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Abstract: In recent years, the potential of waste engine oil (WEO) as a rejuvenator for aged asphalt
binders has gained significant attention. Despite this interest, understanding WEO’s regeneration
mechanism within aged asphalt binders, particularly its diffusion behavior when mixed with both
aged and virgin asphalt binders, remains limited. This study adopts a molecular dynamics approach
to constructing models of virgin, aged, and rejuvenated asphalt binders with different WEO contents
(3%, 6%, 9%, and 12%). Key properties such as the density, glass transition temperature, cohesive
energy density, solubility parameter, viscosity, surface free energy, fractional free volume, and
diffusion coefficient are simulated. Additionally, models of rejuvenated asphalt binder are combined
with those of aged asphalt binder to investigate mutual diffusion, focusing on the impact of WEO
on the relative concentration and binding energy. The findings reveal that WEO notably decreased
the density, viscosity, and glass transition temperature of aged asphalt binders. It also improved the
molecular binding within the asphalt binder, enhancing crack resistance. Specifically, a 9% WEO
content can restore the diffusion coefficient to 93.17% of that found in virgin asphalt binder. Increasing
the WEO content facilitates diffusion toward virgin asphalt binders, strengthens molecular attraction,
and promotes the blending of virgin and aged asphalt binders.

Keywords: molecular dynamics; waste engine oil (WEO); regeneration mechanism; mutual diffusion

1. Introduction

Engine oil, renowned for its superb lubricating properties, is widely used in inter-
nal combustion engines [1–3]. However, during engine operation, engine oil becomes
contaminated by combustion residues, leading to a gradual deterioration in performance.
Therefore, it is essential to change the engine oil regularly for internal combustion engines.
Recent data show that there are approximately 1.47 billion vehicles worldwide, with each
engine requiring an oil change every 5000–7500 km [4,5]. It is estimated that in 2024, this
will lead to the accumulation of 22.70 billion liters of waste engine oil (WEO) [6]. This
used oil then needs to be thoroughly drained and properly disposed. In addressing the
disposal of WEO responsibly, current recycling practices such as pyrolysis technology for
fuel production [7,8] and refinement for lubricant reuse [9,10] offer sustainable pathways.
Additionally, WEO has been proven to serve as a binder in the production of roofing
tiles [11].

With the widespread use of reclaimed asphalt pavement (RAP) in engineering projects,
there is a growing demand for asphalt recycling agents (ARAs) [12–14]. WEO, with its
primary constituents of aromatic solvents, paraffin oil, and polyolefin oil, possesses the
ability to effectively replenish the lightweight fractions (aromatic and saturate) that are
reduced due to the aging of asphalt binder [15]. Given its potential, WEO has increasingly
captured the interest of researchers. Experimental studies [16,17] have shown that WEO
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can effectively increase penetration, reduce the softening point, and decrease the viscosity
of aged asphalt binders, gradually restoring the physical properties of these binders to the
levels of virgin asphalt binders. Qurashi and Swamy [18] discovered that incorporating
WEO at a proportion of 2–4% by weight of the aged asphalt binder resulted in the most
significant viscosity reduction. When the addition of WEO ranged from 7 to 13%, the
rejuvenation effect was equivalent to that of commercial ARAs [19]. Chen et al. [20]
reported that using WEO to rejuvenate RAP in asphalt mixtures improved performance
both at high and low temperatures. Farooq et al. [21] indicated that the inclusion rate
of RAP could increase from a maximum of 20% to 60% with the application of WEO.
However, WEO can also have some adverse effects on asphalt mixtures, such as reducing
the adhesion between the asphalt and aggregate and increasing the moisture susceptibility
of the mixture [22]. Moreover, studies have indicated that when the WEO content exceeds
10%, both the high-temperature stability and the fatigue performance of the asphalt mixture
decrease [23]. When the WEO content surpasses 15%, the asphalt mixture also faces issues
involving low-temperature cracking [24].

Although numerous macroscopic experimental methods have been developed to
evaluate the rejuvenating properties of WEO, understanding how WEO improves the per-
formance of aged asphalt binders at the molecular level, as well as its impact on diffusion
between the virgin and aged asphalt binders, continues to pose challenges for researchers.
The diffusion behavior within asphalt binders has been characterized at the microscopic
level using techniques such as 3D fluorescence image technology (3D-FIT) [25,26], Fluo-
rescence microscopy (FM) [27–29], and atomic force microscopy (AFM) [30,31]. However,
the reliability of these methods largely depends on the level of sample preparation and
whether the samples are mixed uniformly. Additionally, these approaches fail to explain
the rejuvenation mechanisms of aged asphalt binder adequately.

