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Abstract: Cementitious composites are ubiquitous in construction, and more and more research is
focused on improving mechanical properties and environmental effects. However, the jury is still
out on which material can achieve low-carbon and high-performance cementitious composites. This
article compares the mechanical and environmental performance of zero-dimensional fullerenes, one-
dimensional carbon nanotubes (CNTs), two-dimensional graphene oxide (GO), and three-dimensional
nano-graphite platelets (NGPs) on cementitious composites. The literature review shows that two-
dimensional (2D) GO has the best mechanical and environmental performance, followed by 3D
NGPs, 1D CNTs, and 0D fullerenes. Specifically, GO stands out for its lower energy consumption
(120–140 MJ/kg) and CO2 emissions (0.17 kg/kg). When the optimal dosage (0.01–0.05 wt%) of GO
is selected, due to its high specific surface area and strong adhesion to the matrix, the compressive
strength of the cementitious composites is improved by nearly 50%. This study will help engineers
and researchers better utilize carbon-based nanomaterials and provide guidance and direction for
future research in related fields.

Keywords: cementitious composites; carbon-based nanomaterials; low carbon; high performance;
multidimensional effects

1. Introduction

Cementitious composites are composed of amorphous phases, nanocrystals to
micrometer-sized crystals, and bound water [1]. These materials have excellent compressive
strength and durability but often exhibit brittleness and lack sufficient tensile strength and
strain capacity [2,3]. In order to overcome these limitations, researchers have been exploring
the effect of reinforcing fillers to improve the toughness and strength of cementitious
composites. In recent years, research has shown that as the size of fillers decreases, from
macro- to micro- and even nano-levels, people are surprised to find that the addition of
small fillers not only improves the mechanical properties and durability of cementitious
materials but also endows them with multifunctionality [4,5]. The research indicates that
by adding nano-silica particles, the compressive strength of concrete can be increased by
up to 70% [6]. At the same time, the addition of only 5% nano-alumina can increase the
elastic modulus of cementitious composite materials by up to 143%, indicating a significant
improvement in material properties by nano-fillers [7]. In addition, the study also pointed
out the potential applications of nano titanium dioxide. The addition of this nanomaterial

Materials 2024, 17, 2196. https://doi.org/10.3390/ma17102196 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17102196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-2234-6892
https://doi.org/10.3390/ma17102196
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17102196?type=check_update&version=1


Materials 2024, 17, 2196 2 of 19

gives concrete many additional functions, including self-cleaning, reducing air pollution,
and sterilization [8].

Since 2004, with the rapid development of nanotechnology and science, graphene
has received great attention at the nanoscale and has shown great potential as an addi-
tive material [9]. The preparation process of graphene can be summarized as follows:
gaseous carbon sources such as methane or ethylene are used to catalyze the deposition
and polymerization of carbon atoms on the surface of metal (nickel, copper, or platinum).
Equations (1) and (2), respectively, indicate the chemical reaction in which methane or
ethylene is used as a gaseous carbon source. Graphene is a single-layer graphite structure
formed by carbon atoms arranged into a 2D lattice. It is one of the basic components of
graphite materials. In addition to single-layer graphene, graphene can also form various
forms, such as fullerene, carbon nanotube, and graphite [10,11] (as shown in Figure 1). The
various forms of graphene and its derivatives provide rich material resources and technical
means for scientific research and engineering applications in various fields.

CH4 → C(graphene) + 2H2 (1)

C2H4 → C(graphene) + 2H2 (2)
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Nowadays, sustainable development has become one of the focal points of global
attention. The selection of building materials directly affects the environmental friendliness,
resource utilization efficiency, and long-term sustainability of buildings. The policies
and requirements for reducing energy consumption and reducing waste generation are
all aimed at achieving the sustainable development goals of the construction industry.
According to previous research [13], the cement production industry not only accounts
for a considerable proportion of energy consumption, accounting for approximately 7% of
total energy consumption, but also plays an important role in carbon dioxide emissions,
accounting for nearly 7% of total carbon dioxide emissions.

