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Abstract: The emphasis of this study is placed on the investigation into the failure mechanisms of
the fabric membranes when exposed to such defective cracks. This experimental study investigates
the initial crack of a flat circle and conducts a uniaxial shear test on the membrane materials. The
deformation of the membrane materials is obtained through an optical non-contact scanner. Our
study has been conducted to assess the crack propagation of fabric membrane materials at different
angles. The relationships between crack width and stress together with stress and strain are also
obtained. Based on the results, a mechanic of failure on the membrane was proposed. Moreover,
new findings into the ductility and energy absorption of the fabric membrane materials have been
established to inform the failure mechanisms.

Keywords: oblate initial crack; membrane material; crack propagation; failure mechanism

1. Introduction

Structural membrane materials with their lightweight, high-strength properties, are
widely used in various fields such as public buildings, emergency rescue, and so on, and
can afford excellent architectural expressions and large application spaces [1–3]. Membrane
structures have widespread applications, which usually use the PVDF membrane. PVDF
membranes are made of yarns and coating. The coating is high-quality polyvinylidene fluo-
ride (PVDF) and provides high performance for buildings. The yarns are usually polyester
or fiberglass, which offers the strength of mechanics. The combination of yarns and coating
can provide good mechanical strength and excellent chemical properties including being
waterproof, thermal insulation, corrosion-resistant, etc. Numerous instances of damage
and even accidents leading to destruction have emerged [4,5]. The failure of membrane
materials generally does not result from the ultimate tensile strength obtained when the
material is undamaged [6,7]. Instead, it stems from damages such as broken filaments,
cracks, and creases occurring during the production, processing, and construction pro-
cesses [8,9]. Stress concentration near these defects can lead to tearing failure at low stress
levels, making tearing the primary failure mode of membrane structures. Consequently,
understanding the durability and tearing mechanisms of membrane structures has become
increasingly important [10–13]. The tensile membrane structure is shown in Figure 1 [14].

This research topic has been researched by scholars both domestically and internation-
ally. Chen et al. [15] conducted experimental research on the tear performance of biaxial
warp-knitted fabrics with different off-axis angles. The results showed that in off-axis ten-
sile tests, the lowest tensile strength of biaxial warp-knitted fabrics occurred at the off-axis
angles of 15◦ and 75◦. Zhang et al. [16] studied the fitting effect of different treatment meth-
ods on the nonlinear uniaxial tensile properties of two coated fabrics based on experimental
results and obtained reasonable fracture toughness and accurately predicted critical tear
strength. T. Ennouri et al. [17] conducted a tensile center crack tearing test, developed a
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textile structure standard based on tearing energy by using composite textile materials, and
studied the effects of fabric linear density, yarn density, and weaving on tearing behavior.
M. Pankow et al. [18] studied tear tests on two different weaving structures to determine
how failure begins in composite materials in each case. The results showed that there exists
a strain field dependent on the structure of these materials, and this localization led to the
onset of failure.
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Figure 1. The mast-supported canopy in the city of Scottsdale.

At present, the research on damaged membrane materials at home and abroad mainly
focuses on the tearing strength and tearing process of the membrane materials, and the
results are all based on the assumption that the membrane materials are isotropic [19–22].
In practice, however, the film is typically a discrete material, its strength is determined
by the baseline, and the fracture of the material is determined by the yarn. In field tests,
only the lateral deformation of the crack plane can be observed in the specimens, and
there are few representations of the deformation of the tested membrane material in three
dimensions. Therefore, this study primarily focuses on analyzing the deformation stages of
tension membranes with oblateness initial cracks in uniaxial shear tests. Using an optical
scanner, the study investigates changes in the stress state of the membrane material and
the deformation morphology of the tension membrane at the moment of final tearing,
establishing a relationship between crack width and stress function.