Molecular dynamics simulation (MD) software “Materials Studio 2020” can accurately
simulate interactions between the atoms and molecules within materials and has been
extensively applied in asphalt binder simulations [32–35]. Previous research has validated
its precision in modeling the aging and rejuvenation processes of asphalt binders [36–38].
Yan et al. [39] conducted a systematic study on the rejuvenating behavior of aged asphalt
binder with 14 common rejuvenators. The results found that rejuvenators with weaker
polarity are more conducive to rejuvenating aged asphalt molecules, which could affect the
diffusion behavior between molecules. Meng et al. [40] developed a molecular dynamics
model for the diffusion system of rejuvenated asphalt. They determined that molecular
forces and micro-voids promote the diffusion of asphalt molecules and rejuvenators. Zhan
et al. [41] discovered that raising the temperature effectively promotes the fusion between
virgin and aged asphalt molecules. Ding et al. [42] noted that adding rejuvenator molecules
to the aged asphalt binder model significantly affected its diffusion coefficient more than
adding them to the virgin asphalt binder model. Sun et al. [43] analyzed rejuvenators
with four distinct molecular structures and concluded that the cyclic aliphatic-aromatic
compounds demonstrated superior diffusion performance in aged asphalt binders.

Although there has been research on the rejuvenating effects of aged asphalt binders
and the diffusion processes between virgin and aged binders, most studies have concen-
trated on rejuvenators composed of simple aromatic or saturated molecules. There is a
relative lack of research on complex rejuvenators composed of multiple molecules, such as
WEO. Furthermore, there is a need for more in-depth explanations at the molecular level
on how the dosage of WEO affects the rejuvenation behavior. Therefore, it is essential to
conduct research addressing these gaps, which hold significant importance in the field of
asphalt recycling and aged asphalt binder rejuvenation, with particular focus on enhancing
rejuvenation techniques, optimizing rejuvenator usage, and improving the molecular fusion
between virgin and aged asphalt binders.
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2. Objective and Scope

The present study aims to investigate the rejuvenation mechanism of waste engine oil
in aged asphalt binders, specifically focusing on its diffusion behavior when blended with
both aged and virgin asphalt binders. Utilizing molecular dynamics methods, the research
establishes models for the virgin asphalt binder, aged asphalt binder, and rejuvenated
asphalt binder models incorporating varying dosages of WEO. Through calculations of
the density, glass transition temperature (Tg), cohesive energy density (CED), solubility
parameter (δ), viscosity (η), surface free energy (γa), fractional free volume (FFV), and diffu-
sion coefficient (D), this study explores the impact of the WEO dosage on the rejuvenation
process and elucidates the fundamental rejuvenation mechanisms. Additionally, mutual
diffusion models for virgin and rejuvenated asphalt binders with different WEO dosages
are developed. This study then analyzes WEO’s effects on the relative concentration and
binding energy within the mutual systems.

3. Molecular Models and Simulation Details
3.1. Construction of Simulation Models
3.1.1. Asphalt Binder Models

Asphalt binder, characterized by a complex and varied array of hydrocarbons, presents
challenges in precisely determining its chemical structure due to its intricate composition.
In this study, the AAA-1 asphalt binder model [44], including saturates, aromatics, resins,
and asphaltenes (SARAs), was utilized and assembled using the amorphous module in
Materials Studio (MS) 2020 software [45]. In previous studies, Fourier transform infrared
spectroscopy (FTIR) analysis revealed that carbonyl and sulfoxide groups emerge as charac-
teristic functional groups in asphalt binder following the aging process [46–48]. Therefore,
the model for long-term aged asphalt was represented by a fully oxidized version of the
12 component model [49]. The detailed molecular models are shown in Figure 1.
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Based on Qu et al.’s [50] study, the NY1 and NY3 molecular models were selected to
represent the virgin and long-term aged asphalt binders, respectively. Table 1 shows the
components and number of molecules in each binder.

Table 1. Molecular components of virgin and long-term aged asphalt binders.