The current research urgently needs to review the existing achievements, especially
emphasizing the improvement of mechanical properties and environmental effects of
carbon-based nanomaterials in cementitious composites and further elucidating their
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mechanisms of action. The purpose of this survey is to comprehensively summarize
previous research results and explore, in-depth, the performance improvement of carbon-
based nanomaterials in cementitious composites. Through the summary and analysis of
these studies, we can better understand the mechanism of carbon-based nanomaterials
in cement-based composites. The suggested research will help engineers and researchers
better utilize carbon-based nanomaterials as reinforcing materials and provide guidance
and direction for future research in related fields.

2. Zero-Dimension Nanocarbon Material
2.1. Fullerenes

Fullerenes are molecules composed of carbon atoms with spherical, tubular, or other
geometric shapes [14–16]. The discovery of fullerene opened a new chapter in the field of
carbon-based nanomaterials in 1985 [17].

C60 fullerene is the most typical member of the fullerene family and was also the
earliest discovered [18]. As shown in Figure 2, C60 fullerene is a spherical carbon molecule
that exhibits a geometric shape like a football. C60 fullerene typically exhibits a black
color [19]. Each C60 fullerene molecule is composed of 12 regular pentagons and 20 regular
hexagons, and this structure is called a “pentagonal hexagonal combination” [20]. Each
carbon atom forms covalent bonds with three adjacent carbon atoms [21], forming a
spherical carbon molecular structure. The arrangement of these carbon atoms gives C60
fullerene a high degree of symmetry and stability [22].
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2.2. Manufacturing Process

The components of cementitious composites include Portland cement, quartz sand,
water, and additives. Carbon-based nanomaterials are usually mixed into the matrix as
additives [23–25]. The preparation process of carbon nanomaterial-based cementitious
composites is shown in Figure 3. Firstly, we mixed the weighed dry material at low speed
in the mixer for 4 min. Then, we added water and liquid additives to the dry mixture,
stirred at low speed for 1 min, and then stirred at high speed for 2 min. Subsequently,
we added fibers and continued at low speed for 1 min. After the fibers were completely
wrapped in the cement slurry, we mixed them at high speed for 4 min until the fibers were
evenly dispersed in the cement slurry.
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This article not only focuses on the preparation process of nanocarbon material-based
cementitious composites but also on the energy consumption, CO2 emissions, cost, time,
and water demand during this process. In the preparation process of nanocarbon material,
energy consumption and CO2 emissions are closely related, which has a significant impact
on the environment. The cost is mainly affected by energy consumption, raw material costs,
labor costs, and time. Water demand is affected by using water as a reaction medium or
cleaning agent during the preparation process, which is of great significance for resource
utilization and environmental protection. When the matrix material is consistent, we
should focus on carbon-based nanomaterials. According to existing literature reports and
experimental data [26–28], producing 1 kg of C60 fullerene may require energy of 2478 MJ,
emit 400 kg of carbon dioxide, and cost range from USD 150 to USD 1080. Because the
preparation process of C60 fullerene is relatively complex, involving multiple steps such
as carbon source pyrolysis, carbon atom polymerization, and subsequent purification and
treatment, it may take several weeks to produce 1 kg of C60 fullerene [29]. However, the
water requirement during the preparation process is relatively low, usually ranging from
tens to hundreds of liters.

2.3. Mechanical Properties

At present, research on cementitious composite materials constructed directly from
0D fullerene is relatively scarce [30]. This may be due to some challenges of 0D fullerene
in cementitious composites, especially the lack of ability to prevent microcracks, which
may lead to the formation of weak regions [31]. In contrast, similar 0D carbon black (CB)
particles are relatively more cost-effective, which makes people more inclined to choose
CB as an additive for cementitious composites [32–34]. Adding CB appropriately can not
only improve mechanical strength to a certain extent but also have the potential to be used
for strain sensing [34–36]. Although 0D fullerene has great potential in structural health
monitoring, its high price limits its widespread application in cementitious composite ma-
terials [37]. Therefore, future research may need to explore more cost-effective preparation
methods and customized solutions for price-sensitive applications in order to promote the
development and application of this field.