2. Experiments
2.1. Test Settings

The experiment has conducted uniaxial shear testing on membrane materials using
a new innovative shear apparatus for soft membrane materials developed at Jiangsu
University of Science and Technology. The dimensions of the membrane material are
200 mm × 50 mm, and its relevant properties are listed in Table 1. The material in the test is
PVDF, which was usually used in the application with its high strength, chemical resistance,
thermal stability, etc. The edges of the membrane material have been curled at both ends
for easy clamping by fixtures. Considering the material’s anisotropy, the study investigated
the influence of initial cut deflection angle on yarn orientation. Test data are then analyzed
to obtain relevant data on membrane crack and overall deformation diagram.

Table 1. Performance parameters of membrane materials.

Parameter Type Base Density Elastic
Module

Tension
Strength

Tear
Strength Yarn Thickness Yarn

Strength

Data PVDF 1300 g/m2 430~480 MPa 9000 N/5 cm 550 N/5 cm 1500 D × 1500 D ~100 N

The initial crack position of the specimen is shown in Figure 2a, and the experimental
setup is depicted in Figure 2b. The deformation of the specimen under each load can
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be captured using an optical scanner, which is shown in Figure 2d, and the load can be
measured using an S-type load cell shown in Figure 2c. In the experiments, the load of
500 N has been added step by step in each stage.
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Figure 2. Test specimens and devices. (a) Initial crack location of the specimen. (b) Device dimension
diagram. (c) DYLY-103 S sensors for tension force. (d) Q7 optical scanner.

2.2. Test Conditions

To investigate the impact of crack position and angle on crack propagation and failure
mechanism, oval-shaped cracks are placed at the center and edges of the membrane
materials, with angles selected at 0◦, 30◦, 45◦, 75◦, and 90◦ for five different conditions.
During the experiments, the loads for the 0◦, 30◦, 45◦, 75◦, and 90◦ conditions are set at
500 N in stages, as outlined in Table 2. In Table 2, “a” represents the major axis of the flat
circle, and “b” represents the minor axis of the flat circle.

Table 2. Test conditions.

Case Position Crack Shape Crack Angle Initial Crack Length

1 Center Oblate circle 90◦ a = 10 mm, b = 4 mm
2 Center Oblate circle 75◦ a = 10 mm, b = 4 mm
3 Center Oblate circle 45◦ a = 10 mm, b = 4 mm
4 Center Oblate circle 30◦ a = 10 mm, b = 4 mm
5 Center Oblate circle 0◦ a = 10 mm, b = 4 mm
6 Margin Oblate circle 90◦ a = 10 mm, b = 4 mm
7 Margin Oblate circle 75◦ a = 10 mm, b = 4 mm
8 Margin Oblate circle 45◦ a = 10 mm, b = 4 mm
9 Margin Oblate circle 30◦ a = 10 mm, b = 4 mm

10 Margin Oblate circle 0◦ a = 10 mm, b = 4 mm

2.3. Data Processing Methods

The circular holes in the on-site image and the point cloud image are both identification
points for the optical scanner, with no data collection involved. They are solely used
for acquiring and identifying the point cloud. Stress refers to the average stress on the
membrane material, strain represents the ratio of the length increment due to deformation in
the corresponding condition direction to the original length, crack length is the maximum
length between the crack tips in the corresponding condition direction, crack width is
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the maximum length of the crack in the perpendicular direction to the corresponding
condition, and crack vertical displacement is the maximum displacement between the
original plane of the membrane material and the vertical deformation point of the crack
under the corresponding load.

3. Experimental Results
3.1. Stress and Strain Results

The point cloud diagram of 75◦ is shown in Figure 3. Based on the point cloud in
Figure 3, the stress and strain can be measured. It can be seen clearly that the initial crack
is relatively small, and it later extends with the increase in the load. It roughly seems like
an elliptical shape at the load of 1500 N. Although the shape of the crack has not changed
significantly, its elongation can be seen from the data in Figure 3.
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3.1.1. Force–Displacement

Force–displacement graphs are shown in Figure 4. It can be seen from Figure 4 that
the specimen is in the stage of elastic deformation during the tensile process.