SARA
Components Molecules in Model Virgin Asphalt Binder Model Long-Term Aged Asphalt Binder Model

Molecular
Formula

Number of
Molecules

Weight
(%)

Molecular
Formula

Number of
Molecules

Weight
(%)

Saturate
Hopane C29H50 7

15.9
C35H62 7

14.9Squalane C30H62 7 C30H62 6

Aromatic
PHPN C35H44 18

42.5
C35H36O4 13

33.4DOCHN C30H46 21 C30H42O2 15

Resin

Quinolinohopane C40H59N 2

26.0

C40H56NO2 2

30.2
Thioisorenieratane C40H60S 2 C40H56O3S 2

Trimethylbenzeneoxane C29H50O 15 C29H48O2 17
Benzobisbenzothiophene C18H10S2 3 C18H10O2S2 4

Pvridinohopane C36H57N 2 C36H53NO2 2

Asphaltene
Phenol C42H54O 3

15.6
C42H45O5 4

21.5Pyrrole C66H81N 2 C66H67NO7 3
Thiophene C51H62S 4 C51H54O5S 4

3.1.2. WEO Models

By conducting a gas chromatograph mass spectrometry (GC–MS) test and gel per-
meation chromatography (GPC) test, the detailed components of WEO proposed by Liu
et al. [15], excluding any metal impurities, are listed in Table 2. The WEO molecular model
is shown in Figure 2.

Table 2. Molecular components of WEO.

Rejuvenator Type Molecules in Model Molecular Formula Weight (%)

Waste engine oil

N-Docosane C22H46 8.6%
Mesitylene C9H12 14.1%

Benzene(1-ethyl-2,3-dimethyl) C10H14 23.5%
Methylnaphthalene C11H10 30.2%

N-Acetyl-1-aminonaphthalene C12H11NO 14.1%
Butylenephthalide C12H12O2 9.4%
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3.1.3. WEO-Rejuvenated Models

This study selected four different WEO dosages—3%, 6%, 9%, and 12% by weight
of WEO to the aged asphalt binder—to study the rejuvenating effects of WEO. After
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mixing with aged asphalt binders, they are denoted as 3WEO, 6WEO, 9WEO, and 12WEO,
respectively. Some studies indicate that higher proportions of WEO can potentially weaken
the bonding strength between the asphalt binder and aggregates, leading to adverse
effects on the performance of asphalt mixtures [16,51,52]. Therefore, in this study, the
maximum WEO dosage selected was 12% to ensure a professional and balanced approach
to the analysis.

3.1.4. Mutual Diffusion Models

Rejuvenators are typically blended with the aged asphalt binder and combined with
virgin asphalt to prepare the recycled mixture [53]. The diffusion behavior was investigated
by assembling the virgin—virgin diffusion model, virgin—aged diffusion model (without
WEO), virgin—3WEO diffusion model (WEO dosage of 3%), virgin—6WEO diffusion
model (WEO dosage of 6%), virgin—9WEO diffusion model (WEO dosage of 9%), and
virgin—12WEO diffusion model (WEO dosage of 12%). The virgin asphalt binder layer
comprised 86 molecules in the mutual diffusion models. In comparison, the aged asphalt
binder layer consisted of 79 aged asphalt molecules along with varying numbers of WEO
molecules: 6, 15, 23, and 30. A 5 Å vacuum layer was introduced between the materials in
the simulation to represent the physical separation that exists before molecular diffusion
begins. This vacuum layer eliminates the interaction between surface atoms, accurately
reflecting real-world conditions where materials are initially separated, thus providing
a more realistic simulation of how substances diffuse when they come into contact [54].
Additionally, as shown in Figure 3, periodic boundary conditions without a vacuum
layer were established to account for the complexities encountered in actual construction
environments [55].
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3.2. Simulation Details