3. One-Dimension Nanocarbon Material
3.1. Carbon Nanotubes

CNT-based cementitious composites have been widely studied, mainly due to the
specific properties and structure of carbon nanotubes [38]. CNTs are 1D nanoscale structures
composed of carbon atoms, divided into single-walled carbon nanotubes (SWCNTs) and
multi-walled carbon nanotubes (MWCNTs) [39,40]. As demonstrated in Figure 4, CNTs
exhibit a slender tubular structure at the macroscale, with lengths ranging from several
micrometers to several centimeters and diameters typically within the nanoscale range [41].
From the perspective of molecular structure, SWCNTs are composed of a single layer of
carbon atoms arranged in a continuous hexagonal structure resembling a coiled graphene
sheet. MWCNTs are composed of multiple concentric carbon layers, each connected by
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a meta-like bond [42]. The carbon atoms of carbon nanotubes exhibit sp2. Hybridization
forms a π bond network with strong conjugation [43–45]. This network alters the surface
properties of CNTs, which results in improved adhesion characteristics and dispersion
stability. Hence, carbon nanotubes have good conductivity and mechanical properties.
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3.2. Manufacturing Process

Different production processes can result in varying energy consumption per kilogram
of carbon nanotubes [46]. The production process of CNTs includes steps such as pyrolysis
of carbon raw materials [47], gas-phase nucleation, and growth [48], all of which require a
considerable amount of energy consumption. It is estimated that producing 1 kg of carbon
nanotubes may require 1800 MJ of energy and emits 125 kg of carbon dioxide [26,49]. The
production cost of carbon nanotubes is also relatively high, as the production process
involves complex chemical reactions, high-temperature conditions, and precision instru-
ments [50]. It is estimated that the cost of producing 1 kg of carbon nanotubes may be USD
369 [51]. The production time of 1 kg carbon nanotubes is also relatively long, requiring
precise equipment and control conditions. Producing 1 kg of carbon nanotubes may take
one week [29]. The water used in the production of carbon nanotubes is used for equipment
cleaning and the use of some solvents. Therefore, the water requirement for producing
1 kg of carbon nanotubes may also range from tens to hundreds of liters.

3.3. Mechanical Properties

Numerous researchers have studied how to improve the performance of cementitious
composites by changing the percentage of carbon-based nanomaterials in cement weight.
A large number of experimental results [52–61] indicate that the compressive strength of
cementitious composites with CNTs shows a trend of first increasing and then decreasing
with the increase in CNT content. The cementitious composites doped with CNTs can
significantly improve the conductivity, with a typical penetration threshold between 0.3 and
0.6 wt% [62–64]. However, in terms of the compressive strength of cementitious composites,
the optimal amount of CNTs is generally 0.01–0.15 wt%, and the maximum improvement
rate is generally 30%. The determination of this optimal value is related to a study that
found that with the addition of 0.1 wt% CNTs, the enthalpy of cement paste is 20% lower
than that of pure cement paste [59]. This indicates that CNT particles form a package
around cement particles, causing some cement particles to separate during the hydration
process [65]. However, at higher doses of CNTs, this effect may inhibit cement hydration,
thereby reducing bonding strength [59]. Overall, the amount of CNTs added should be
within a certain range, and excessive or insufficient amounts may affect the performance of
cementitious composites.

