USA). Strain measurements were obtained using an extensometer (2620-
604, INSTRON, Norwood, MA, USA) with a gauge length of 50 mm. Furthermore, the
properties were examined by surface analysis using Digital Image Correlation (DIC).

Subsequently, the surface structure of the samples was analyzed after tensile testing
using a Keyence VHX-7000 digital optical microscope (Keyence, Osaka, Japan). Representa-
tive samples of each material were selected for this analysis.
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Following this, the resistance to electrostatic discharge was evaluated using the rel-
evant standard. Resistance measurements were carried out using an Aijgo 61 resistance
meter (Aijgo, Vác, Budapest). The tests were carried out in a laboratory setting after con-
ditioning the samples for 48 h at a temperature of 23 ± 2 ◦C and a relative humidity of
12 ± 3% RH. Surface resistances were measured using various Concentric Ring Electrodes
(CRE) following the standard guidelines. To reduce contact resistance, measurements were
repeated using a Surface Resistivity Bar (SRB) electrode. The SRB electrode had a mass of
2900 g, a bar width of 3 mm, and a length of 50.8 mm, with a spacing of 25.4 mm between
the bars. The contact surface was made of conductive rubber (3 mm thick, hardness A 60,
ρV < 100 Ωm) or copper. Dimensions were considered, and the results were expressed
as resistance.

Material resistance was measured using an electrode with a mass of 2.3 kg and a
diameter of 63 mm. Various types of conductive rubber were compared to determine the
lowest possible contact resistance between the upper and lower electrodes and the sample.
As a result of the unstable contact between the electrode and the samples, concentric ring
electrodes (CREs) could not be used. Furthermore, DC resistance through the material was
measured using an ESD contact probe with a rounded tip. Results were recorded after
15 s of electrification. The test voltage was 10 V for resistances below 1 MΩ or 100 V for
resistances greater than 1 MΩ. All measurements were repeated ten times, with the results
presented as minimum and maximum readings along with the geometric mean.

3. Results

All tests were performed on samples printed on three different materials. The descrip-
tions of the results of all tests correspond to the classifications described in Table 2.

Table 2. Descriptions of the series of samples used during the research.

Material Condition Specimen Description

PET-G O
Carbon fiber PET-G C

ESD PET-G E

3.1. Static Tensile Test

To determine the tensile strength, five measurements were made for each type of
sample. The results obtained are presented in Figures 3–5. While analyzing the graph
for undoped PET-G presented in Figure 3, it was observed that the obtained samples are
stable but lower in comparison to the results presented in articles such as [29]. Such a
phenomenon could be related to the different suppliers of the material that could use
different base materials for filament production. All the specimens also exhibited stress
results below the standard, approximately 30 MPa. The likely cause of these differences
is the use of the same manufacturing parameters for all material configurations. The
curve selected for comparison was identified from all the tests in which the stress values
were around 30 MPa, aligning with the results presented in other scientific studies on this
material, such as [29]. Subsequently, tests were conducted on materials with additives
enhancing electrostatic discharge (ESD) resistance. In the case of PET-G samples marked
with the symbol O, one type of fracture mechanism occurred. All samples carried the
highest load with a deformation in the range of 4–7%. This is due to the good cohesion of
the external layer with the internal structure of the sample.
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The plotted graph (Figure 4) for the ESD material showed a significantly reduced max-
imum stress value compared to the reference material. The doping resulted in a decrease
in strength to approximately 23 MPa. The graph showed two curves that significantly
deviated from the rest. Hence, the first three samples exhibiting the highest tensile strength
were taken as the standard. Considering the results presented in the article [30], it can be
noted that they are significantly better, resembling more closely the values for undoped
PET-G. The inferior properties of PETG ESD compared to the results of the study may
be due to the use of two different manufacturers for this type of material. The material
datasheet tested during the static tensile test does not provide information on the elements
used during doping. Another reason for the reduced stress value could be the printing
parameters. Additionally, an important factor is the fill pattern. The researchers in the
article [30] applied values for several fill patterns, yielding different strength results ranging
from approximately 34 to 51 MPa. The lowest result corresponded to the circular fill, while
the highest was achieved with the linear fill pattern. In the case of samples marked “E”,
samples E1, E2, and E2 were considered representative and correctly made. The compact
structure of the outer layer and the core ensured high strength and a gentle course of
strength loss. In the case of samples E4 and E5, the internal structure mainly transferred
elastic loads. After exceeding the yield point, the load was taken over by the outer layer. It
gradually narrowed locally. This narrowing gradually propagated along the entire length
of the sample.