Material Studio (MS) 2020 software was selected for modeling the molecular dynamics
(MD). Firstly, molecules of asphalt and WEO were evenly distributed in a cubic box at
a preliminary density of 0.1 g/cm3 to mitigate any overlapping or entanglement effects.
This process was followed by geometry optimization, utilizing the smart descent algorithm
across 10,000 iterations to achieve a stable molecular configuration. Subsequently, a dy-
namic simulation phase lasting 500 ps was conducted under a constant particle number,
volume, and temperature (NVT) ensemble to gradually bring the molecular system to the
desired temperature. This phase was followed by another 500 ps MD simulation under
a constant particle number, pressure, and temperature (NPT) ensemble to facilitate the
thorough mixing of the system. After 500 ps of computation, the temperature, energy, and
density of the asphalt molecular system were essentially constant, thus demonstrating that
they reached equilibrium under both the NVT and NPT ensembles. Finally, another 1 ns
NVT MD simulation was executed, allowing for detailed calculation and evaluation of the
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thermal behavior of the molecules. Figure 4 illustrates the process from molecular assembly
to molecular dynamics simulation, using the aged asphalt binder model as a representative
example.
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Figure 4. The simulation process of the aged asphalt binder molecular model.

The COMPASS II forcefield was utilized in dynamic simulations to characterize molec-
ular interactions. Leveraging two comprehensive molecular databases, it can search and
create model molecules apt for parameterization, thereby significantly improving the sim-
ulation of heterocyclic systems, including asphalt binders [56,57]. Temperature control
was achieved through the Nose–Hoover–Langevin (NHL) thermostat, while pressure was
maintained at 1.0 atm using the Andersen barostat. Electrostatic interactions were ad-
dressed using the Ewald summation technique, and the atom-based summation method
was adopted for the van der Waals (vdW) interactions. Meanwhile, the cut-off distance
was set to 15.5 Å, which was determined by balancing the minimum image convention,
simulation cost, and insights from previous studies [58]. All calculations were conducted at
433.15 K with a fixed time step of 1.0 fs to expedite the equilibrium of the asphalt molecules
and enhance the blending efficiency of WEO in the asphalt binder [59,60].

A comparable sequence of dynamic simulations was performed for the mutual diffu-
sion system, encompassing 10,000 iterations of geometry optimization, followed by 500 ps
NVT, then 500 ps NPT, and concluding with a 1 ns NVT simulation.

4. Results and Discussion
4.1. Rejuvenation Effect on WEO
4.1.1. Molecular Density

Molecular density is often considered a crucial metric for assessing the accuracy of
simulation results [61]. Figure 5 illustrates the changes in density for various models under
NPT simulations at 433.15 K. All of the models’ densities were observed to stabilize after
the initial 75 ps. Hence, the average density calculated from 400 to 500 ps was deemed to
accurately represent the asphalt molecule’s definitive density. This approach determined
that the density of the virgin asphalt binder model was 0.889 g/cm3, while the aged asphalt
binder model showed a density of 0.997 g/cm3. These values are considerably below
those reported in the literature [62], which may be attributed to the elevated simulation
temperature of 433.15 K. High temperatures can lead to thermal expansion and a resultant
decrease in density, explaining why the modeled densities were lower than what is typically
expected. The incorporation of WEO resulted in a decrease in the density of the aged asphalt
binders. This reduction was particularly noticeable with the addition of 12% WEO, where
the density reached its lowest at 0.958 g/cm3. WEO could compensate for the lack of lighter
components in aged asphalt binders, thereby leading to a reduction in density.
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4.1.2. Glass Transition Temperature

The glass transition temperature (Tg) plays a crucial role in defining the physical
characteristics of asphalt materials, reflecting their performance under low-temperature
conditions. In this study, the inverse of the densities of the asphalt models within different
temperature ranges was linearly fitted. Tg was determined by identifying the temperature
corresponding to the intersection point of adjacent fitted lines. NPT simulations of 300 ps
were conducted on the virgin, aged, and WEO-regenerated asphalt models to assess the
effect of WEO on restoring the glass transition behavior in aged asphalt. These simulations
spanned a temperature range from 158.15 K to 433.15 K, with intervals of 25 K. The results,
illustrated in Figure 6, were calculated based on the last 50 ps of the simulations.
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The findings presented in Figure 6 reveal that the Tg of the aged asphalt binder model
exceeded that of the virgin asphalt binder model, rising from 282.89 K to 300.19 K. This
increase stemmed from changes in the asphalt’s compositional balance during aging and the
conversion of some molecules into larger molecular weights. Consequently, this enhanced
the intermolecular forces in the asphalt, thereby restricting molecular mobility. More
energy was thus required to shift from the glassy state to the high-elastic state, resulting
in an elevated temperature threshold for this transition. However, incorporating WEO
into the asphalt increased the molecular chains’ flexibility, which in turn weakened the
intermolecular forces. As such, the Tg of all WEO-regenerant asphalt binder models was
observed to be lower than that of the aged asphalt. Among these, 9WEO demonstrated the
most advantageous low-temperature performance with a Tg of 272.37 K. This was followed
closely by 6WEO at 273.88 K, 12WEO at 284.07 K, and 3WEO at 286.45 K.
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4.1.3. Cohesive Energy Density, Solubility Parameter, and Viscosity