In addition, some researchers have also focused on the flexural performance of cemen-
titious composites containing CNTs. Zou et al. [66] have shown that the elastic modulus
and flexural strength of cementitious composites increase at concentrations of 0.075 wt%
and 0.038 wt%. Another study [67] explored the impact of incorporating long CNTs of 0.1,
0.5, and 1.0 wt% with silica fume on the properties of cementitious composites. On the
28th day, their findings indicated that the most significant enhancements in both flexural
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strength and stress-intensity factor were achieved through the addition of 0.5 wt% CNTs to
the cement mix. As shown in Figure 5, Maria S. Konsta Gdoutos et al. [68] enhanced the
strength of cementitious composites by 62.5% and 56.25%, respectively, by adding 0.08 wt%
short MWCNTs and 0.048 wt% long MWCNTs.
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4. Two-Dimension Nanocarbon Material
4.1. Graphene

In 2004, Novoselov and Geim et al. used a method called “mechanical exfoliation”
to successfully prepare graphene monolayers by peeling graphite sheets with tape [9].
Graphene is a single-layer 2D structure material composed of carbon atoms, and its unique
properties and structure make it a research hotspot in the field of nanotechnology [69].
Figure 6 depicts the macroscopic appearance, micromorphology, and molecular structure
of graphene. Graphene exhibits a transparent and colorless appearance at the macroscopic
scale, with a thickness of only one atom. The theoretical surface area of a single graphene
sheet can reach 2600 m2/g [70–73]. The microstructure of graphene is characterized by a
hexagonal lattice structure formed by covalent bonds of carbon atoms [74]. The arrange-
ment of carbon atoms is very ordered and flat, which leads to excellent electrical, thermal,
and mechanical properties in a single-layer state. The preparation methods of graphene
include mechanical exfoliation [75], chemical vapor deposition [76], and liquid-phase
exfoliation [77].
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4.2. Manufacturing Process

The preparation methods of graphene include chemical vapor deposition (CVD), me-
chanical exfoliation, chemical exfoliation, reduced GO, and liquid-phase exfoliation [78].
Among them, the CVD method is a common and widely used method, which forms
graphene by cracking carbon source gas at high temperatures and depositing it on a metal
substrate [79]. The CVD method typically requires a high-temperature reaction environ-
ment, which consumes a significant amount of energy [80]. Specifically, the energy con-
sumption for preparing graphene by CVD method is 120–140 MJ/kg of graphene [81–83].
The CVD method for preparing graphene typically uses hydrocarbon gases as a carbon
source; the preparation of graphene per kilogram may result in emissions of 0.17 kg of
carbon dioxide [84,85]. In the CVD method, the main sources of cost are gas, energy, and
equipment maintenance. Specifically, the preparation cost of graphene per gram may
be USD 35 [86]. The preparation process of graphene generally does not require a large
amount of water and is mainly used for cleaning and solvent treatment. For the most part,
the entire growth process from heating to cooling may take 5–48 h [87–89].

4.3. Mechanical Properties

Graphene is the fundamental structural unit of any size of graphite material. GO,
the most researched graphene-based nanosheets in cement composites also consists of
monolayer sheets with a hexagonal carbon network. The laboratory data reported in the
literature, as shown in Table 1, indicate that adding a small amount of GO to cementi-
tious composite materials will enhance their flexural, compressive, and tensile strength.
Lv et al. [90,91] conducted a study focusing on the effect of GO in a cement matrix. Their
research indicates that as the proportion of GO increases to 0.03%, the performance of
the cement matrix is enhanced. However, it is worth noting that further increasing the
proportion of GO may lead to a decrease in the strength effect. Specifically, at a ratio
of 0.03 wt% GO, the tensile, bending, and compressive properties of the cement matrix
were improved by 78.6%, 60.7%, and 38.9%, respectively. In addition, Duan et al. [3,92]
confirmed the reinforcing effect of GO in a cement matrix. In an ordinary Portland cement
(OPC) matrix, using only 0.05 wt% graphene oxide nanosheets can increase the bending
and compressive strength by 41–59% and 15–33%, respectively.