Materials 2024, 17, x FOR PEER REVIEW 5 of 14 
 

 

  
(a) (b) 

Figure 4. Force–displacement graphs. (a) Case of center. (b) Case of edge. 

3.1.2. Cases of Central Crack 
Under the central crack cases, the stress–strain values of the membrane material are 

shown in Table 3, and the stress–strain curve is shown in Figure 5. 

Table 3. Stress–strain on the cases of central crack. 

Parameter Stress/MPa Strain/% 

Load/N 
1 

−90° 
2 

−75° 
3 

−45° 
4 

−30° 
5 

−0° 
1 

−90° 
2 

−75° 
3 

−45° 
4 

−30° 
5 

−0° 
0 0 0 0 0 0 0 0 0 0 0 

500 12.50 12.39 12.05 11.11 10.87 2.07 2.22 2.18 1.93 3.26 
1000 25.00 24.79 24.10 22.22 21.74 4.98 4.55 4.60 5.12 5.82 
1500 37.50 37.18 36.15 33.33 32.61 8.45 7.93 7.19 8.49 7.77 

 
Figure 5. Stress–strain diagram at the center position. 

As shown in Figure 5, the stress–strain curves for all five conditions exhibit a linear 
relationship. The stress–strain curve formula for the central position has been fitted using 
MATLAB, yielding Equation (1) as shown below, where σ   represents stress and ε  
represents strain, E can be the elastic module, which is approximately 440 MPa. 

0 1 2 3 4 5 6
0

500

1000

1500

2000

Fo
rc

e/
N

Displacement/mm

Case 1---Oblate center crack 90°
Case 2---Oblate center crack 75°
Case 3---Oblate center crack 45°
Case 4---Oblate center crack 30°
Case 5---Oblate center crack 0°

0 1 2 3 4 5 6 7
0

500

1000

1500

2000

Fo
rc

e/
N

Displacement/mm

Case 6---Oblate edge crack 90°
Case 7---Oblate edge crack 75°
Case 8---Oblate edge crack 45°
Case 9---Oblate edge crack 30°
Case 10---Oblate edge crack 0°

0 2 4 6 8 10
0

5

10

15

20

25

30

35

40

St
re

ss
/M

Pa

Strain/%

Case 1---Oblate center crack 90°
Case 2---Oblate center crack 75°
Case 3---Oblate center crack 45°
Case 4---Oblate center crack 30°
Case 5---Oblate center crack 0°

Figure 4. Force–displacement graphs. (a) Case of center. (b) Case of edge.
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3.1.2. Cases of Central Crack

Under the central crack cases, the stress–strain values of the membrane material are
shown in Table 3, and the stress–strain curve is shown in Figure 5.

Table 3. Stress–strain on the cases of central crack.

Parameter Stress/MPa Strain/%

Load/N 1
−90◦

2
−75◦

3
−45◦

4
−30◦

5
−0◦

1
−90◦

2
−75◦

3
−45◦

4
−30◦

5
−0◦

0 0 0 0 0 0 0 0 0 0 0
500 12.50 12.39 12.05 11.11 10.87 2.07 2.22 2.18 1.93 3.26

1000 25.00 24.79 24.10 22.22 21.74 4.98 4.55 4.60 5.12 5.82
1500 37.50 37.18 36.15 33.33 32.61 8.45 7.93 7.19 8.49 7.77
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As shown in Figure 5, the stress–strain curves for all five conditions exhibit a linear
relationship. The stress–strain curve formula for the central position has been fitted using
MATLAB, yielding Equation (1) as shown below, where σ represents stress and ε represents
strain, E can be the elastic module, which is approximately 440 MPa.

σ = E · ε (1)

3.1.3. Cases of Edge Crack

Under the condition of edge cracks, the stress–strain values of the membrane material
are shown in Table 4, and the stress–strain curve is shown in Figure 6.

Table 4. Stress–strain under the cases of edge crack.