The cohesive energy density (CED) acts as a vital parameter for assessing the inter-
molecular binding robustness in an asphalt molecular framework. It quantifies the amount
of energy needed for each unit of volume to disperse the molecules, thus indicating the
intrinsic cohesive force and molecular interplay within the asphalt binders [61]. Meanwhile,
it is often used alongside the solubility parameter (δ), which emerges as a tool for examining
the solvent–solute dynamics within asphalt binders. The value of δ comprises two compo-
nents: the van der Waals force (δvdw) and electrostatic interaction (δele). Additionally, the
value of δ can also be calculated by taking the square root of the CED value. The detailed
calculation methods for the CED and δ are shown in Equations (1) and (2), respectively:

CED =
−Einter

V
=

Eintra − Etotal
V

(1)

δ =
√

CED =

√
(δvdw)

2 + (δele)
2 (2)

where Einter represents the cumulative intermolecular energy; Eintra represents the cumula-
tive intramolecular energy; and Etotal represents the total system energy.

Viscosity is an indicator of the asphalt binder model’s resistance to shear forces. On
the nanoscale, it can reflect its molecular structure, while on the macroscale, it manifests as
the magnitude of its fluidity. Using the shear function in the Focite module, the viscosities
of different asphalt models were calculated at a shear rate of 1 ps−1 and a temperature of
433.15 K, with the simulation time set to 1 ps.

Table 3 presents the trends of the CED, δ, and η values with the aging of asphalt
and the addition of WEO. Upon aging, the increase in ketones and sulfoxides enhanced
the polarity among molecules, significantly boosting the intermolecular forces per unit
volume and diminishing fluidity. Consequently, this resulted in higher CED, δ, and η
values. However, the values of the CED, δ, and η decreased with the addition of WEO,
indicating that WEO could integrate well with the aged asphalt binder model. The light
components in WEO effectively weakened the intermolecular forces of the aged asphalt
molecules, acting as a lubricant. Among these, the effect on η was the most significant.
When 12% WEO was added to the aged asphalt binder, there was a reduction of 10.77%
compared with the aged asphalt binder without WEO. However, the results indicated that
12% WEO may disproportionately influence the dynamics of the asphalt binder, affecting
its thermal properties differently compared with lower concentrations. This could be due
to excessive WEO molecules introducing more complex molecular interactions. These
interactions can create a more tangled molecular environment, which may increase the
cohesion among the molecules.

Table 3. The trends of the CED, δ, and η values.

Properties Virgin Aged 3WEO 6WEO 9WEO 12WEO

CED (108 J/m3) 2.542 3.204 3.191 3.177 3.146 3.153
δ ((J/cm3)1/2) 15.945 17.690 17.673 17.563 17.420 17.431

δvdw ((J/cm3)1/2) 15.685 16.433 16.628 16.535 16.418 16.421
δele ((J/cm3)1/2) 1.048 5.932 5.988 5.921 5.823 5.832

η (cP) 0.839 1.031 1.017 0.965 0.922 0.920

4.1.4. Surface Free Energy

Surface free energy (γa) is an indicator of the crack resistance performance of asphalt
binders. It refers to the energy necessary to create a new unit surface area of material under
vacuum conditions [63]. Before calculating this value, the confined and bulk asphalt binder
models needed to be established first. By setting a 50 Å vacuum layer in the OZ direction,
the confined asphalt binder models no longer possessed periodicity. Figure 7 illustrates the
aged asphalt binder’s γa model.
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Figure 7. Aged asphalt binder’s γa model. (a) The bulk asphalt binder model. (b) The confined
asphalt binder model.

The cohesion work (Waa) refers to the energy needed to split a unit area into two
separate sections, and its numerical value is twice that of γa. For asphalt molecules, it can
measure the amount of work needed for internal damage [64]. The equations for γa and
Waa are shown below:

γa =
E f ilm − Ebulk

2A
(3)

Waa = 2γa (4)

where Eflim and Eintra represent the potential energy of the confined and bulk asphalt
models, respectively, and A represents the area of the new surface to be formed.