Furthermore, Jiang et al. [93] investigated the effect of combined modification of
polyvinyl alcohol (PVA) fibers and GO on the mechanical properties of cement mortar in
their experiments. The addition of PVA fibers significantly improves the toughness and
fracture resistance of mortar, thereby significantly enhancing its mechanical strength [94].
Meanwhile, the cementitious matrix system containing GO improved the pore structure of
the mortar, exhibiting improved mechanical and durability characteristics [95]. Jiang et al.
conducted experiments to explore the effect of combined modification of PVA fiber and
GO on the mechanical properties of cementitious composites. The experimental results
showed that the compressive and flexural strength of mortar increased by 30.2% and 39.3%,
respectively, after adding PVA fibers and graphene oxide [93].

Table 1. Effect of GO on mechanical performance of cementitious composites.

Serial
Number

Compressive
Strength

Flexural
Strength

Tensile
Strength

Water/
Binder Refs.

GO
(wt%)

Increase
(%)

GO
(wt%)

Increase
(%)

GO
(wt%)

Increase
(%)

1 0.01 5.16 0.03 21.86 - - 0.35 [95]
2 0.01 13.4 0.01 51.7 0.01 47 0.367 [90]
3 0.01 29 - - 0.01 26 0.5 [96]
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Table 1. Cont.

Serial
Number

Compressive
Strength

Flexural
Strength

Tensile
Strength

Water/
Binder Refs.

GO
(wt%)

Increase
(%)

GO
(wt%)

Increase
(%)

GO
(wt%)

Increase
(%)

4 0.02 23.2 - - 0.04 38.5 0.43 [97]
5 0.02 20 0.02 32 - - 0.5 [98]
6 0.02 27.64 - - - - 0.5 [99]
7 0.02 25 0.02 15 0.02 15 0.4 [100]
8 0.02 25.9 0.02 14.8 0.02 18 0.4 [101]
9 0.022 34.1 0.022 34 - - 0.4 [102]

10 0.022 27 0.022 26 - - 0.42 [103]
11 0.022 25.6 - - - - 0.29 [104]
12 0.022 25.8 - - - - 0.36 [104]
13 0.022 24.6 - - - - 0.45 [105]
14 0.025 14.9 0.025 23.6 0.025 15.2 0.5 [106]

15 - - 0.03 13.7 - - 0.43 [107]
16 0.03 38.9 0.03 60.7 0.03 78.6 0.367 [90]
17 0.03 20.3 0.03 32 - - 0.5 [108]
18 - - 0.03 77.7 - - 0.36 [109]
19 0.03 12.4 0.03 12.08 - - 0.4 [110]
20 0.03 45.1 - - 0.03 60.7 0.37 [111]
21 0.03 30 0.03 18.7 0.45 [91]
22 0.03 31 0.03 18 0.45 [112]
23 0.03 28 - - - - 0.36 [113]

24 0.04 13.4 - - 0.04 9.9 0.4 [114]
25 0.04 44 - - - - 0.38 [115]
26 0.04 40.41 - - - - 0.4 [116]
27 0.04 29.3 0.04 15 0.04 15 0.4 [117]
28 0.04 42.2 0.04 30.5 0.04 36.6 0.367 [90]
29 0.04 46.34 - - - - 0.5 [99]
30 0.04 47.61 - - - - 0.36 [109]
31 0.044 29.5 - - - - 0.5 [104]

32 0.05 24.4 0.05 70.5 - - 0.37 [118]
33 0.05 32 - - - - 0.5 [119]
34 0.05 43.2 0.05 106.4 - - 0.37 [111]
35 0.05 47.9 0.05 30.2 0.05 35.8 0.367 [90]
36 0.05 24.4 0.05 70.5 - - 0.37 [120]
37 0.05 32 - - - - 0.5 [12]
38 0.05 11.05 0.05 16.1 - - 0.4 [110]