Parameter Stress/MPa Strain/%

Load/N 6
−90◦

7
−75◦

8
−45◦

9
−30◦

10
−0◦

6
−90◦

7
−75◦

8
−45◦

9
−30◦

10
−0◦

0 0 0 0 0 0 0 0 0 0 0
500 12.50 12.39 12.05 11.11 10.87 1.21 1.82 2.63 2.45 2.27

1000 25.00 24.79 24.10 22.22 21.74 4.65 5.50 5.08 5.48 5.54
1500 37.50 37.18 36.15 33.33 32.61 8.50 9.04 8.09 8.40 9.28

Consistent with the central initial crack, Figure 6 reveals that the stress–strain curves
for all five conditions exhibit a linear relationship. By fitting the stress–strain curve formula
for the edge position using MATLAB, it aligns with Equation (1), indicating that Equation (1)
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corresponds to the stress–strain trend of membrane materials with edge-shaped cracks
under uniaxial tension.
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Figure 6. Stress–strain diagram at the edge position.

Based on the data presented above, it can be concluded that during the initial stage of
external tensile stress, when the stress is relatively low, the strain distribution is relatively
uniform, and the deformation of the specimen is generally consistent throughout. As the
external tensile stress increases, the strain distribution of the specimen becomes uneven, with
larger strain regions forming at the ends of the crack. Moreover, the strain increases closer to the
crack ends. This is primarily because the presence of the initial crack causes a significantly greater
deformation of yarns at the crack ends compared to those further away from the crack, leading
to an uneven internal yarn deformation that results in stress concentration at the crack ends.

3.2. Crack Propagation

Figure 7 displays the method to measure the parameters of the crack such as the length,
width, and vertical displacement of the crack.
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3.2.1. Central Crack Case

The final point cloud shape of each working condition at the center position is shown
in Figure 8. The length, width, and vertical displacement values of cracks are shown in
Table 5. Central crack propagation-related curves are shown in Figure 9.
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From Figure 8, it can be observed that the deformation at 90◦ is the most obvious. The
crack propagation changes from oval to circular.

From Table 5 and Figure 9, it can be observed that as the external load increases
during the deformation process, the area of the defect also increases. During stretching,
the initial oblateness crack evolves into a circular shape, with the crack propagation
direction always following the preset direction. The crack gradually widens and exhibits
an increase in vertical displacement. After reaching the midpoint of the external load,
the vertical deformation maintains minor fluctuations. The crack length generally shows
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a linear growth trend. Under the 90◦ condition, the crack in the membrane material
expands at the fastest rate, reaching a circular shape at 1500 N, with the crack width
approaching its length.
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Figure 9. Central crack propagation-related curve. (a) Stress–length curve. (b) Stress–vertical
displacement curve. (c) Stress–width curve.

Table 5 and Figure 9 show that under the 0◦ condition, the crack length expansion is
more pronounced compared to the width in the membrane material.

From Figure 10a, it can be observed that the crack length is positively correlated with
stress across all five conditions. Figure 10b shows that initially, there is a linear relationship
between stress and vertical crack displacement, which later stabilizes gradually. The crack
width is directly proportional to stress, forming a function relationship. The stress–width
curve for the central position, calculated using MATLAB, is shown in Figure 10c and is
represented by Equation (2), where w represents crack width, σ represents stress value,
and w0 represents the initial cut width. Theoretically, the initial crack width should be the
minor axis of the oval shape, which in this experiment is approximately 4.0 mm.

w = 0.067 · σ + w0 (2)
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3.2.2. Edge Crack Working Condition

The final shape of each case at the edge position is shown in Figure 10.
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Consistent with the central crack, the vertical displacement of the crack under the 0◦

working condition is not significant and cannot be measured, so these data are not included
in this working condition. The length, width, and vertical displacement values of cracks
are shown in Table 6, and the relevant curve graphs are shown in Figure 11.

Table 6. Numerical values related to edge crack propagation.