Figure 8 presents the γa and Waa values for different asphalt binder models. After
aging, the γa and Waa values decreased significantly, showing a decline of 36.28% compared
with the virgin asphalt binder model. This indicates that aging weakened the internal
cohesion of the asphalt molecules, making them more prone to separation and, on a
macroscopic level, making the asphalt binders more susceptible to cracking. Studies have
shown that an increase in the asphaltene ratio is a crucial factor contributing to weakening
cohesion within aged asphalt molecules. With the addition of WEO, the values of γa and
Waa gradually increased. Introducing lighter components such as resin effectively could
improve the γa and Waa values. When the WEO content reached 9%, it essentially restored
to the level of virgin asphalt binder.
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4.1.5. Fractional Free Volume

The fractional free volume (FFV) is defined at the atomic level as it influences the mo-
bility and permeability of asphalt molecules after aging and regeneration, elucidating their
diffusion and glass transition behaviors [65]. The total molecular volume (Vtotal) consists of
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the free volume (Vfree) and occupied volume (Voccupied). Vfree allows for the free movement
of molecules within it, facilitating the flow of asphalt molecules. By measuring the Connolly
surface with hard spherical probes (HSPs), the size of Voccupied can be determined, allowing
for calculation of the FFV [66]. The equation is as follows:

FFV =
Vtotal − Voccupied

Vtotal
=

Vf ree

Vtotal
(5)

To investigate the size effects of probe atoms, this study selected three atomic probe
radii: 1.1 Å, 1.35 Å, and 1.55 Å, representing hydrogen, carbon, and oxygen, respectively.
Additionally, to obtain the Vfree of the asphalt model under ideal conditions, a probe with
a radius of 0 Å was also used. The calculations also considered room temperature to be
298.15 K and the mixing temperature to be 433.15 K to examine the impact of temperature
on the FFV. Figure 9 displays the distribution of Vfree and Voccupied in the virgin asphalt
binder model, aged asphalt binder model, and aged asphalt binder model with 12% WEO
at 433.15 K using different probe atoms.
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Figure 9. Free volume and occupied volume distributions at 433.15 K. (a) Virgin asphalt binder model.
(b) Aged asphalt binder model. (c) Aged asphalt binder model with 12% WEO. (Blue represents free
volume; red represents occupied volume; and grey represents Connolly surface).

Figure 10 depicts that WEO can increase the FFV of aged asphalt molecules. This
is attributed to the presence of chain alkanes in WEO, which can create certain void
spaces within the molecular structure. Simultaneously, WEO introduces new aromatic
compounds whose π-π stacking interactions can make the molecular packing denser,
ultimately improving the FFV of aged asphalt molecules. With an increase in the probe
radius, the detection range gradually decreased, leading to a downward trend in the FFV.
However, the FFV increased with the rising temperature, which is consistent with the result
that asphalt binder flows and diffuses more easily at higher temperatures [67].
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4.1.6. Diffusion Coefficient

The impact of rejuvenators on the diffusion characteristics of aged asphalt molecules
can be accurately assessed by measuring the passage rate of molecules per unit area at a
unit concentration gradient through mean square displacement (MSD) calculations. This
coefficient is determined using the Einstein equation [68]. In NVT ensemble calculations, the
total number of molecules N remains constant. Therefore, when the MSD curve stabilizes
and shows a linear trend over a specific simulation time, its slope represents the diffusion
coefficient (D). The detailed equation is as follows:

D =
1
6

MSD =
1

6N
lim
t→∞

d
dt

N

∑
n=1

< [ri(t)− ri(0)]
2 > (6)

where N represents the overall count of molecules present in the model and ri(0) and ri(t)
represent the positions of molecule n at the initial moment and after moving at time t,
respectively.