39 0.06 29.5 0.06 30.7 - - 0.3 [121]
40 0.1 13 0.01 23.4 - - 0.48 [122]
41 0.1 77.7 0.1 77.7 0.1 37.5 0.485 [123]
42 0.125 40 - - - - 0.45 [124]
43 0.125 35.1 - - 0.125 96 0.45 [125]
44 0.125 110 - - - - 0.45 [126]

45 0.2 16.4 0.2 41.3 - - 0.66 [127]
46 0.5 126.6 - - - - 0.3 [128]
47 0.5 126.6 - - - - 0.3 [129]

48 1.0 77.8 - - - - 0.45 [126]
49 1.0 63 - - - - 0.45 [130]
50 1.0 77.3 - - 1.0 15 - [131]
51 1.0 86 - - 1.0 15 0.45 [96]

52 - - - - 1.5 48 0.4 [2]
53 - - 1.5 51.2 - - 0.3 [132]
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5. Three-Dimension Nanocarbon Material
5.1. Graphite

Graphite is a mineral composed of carbon atoms and is one of the allotropes of non-
metallic elements [94,133]. For graphite, its elastic modulus is usually around 1 TPa, which
indicates that graphite has very high stiffness and bending resistance [110,134]. Figure 7
depicts the macroscopic appearance, micromorphology, and molecular structure of graphite.
Graphite usually presents a black to silver-gray appearance, with luster and metallic
luster [135]. It can exist in the form of flakes or powders [136], and flake graphite exhibits a
typical layered structure that can be easily peeled off into thin sheets. The microstructure of
graphite is composed of multiple layers of graphene sheets [137]. Each layer of graphene
sheet is composed of a hexagonal lattice of carbon atoms arranged in a plane, forming a 2D
structure [138]. The molecular structure of graphite is composed of carbon atoms, each of
which forms three covalent bonds and is connected to the surrounding three carbon atoms,
forming a hexagonal circular structure. This hexagonal structure combines with Van der
Waals forces in the plane, giving graphite a layered structure [139].
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5.2. Manufacturing Process

NGPS are one of the commonly used nanoscale graphite materials in cementitious
composites. The thickness of NGPS is usually between a few to tens of nanometers,
while the length and width can reach several micrometers [140]. Pyrolysis is one of the
methods for preparing NGPS from natural graphite. This typically involves exposing
natural graphite to high-temperature conditions, typically between 1000 and 3000 ◦C, and
operating in an inert atmosphere such as nitrogen or argon [141]. This high-temperature
environment can cause the graphite structure to undergo a pyrolysis reaction, decomposing
into smaller graphite flakes [142]. Therefore, in the process of preparing 1 kg of NGPS, the
energy consumed is between 264 and 304 MJ, and 16 kg of CO2 is emitted [143,144]. In
terms of cost, the estimated cost of producing one ton of nano-graphite sheets is between
USD 1500 and USD 2000 [145]. The water demand is relatively low, about 100 to 200 L per
ton of production. The entire production cycle may last several days, depending on the
different production equipment and processes.

5.3. Mechanical Properties

NGPS have shown significant potential. This material plays a crucial role in improving
the “smart” performance of materials due to its unique structure and properties [146,147].
Sharma et al. [148] showed that the addition of NGPS (i.e., 0.01%, 0.1%, and 0.2%) sig-
nificantly improved the density and mechanical properties of concrete. The research
results show that the density of concrete has increased by up to 16%, while the mechanical
properties have increased by an astonishing 30%. It is worth noting that, in contrast to the in-
crease in material strength and density, the permeability of concrete significantly decreases.
Liu et al. [149] studied the effect of NGPs on cement mortar and reported a 36% increase
in compressive strength. Yang et al. [150] conducted a study on the effect of NGPS on the
properties of cement mortar. By gradually increasing the amount of NGPs from 0.2% to