Subsequently, samples made from carbon fiber-reinforced filament were tested. The
graph in Figure 5 shows the stress–strain curves for PET-G reinforced with carbon fiber,
which were the most consistent among all the tested samples in this series. The maximum
values ranged from 21 MPa to 24 MPa. In studies published in the article [31], results
around 30 MPa were reported, suggesting that the tests were conducted properly and
the obtained results are comparable. For PET-G CF, the first three samples, whose curves
almost overlapped, were considered representative. Given that all specimens, regardless of
material type, were printed using the same parameters, it can be concluded that the applied
additives significantly influence the strength properties of the printed elements. PET-G
carbon fibre samples. Samples C1–C4 were characterized by good repeatability. Carbon
fibers ensured a good connection of the elastic material and its cohesion in the range of
plastic deformations. Sample C5 transferred the maximum load at an acceptable level, but
the level of deformations was low. This resulted from the increased concentration of carbon
fibers in a small area, which caused a dynamic fracture of the sample.

Figure 6 illustrates representative curves for all materials used in the strength tests.
Due to the large scatter of results in mechanical tests, the authors selected curves for
samples with the highest tensile strength. This criterion allows for the presentation of
fracture mechanisms for samples carrying the highest load, during which the weakest links
in the manufacturing process are clearly revealed.

The C2 sample achieves a maximum stress of about 23 MPa at a strain of around
6%, followed by a rapid decline in stress to near zero at a strain of about 10%. The E3
sample reaches a maximum stress of approximately 19 MPa at a strain of around 3%,
and then the curve declines and remains relatively stable at around 15 MPa until a strain
of about 35%. The O4 sample reaches a maximum stress of about 25 MPa at a strain of
around 5%, followed by a gradual decline in stress to near zero at a strain of about 12%.
Each of the tested materials exhibits different behavior and achieves different mechanical
properties. The E3 sample shows the greatest ability to deform at relatively constant stress
after reaching the maximum value, while the C2 and O4 samples exhibit distinct drops
in stress after reaching their maximum values, with the C2 sample showing the fastest
decline. The parameters used for printing in MEX technology significantly influenced
the obtained results. Additionally, the storage conditions of the filaments may also be a
factor contributing to lower strength results, with the addition of carbon fibers potentially
increasing the material’s water absorption.
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3.2. Digital Image Correlation

During the static tensile test, strain analysis was conducted. The strain distributions are
presented in Figures 7–9. The results obtained indicate a heterogeneous strain distribution
on the surface of all the samples analyzed. This is particularly evident for pure PET-G
(Figure 7), where two distinct areas of higher strain were observed after exceeding the
yield point. This phenomenon may be due to inaccuracies in the print structure, where
crack initiation likely occurred at these locations because of weak connections between the
material’s outline and the infill. Digital image correlation confirmed the tensile test results.
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Figure 9. Strain distribution recorded using digital image correlation for carbon fiber PET-G.

The doped materials (Figures 8 and 9) exhibited much greater ductility, as measure-
ments were taken only up to the end of the extensometer range rather than until the sample
fracture. Consistently, for samples made of PC/PET-G (Figure 9) and PET-G ESD (Figure 8),
areas of reduced tensile resistance were observed and identified as crack initiation points.
For all samples, these regions are located near the boundary of the sample and propagate
along the infill lines of the model. The propagation is attributed to the anisotropy of the
mechanical properties, which indicates the variation of resistance in different directions,
which is directly related to 3D printing technology.
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For all samples tested, particularly just before fracture, linearly arranged areas (at
an angle of approximately 45◦) are observed with increased strain. This phenomenon is
associated with the change in the orientation of layer deposition during the 3D printing
process, which is another factor influencing the degradation of elements manufactured
using PET-G-based materials.

3.3. Analysis of Fracture Surfaces after Static Tensile Testing

We show the results of the surface fracture analysis following the static tensile test,
which was conducted for the cross-sections of the three types of samples examined
(Figure 10A–C). The structure of pure PET-G (Figure 10A) is the most solid, with indi-
vidual paths of deposited material fused together without distinct gaps. In the case of
doped samples (Figure 10B,C), the individual paths of the printed material are visible, and
single fibers used to dope the material can also be observed.
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Figure 10. Sample fracture structures after static tensile testing for the following: (A) PET-G;
(B) Carbon fiber PET-G; (C) EDS PET-G.