Parameter Stress/MPa Crack Length/mm

Load/N 6
−90◦

7
−75◦

8
−45◦

9
−30◦

10
−0◦

6
−90◦

7
−75◦

8
−45◦

9
−30◦

10
−0◦

0 0 0 0 0 0 8.78 10.11 8.36 9.60 9.72
500 12.50 12.39 12.05 11.11 10.87 9.15 10.54 9.87 10.49 9.99

1000 25.00 24.79 24.10 22.22 21.74 9.30 11.68 9.99 11.15 11.48
1500 37.50 37.18 36.15 33.33 32.61 9.97 13.13 11.00 11.69 13.25

Parameter Crack Width/mm Vertical Displacement of Cracks/mm

Load/N 6
−90◦

7
−75◦

8
−45◦

9
−30◦

10
−0◦

6
−90◦

7
−75◦

8
−45◦

9
−30◦

10
−0◦

0 3.67 3.85 3.93 3.78 3.77 / / / /

/
500 4.33 4.12 4.40 4.35 4.47 0.98 0.71 1.08 1.06

1000 5.29 5.01 4.79 5.36 4.80 1.22 0.94 1.11 1.24
1500 6.49 6.66 5.45 5.99 5.24 1.38 1.01 1.13 1.28
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Figure 11. Edge crack propagation-related curve. (a) Stress–length curve. (b) Stress–vertical displace-
ment curve. (c) Stress–width curve.

From Table 6 and Figure 10, it can be deduced that under the 90◦ case, the crack in
the membrane material expands at the fastest rate, while under the 0◦ condition, crack
deformation is less pronounced. Compared to the central initial crack, edge cracks exhibit a
more significant expansion in crack width during the propagation process. From Figure 10,
the deep blue area on the edge of the crack is buckling. It can be inferred that during
stretching, the membrane material exhibits curling at the edges. This is because the applied
force causes transverse contraction in the membrane material, leading to curling to release
stress. The membrane material curls towards the side with lower stress. The crack length
shows a relatively gradual linear growth trend.

Consistent with the central initial crack, Figure 11a reveals that the crack length is
positively correlated with stress across all five conditions. Figure 11b indicates that there is
initially a linear relationship between stress and vertical crack displacement, which later
stabilizes gradually. The crack width is directly proportional to stress, forming a function
relationship. The stress–width curve for the edge position, calculated using MATLAB, is
shown in Figure 11c, and the fitted function is consistent with Equation (2).

Figure 11c illustrates that at low stress levels, the crack width increases rapidly initially
but then increases very minimally. This is because the initial cut may not be at the baseline
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position, and the mechanical properties of the coating are poor, making it prone to tearing.
Once the crack expands to the baseline, the crack width essentially stops increasing.

4. Discussion
4.1. Tip Stress

According to fracture mechanics theory, the tip stress σmax at the edge stress is repre-
sented by Equation (3) under the assumption of the cut being elliptical [23]. Where σaver is
the average stress on the hole ligament, 2a is the vertical length of the cut, 2b is the horizontal
length of the cut, and 2h is the width of the membrane material.

σmax = S′σaver

S′ =
{
(1 + 2a/b)(a − b)2(1 − a/h)h

}
/
{(

b2/2 − ab
)
h+(

a2 − ab + b2/2
)√

h2 + b2 − a2 +
[
(a − b)b3/2

]
/
√

h2 + b2 − a2
} (3)

By using Equation (3) for calculations, the tip stress under each condition can be
obtained, as shown in Table 7. From the tip stress values, it can be observed that among
the 10 conditions, only the 75◦ condition has a tip stress exceeding 120 MPa, but none of
them reach the ultimate stress of the membrane material yarns. Therefore, the membrane
material does not exhibit complete fracture.

Table 7. Tip stress under various cases.