Materials 2024, 17, 2196 10 of 19

0.6%, researchers have found that when 0.2 wt% of NGPs are added to cement mortar,
the compressive strength and flexural strength of cement mortar increase by about 10%
and 8%, respectively. It is worth noting that research has also shown that cement mortar
with the addition of NGPs has better acid resistance and durability. As shown in Figure 8,
Farhan et al. [151] prepared five mixes with the intrusion of NGPs (0%, 0.5%, 1.5%, 3%, and
5% by weight of cement) to study workability and mechanical properties. The compressive
strength, tensile strength, and flexural strength of the sample containing 5% NGPs increased
by 38.5%, 31.6%, and 44.34%, respectively.

Materials 2024, 17, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 8. Effect of different contents of NGPs on mechanical strength of concrete [151]. 

6. Overall Assessment 

6.1. Assessment of Property 

The selection of building materials has a significant impact on the environment. For 

cementitious composites, the improvement of strength is closely related to the hydration 

process of cement. However, cement production is a highly energy-consuming and high-

emission activity process. Therefore, for carbon-based nanomaterials with small dosages but 

significant performance improvement, it is necessary to pay attention to their production 

process and evaluate them. Based on previous research work from the literature [26–29,46–

50,78–89,140–145], a comprehensive evaluation of the environmental impact of carbon-

based nanomaterials (fullerenes, CNTS, GO, and NGPS) in terms of energy consumption, 

CO2 emissions, cost, water demand, and time, is shown in Figure 9. From the four aspects 

of energy consumption, CO2 emissions, water demand, and time, GO is the worthiest of 

widespread promotion and use. However, the high cost limits its production. This arises 

from the high energy consumption, costly instrumentation, and intricate technological de-

mands of procedures like CVD [152]. Currently, scholars [152,153] are advancing GO’s evo-

lution through enhanced chemical treatment methodologies, the substitution of high-purity 

graphite with cost-effective alternatives, and the innovation of novel apparatus. 

 

Figure 9. Comprehensive performance evaluation of carbon-based nanomaterials. 

Figure 10 depicts the impact of various carbon-based nanomaterials on the mechani-

cal characteristics of cementitious composites. It is evident that the incorporation of car-

bon-based nanomaterials yields positive outcomes for cementitious composites. Although 

the mechanical properties of fullerenes (0D carbon-based nanomaterials) and CNTs (1D 

Figure 8. Effect of different contents of NGPs on mechanical strength of concrete [151].

6. Overall Assessment
6.1. Assessment of Property

The selection of building materials has a significant impact on the environment. For
cementitious composites, the improvement of strength is closely related to the hydra-
tion process of cement. However, cement production is a highly energy-consuming and
high-emission activity process. Therefore, for carbon-based nanomaterials with small
dosages but significant performance improvement, it is necessary to pay attention to their
production process and evaluate them. Based on previous research work from the lit-
erature [26–29,46–50,78–89,140–145], a comprehensive evaluation of the environmental
impact of carbon-based nanomaterials (fullerenes, CNTS, GO, and NGPS) in terms of en-
ergy consumption, CO2 emissions, cost, water demand, and time, is shown in Figure 9.
From the four aspects of energy consumption, CO2 emissions, water demand, and time,
GO is the worthiest of widespread promotion and use. However, the high cost limits its
production. This arises from the high energy consumption, costly instrumentation, and
intricate technological demands of procedures like CVD [152]. Currently, scholars [152,153]
are advancing GO’s evolution through enhanced chemical treatment methodologies, the
substitution of high-purity graphite with cost-effective alternatives, and the innovation of
novel apparatus.
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Figure 9. Comprehensive performance evaluation of carbon-based nanomaterials.