In the structures examined by means of a microscope for all samples, fractures predom-
inantly exhibit brittle cracking. In some areas, plastic cracks are observed. The initiation
points of material failure are also clearly visible. The first sample examined is pure PET-G
(Figure 10A). The crack initiation point is marked in the close-up. The microscopic analysis
also revealed that the surface in direct contact with the bed during printing has fibers much
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more tightly bonded than those of the upper layers. This phenomenon occurred in both
pure PET-G and doped variants (Figure 10B,C). A difference in structure is visible between
the wall and the filling. The second sample (Figure 10B) contained carbon fibers. It is
noticeable that during the tensile test, the fibers were separated from the PET-G matrix,
which has been confirmed in other studies [32]. Individual layers are not well bonded, and
the broken carbon fibers create voids in the material structure. The strength of individual
fibers affects the overall sample strength. In specimens with this additive, the direction in
which the 3D printer places the infill negatively impacted the results. The best effects could
be achieved with lines parallel to the tensile force. The destruction of material occurred
over a large area of the sample. The course of the fracture process of the internal structure is
unchangeable. Only the external structure has a random fracture course, and additionally,
the authors wanted to present this in Figure 11.
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Figure 11. Samples after static tensile testing made of carbon fiber PET-G.

The last material tested was PET-G ESD (Figure 11), which exhibited the least cohe-
sive fracture. In the microscopic image of the sample, large gaps in the central infill are
noticeable. As with the other materials, the best bonding was observed between the layers
printed on the bedside and those forming the walls. These structures influenced the final
strength properties. The bottom surface of the sample also contacted the adhesive applied
to the bed during printing. Due to the elevated temperature (approximately 60 ◦C), the
adhesive likely bonded with the filament material. Close-ups reveal areas characteristic
of plastic cracking. Unlike the other materials, the fibers in PET-G ESD mainly carried the
load instead of breaking brittlely. Additionally, fibers with internal voids were observed,
which could have significantly impacted the results obtained during the static tensile test.

3.4. Electrostatic Resistance

The results of the tests conducted on electrostatic discharge resistance for the printed
samples are presented in Table 3.

The surface resistivity values for samples made of PET-G ESD confirm their resistance
to electrostatic discharge. The resistance test results align with observations made under
the microscope. A sample labeled E did not meet the ESD resistance requirements from the
workbench side. The result within the limit is over 1000 times smaller. One possible reason
for the difference between the bottom and top layers of the PETG ESD material sample
could be the use of an additional adhesive substance. Due to the nature of 3D printing,



Materials 2024, 17, 4095 12 of 14

the temperature on the bed during the process is 60 ◦C. The adhesive substance in direct
contact with the first layer of the model may penetrate the material structure and alter its
properties. For applications requiring ESD resistance, it would be advisable not to use such
substances or to pre-treat the prototype surface to remove adhesive residues. In addition,
parameters such as sample thickness and infill type can be significant. Depending on the
application, it may be necessary to perform additional measurements to determine the ESD
resistance values for the final models.

Table 3. Surface resistivity measurement results for the samples.

Tested Samples Results on the Upper Surface Results on the Lower Surface
(Build Plate Side)

Voltage Load 100 Conclusion Voltage Load 100 Conclusion

Samples O over limit material
is an isolator over limit material

is an isolator

Samples E 8.7 × 106 Ω
material exhibits

dissipative
properties

17 × 109 Ω
material does not exhibit
dissipative properties—

beyond ESD limit

Samples C over limit material
is an isolator over limit material

is an isolator

4. Conclusions

In this study, selected mechanical strength, structural, and electrostatic tests were
performed on selected materials for optoelectronic applications. The aim was to understand
the behavior of additively manufactured materials under mechanical load, including static
tensile testing using DIC, fracture microstructure analysis, and their ESD. The results of
these tests led to the following conclusions:

• PET-G without additives achieved the highest stress values (30 MPa), while ESD
additives and carbon fibers reduced the strength to 23 MPa.

• PET-G ESD exhibited significant plasticity, reaching an elongation at a break of 32%,
which is four times the breaking strain of pure PET-G.

• DIC analysis allowed for a detailed examination of surface deformations, showing
greater plasticity in materials with additives and increased tensile resistance.

• Fracture microstructure analysis identified crack initiation sites and specific fracture
features in doped materials.

• Surface resistance tests confirmed that PET-G ESD effectively disperses electrostatic
discharges.

These findings underscore the dual benefits of PET-G in additive manufacturing: pure
PET-G excels in mechanical strength, while doped PET-G formulations exhibit enhanced
plasticity and superior ESD dissipative properties. This dual capability positions PET-G as
a versatile material for a wide range of optoelectronic applications, from structural compo-
nents requiring high mechanical integrity to devices demanding stringent ESD protection.
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