Figure 11 illustrates the MSD curves of different asphalt binder models at 433.15 K.
After aging, the MSD values decreased significantly, indicating a slower diffusion rate.
However, with the addition of WEO and an increase in its dosage, the MSD curves gradually
approached the level of the virgin asphalt binder model. Due to the effects of the periodic
boundary conditions, interactions between the model boundaries and external molecules
altered the MSD curve slopes at the end of the MSD curves.
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Figure 12 calculates the D values for each asphalt binder model. The D value for the
aged asphalt binder model was only 39.58% of that of the virgin asphalt binder model.
The most significant recovery of D was observed with the addition of 9% WEO, reaching
93.17% of the virgin asphalt binder model’s value. However, achieving 100% diffusion
was not possible due to limitations in molecular compatibility and simulation constraints.
As the WEO content increased, the recovery rate of D slowed down, especially when the
WEO content reached 12%, at which point its D value decreased. This finding aligns with
previously published research in the literature [55].
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4.1.7. Correlation Coefficient Matrix

Figure 12 presents a heatmap of correlation coefficients detailing the interrelationships
among various parameters within the computational analysis. It explores how these param-
eters interacted and potentially influenced each other. A pronounced positive correlation
existed between the density and parameters like the CED, δ, δvdw, and δele, as evidenced
by the intense red coloration and coefficient values approaching 1.0. The property η dis-
played a moderate-to-strong positive correlation with the density, CED, δ, δvdw, and δele,
underscored by the red hues and values surpassing 0.8. In contrast, the γa showed a
pronounced negative correlation with the FFV across different probe radii. Notably, the
D value correlated quite strongly and positively with the FFV at probe radii of 1.35 and
1.55 Å while inversely correlating with the γa. This pattern suggests that increased FFVs at
specified probe radii are indicative of elevated diffusion rates.
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4.2. Diffusion Effect and WEO
4.2.1. Relative Concentration Analysis

The relative concentration (R) is determined by comparing the density of atoms in
each section to the overall atom density in the entire unit cell. It can simulate the degree of
fusion of different asphalt binder models, thereby determining the effect of WEO on the
fusion. The equation is as follows:

R =
Ni/Vi
N/V

(7)

where: Ni represents the count of atoms in a unit i; Vi represents the volume of unit i; N
represents the overall count of atoms in the cell; and V represents the whole volume of
the cell.

Figure 13 shows the R values of the virgin asphalt binder model at 433.15 K when
mixed with another virgin asphalt binder model, an aged asphalt binder model, and aged
asphalt binder models with varying WEO contents to form blended systems. Initially,
gaps existed between the asphalt molecules, but these gaps disappeared after 500 ps
of NVT equilibration. At the same time, the peak values decreased, and the area of
overlap in the relative concentration increased, suggesting enhanced molecular integration.
Incorporating aged asphalt binder reduced the overlap range with the virgin asphalt binder,
shrinking from 45–71 Å to 47–65 Å. However, as the amount of WEO increased, the overlap
range gradually expanded, with their ranges being 45–64 Å, 34–66 Å, 43–67 Å, 32–71 Å,
and 28–82 Å. This suggests that WEO promotes integration between aged and virgin
asphalt molecules.
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9WEO diffusion model; (f) Virgin—12WEO diffusion model.

To assess the diffusion behavior of asphalt molecules within the blended systems, d1,
and d2 are defined to represent the coverage lengths of the two molecular types present
in the system. Figure 13a marks the respective coverage lengths of two virgin asphalt
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molecules. The calculated coverage lengths of different asphalt molecules under various
fusion systems are shown in Figure 14. When the virgin asphalt molecule was mixed with
the aged asphalt molecule, as opposed to mixing with itself, there was a decrease in the
virgin asphalt molecule’s coverage length. This reduction is attributed to the compositional
differences between the new and aged asphalt molecules, which diminished their ability to
diffuse effectively. This phenomenon predominantly showed the virgin asphalt molecule
diffusing toward the aged asphalt molecule. As the WEO content increased from 3%
to 12%, the coverage length of the virgin asphalt molecules increased by 0.21%, 2.12%,
8.72%, and 24.41%, while the coverage length of the aged asphalt molecules increased by
3.89%, 24.92%, 33.04%, and 44.54%, respectively. Due to the addition of virgin asphalt
binder, the concentration of the WEO molecules within the entire blended system was
reduced. These findings suggest that as the WEO content increases, the effect of WEO on
enhancing the diffusion of aged asphalt molecules into virgin asphalt molecules becomes
more pronounced.
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4.2.2. Binding Energy

According to a study by Liu et al. [69], binding energy can be used to express the
attractive and repulsive forces between molecules, thereby assessing their diffusion capa-
bility. When the binding energy is positive, the molecules attract each other, and when
it is negative, they repel each other. Equation (8) outlines the method for calculating the
binding energy:

Ebinding = Ea + Eb − Eab (8)

where Ea represents the energy of molecule a; Eb represents the energy of molecule b; and
Eab represents the energy of the blended system ab.