Figure 10 depicts the impact of various carbon-based nanomaterials on the mechanical
characteristics of cementitious composites. It is evident that the incorporation of carbon-
based nanomaterials yields positive outcomes for cementitious composites. Although
the mechanical properties of fullerenes (0D carbon-based nanomaterials) and CNTs (1D
carbon nanomaterials) are significantly enhanced, they come at the expense of massive
energy consumption, carbon emissions, and time passing. The improvement effect of NGPs
on cementitious composites is still slightly inferior to that of GO. Consequently, current
research primarily focuses on the influence of GO on cementitious composites. Additionally,
it has been deduced that the optimal dosage for enhancing the compressive strength of
cementitious composites ranges between 0.01% and 0.05%, with an approximate maximum
enhancement rate of nearly 50%.
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6.2. Analyses of Mechanism

The mechanism by which multidimensional nanomaterials enhance the mechanical
properties of cementitious composites can be summarized as nucleation effects and pore
filling. The hydration process of cement can be divided into three stages: crystal growth,
boundary reaction, and diffusion reaction [154]. Carbon-based nanomaterials can provide
more nucleation centers during the crystal growth stage. On the one hand, nanomaterials
can significantly accelerate the hydration reaction, thereby shortening the hardening time
of cement and improving the early strength of cementitious composites. On the other hand,
nanoscale hydration products can fill pores, thereby improving the density of the matrix
(Figure 11).
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Figure 11. Schematic diagram of effect of carbon-based nanomaterials on the microstructures and
cement hydration of the cementitious composites.

Figure 12 shows the mechanism of zero—three dimensions of carbon-based nanomate-
rials on cementitious composites. Moreover, 0D fullerene is distributed in the form of points
inside the cementitious composites and is relatively dispersed. Additionally, 1D CNTs grow
in the form of lines inside cementitious composites or are composited with matrix materials.
This will hinder the development of cracks during the stressing process of cementitious
composites and take the lead in improving the tensile properties of the material. Also, 2D
GO grows in the form of surfaces inside the cementitious composites, and the contact area
with the matrix is greatly increased. It can comprehensively improve the mechanical prop-
erties of cementitious composites. However, 3D NGPs form a three-dimensional network
of internal components in cementitious composites. As far as current research results are
concerned, the improvement effect of 3D NGPs mechanical properties is almost the same
as that of 2D GO. The possible reason is that 3D carbon-based nanomaterials have higher
requirements for dispersion technology.
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7. Conclusions

This article provides a detailed analysis of the current literature on the performance of
cementitious composites reinforced with carbon-based nanomaterials. The main conclu-
sions drawn from this research are as follows:

(1) The five-parameter system used to evaluate the environmental effects of carbon-
based nanomaterials shows that 2D GO has the best performance, followed by 3D NGPs,
1D CNTs, and 0D fullerenes.

(2) GO stands out for its lower energy consumption (120–140 MJ/kg) and CO2 emis-
sions (0.17 kg/kg).

(3) In terms of improving the mechanical properties of cementitious composites, GO
exhibits excellent performance, followed by 3D NGPs, 1D CNTs, and 0D fullerenes.

(4) The optimal dosage of GO to improve the compressive strength of cementitious
composites is between 0.01 and 0.05 wt%, and the maximum enhancement rate is approx-
imately 50%. The reason why the mechanical properties of cementitious composites are
improved is that the high specific surface area of GO promotes cement hydration and fills
pores. More importantly, the high specific surface area of GO is beneficial to the strong
adhesion between GO and the matrix and prevents cracks from expanding under load.

A comprehensive literature review has been conducted in this study. However, it is im-
portant to acknowledge its limitations. Specifically, the dispersion technology of 3D NGPS
is not yet mature, resulting in the mechanical properties of cementitious composites needing
to be further improved. Additionally, the high cost of 2D GO hinders its widespread appli-
cation. In future work, it is necessary to further develop advanced dispersion equipment
or find low-cost carbon sources to systematically address these limiting factors and delve
into the untapped potential of carbon-based nanomaterials in cementitious composites,
especially related to their performance improvement and environmental impact.
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