Parameter Central Crack Condition/MPa Edge Crack Working Condition/MPa

Case Angle 1–90◦ 2–75◦ 3–45◦ 4–30◦ 5–0◦ 6–90◦ 7–75◦ 8–45◦ 9–30◦ 10–0◦

0 0 0 0 0 0 0 0 0 0 0
500 42.77 50.44 35.44 21.65 17.71 47.70 55.90 34.49 22.42 19.18

1000 68.54 89.98 63.61 42.69 35.45 82.40 101.69 65.61 41.49 37.13
1500 90.18 126.76 91.74 62.16 54.16 110.37 130.95 95.17 60.24 54.21

4.2. The Mechanic of Failure

Tip stress under various cases is shown in Table 7. The tip stress–angle relationship
diagram is shown in Figure 12. The mechanics of the process from crack to failure are
shown in Figure 13.
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Figure 12. Tip stress–angle relationship diagram.

From Figure 12 and Table 7, it can be seen that when the angle is 0◦, the tip stress is
very small. However, as the angle exceeds 30◦, the tip stress starts to increase, reaching its
maximum at 75◦. This is because, at small angles, the membrane material can be considered
isotropic, resulting in minimal variation in tip stress. On the other hand, at larger angles,
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the tip stress approaches the baseline strength, and a single baseline approaches the tearing
state while extending to other baselines, causing the tip stress to increase rapidly.
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Figure 13. The mechanic of the process from crack to failure.

Based on the above, Figure 13 is obtained. Figure 13 depicts the deformation of the
film yarn during stretching. The red area and the green area are obvious areas of yarn
deformation. Among them, the deformation of the red region is greater than that of the
green region. The deformation of the remaining black areas is not obvious.

4.3. Energy Absorption

Figure 14 portrays the load behaviors of membrane materials against displacements
on the center cases. It should be noted that the ultimate load or maximum load construes
the membrane failure. Our experimental results demonstrate the elasticity of membrane
materials before yielding. From the load–displacement behaviors, the energy absorption
of failure can be obtained (from the area under the load–deflection curve) as illustrated
in Figure 14.
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From the point view of energy absorption, it can be seen that the ratio of the energy at
failure over the energy of elastic is,

Eu/Ee ≈ 1.98 (4)

Which shows that the material can consume about the same energy of elastic after
yield load. In addition, the ductility ratio of the membrane materials can be calculated
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as σy/σe. In this present study, the ductility ratio is about 1.44, which is lower than the
energy ratio. This is because the plastic stage can absorb more energy.

5. Conclusions

This study focuses on the deformation analysis of membrane materials in various
failure states based on uniaxial shear tests. Using optical scanning technology, three-
dimensional deformation data of membrane materials with initial cracks under tension are
obtained. Subsequently, the expansion and evolution mechanisms of defects (cracks) in the
membrane materials have been analyzed, and it can enhance the design of the membrane
structure. Our experimental study reveals the new findings as follows:

1. The crack width increases continuously during the stretching process, initially increas-
ing rapidly. As stress increases, the crack width increment becomes small, indicating a
transition to a plastic state. The crack width is directly proportional to stress, forming
a function relationship. Equation (2) can be used to approximate the calculation of
crack width.

2. Simultaneously, during the evolution of crack width, the membrane material may
undergo curling, but this curling does not affect the mechanical properties of the
membrane material.

3. The length of the crack increases with the increase in load, suggesting that the crack
point may not always be at a fiber position but could also be at a baseline position.
Once the crack point reaches a fiber position, its length no longer increases.

4. As stress increases, the strain distribution of the membrane material becomes uneven,
with greater strain near the crack ends. Inconsistent internal yarn deformations lead to
stress concentration at the crack ends. Stress is directly proportional to strain, forming
a function relationship. Equation (1) can be used to approximate the calculation of
crack strain.
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Abbreviations

PVDF polyvinylidene fluoride
a the major axis of the flat circle
b the minor axis of the flat circle
σ represents stress
ε represents strain
E can be the elastic module

σmax
under the assumption that it is cut as an ellipse, the edge stress is represented and is
expressed in Equation (3)

σaver average stress on the hole ligament
2a the vertical length of the cut
2b the horizontal length of the cut
2h the width of the membrane material
Eu the energy at failure
Ee the energy of elastic
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