Figure 15 presents the binding energies at the onset (0 ps), midpoint (500 ps), and
conclusion (1 ns) of NVT equilibration in the mutual diffusion models. The binding energies
were consistently positive throughout these stages, indicating attractive forces between
the molecules. The binding energy between the virgin and aged asphalt binders showed a
28.28% increase over time. However, in contrast to the self-blended virgin asphalt binder
model, the binding energy between the aged and virgin asphalt binders decreased. This
decrease is attributed to the presence of aged asphalt binder, which increases electrostatic
interactions between molecules, preventing full integration between the virgin and aged
asphalt binders. The incorporation of WEO led to increases in the binding energy at 1 ns by
6.33%, 9.01%, 10.35%, and 26.19% for different WEO contents compared with the mixture
without WEO. Significantly, introducing 12% WEO into the aged asphalt binder at 0 ps
achieved a binding energy surpassing that of the virgin asphalt binder blended with itself.
However, as the equilibration process unfolded, this binding energy diminished, ultimately
falling below the level observed in the self-blended virgin asphalt binder model. Although
WEO could improve the binding energy, it still performed worse than the self-blended
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virgin asphalt binder model. As the simulation time increased, the growth rate of the
binding energy in each model decreased, highlighting that mechanical stirring is necessary
for more thorough mixing of the virgin and aged asphalt binders.
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5. Conclusions

This research used molecular dynamics simulation to explore the rejuvenating effects
of waste engine oil (WEO) on aged asphalt binders and its impact on the diffusion behav-
iors between virgin and aged asphalt molecules. The analysis encompassed the binders’
fundamental physical and thermodynamic properties, fractional free volume (FFV), and
diffusion coefficients (D), alongside examining the diffusion behaviors and binding energy
within the fusion system. The key findings are summarized below:

(1) The incorporation of WEO into the aged asphalt binder effectively decreased its
density. This rejuvenation also led to a noticeable reduction in the glass transition tem-
perature (Tg), enhancing the asphalt binder’s performance under lower temperature
conditions.

(2) WEO could reduce the cohesive energy density (CED), solubility parameter (δ), and
viscosity (η) of the aged asphalt binder. Moreover, WEO significantly restored the
surface free energy (γa) and cohesive work (Waa) of aged asphalt binder, effectively
restoring its cracking resistance to match that of virgin asphalt binder.

(3) The addition of WEO enriched the light components in the aged asphalt binder,
improving its diffusion coefficient (D) by increasing the fractional free volume (FFV).
However, WEO could not fully return its diffusion properties to the virgin binder
levels, and too much WEO diminished its effectiveness in improving the aged binder’s
D value.

(4) The mutual diffusion models highlighted the positive impact of WEO on promoting
the integration of aged and virgin asphalt molecules. An increase in the binding
energy was observed with the addition of WEO, indicating enhanced compatibility
between different asphalt molecules.

(5) Although the level of diffusion and bonding strength in the mutual diffusion models
increased with the addition of WEO, excessive WEO content weakened the regener-
ative performance of aged asphalt binder. Therefore, the WEO content in practical
applications should not exceed 9%.

This study underscores the potential of WEO as an effective rejuvenator for aged
asphalt binders, offering a sustainable approach to asphalt pavement maintenance and
recycling. By improving the cohesive properties and facilitating molecular diffusion, WEO
not only restores the performance of aged asphalt binders but also contributes to the
durability and sustainability of asphalt pavements. However, given the diverse range of
WEO types and potential impurities, this study selected only six molecules to represent
the composition of WEO. The influence of other components, particularly impurities
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within WEO, on the rejuvenation and fusion of aged asphalt binders is still uncertain.
Therefore, future research will undertake a more comprehensive investigation using a
broader spectrum of WEO molecules. Additionally, subsequent studies will assess the
effects of various waste oils, such as waste cooking oil (WCO), waste vegetable oil (WVO),
and tall oil, at different contents and working temperatures on the regeneration and
diffusion processes in aged asphalt binders.
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