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Abstract: This study investigated the positive effect of the combined use of recycled asphalt shingles
(RASs) and municipal solid waste incineration (MSWI) bottom ash (B.A.) in asphalt concrete, which
contributes to enhanced sustainability in pavement engineering. In addition, unlike traditional
approaches that employ individual recycling material in hot mix asphalt (HMA), the combined use of
the two waste materials maximizes the mechanical performance of the asphalt mixture. The addition
of RAS (with 30–40% aged binder) as an additive generally enhances the strength/stiffness of the
asphalt mixture. The high porosity/absorption of MSWI BA results in an additional amount of liquid
asphalt binder in the mixture. As an admixture, RAS could supply the additional asphalt binder in
the mixture when MSWI BA is used as an aggregate replacement. This research was conducted in
two phases: (1) to examine the effect of MSWI BA alone and its optimal asphalt content (OAC), and
(2) to assess the combined effect of B.A. and RAS in HMA. Multiple laboratory testing methods were
employed for the mechanical performance investigation, including the Marshall stability test, rutting
test, and indirect tensile test. The testing results show that the 20% B.A. replacement exhibits the best
performance and that it requires an additional asphalt binder of 1.1%. For the combined use of MSWI
BA and RAS, 5% RAS shows the best mechanical performance. All mixtures that contain the B.A. and
RAS show greater strength than the control specimen (regular HMA).

Keywords: hot mix asphalt; municipal solid waste incineration (MSWI) bottom ash; recycled as-
phalt shingle

1. Introduction

The increase in the global population has resulted in a significant rise in the amount
of waste generated, leading to limited landfill space and increasing the cost of waste
disposal. To address this issue, considerable efforts have been made to adopt sustainable
material solutions, such as recycling waste products in various engineering applications [1].
One such area of interest is to burn municipal solid waste for the energy generation and
management of incineration ash. Several countries have been effectively managing the
MSWI (municipal solid waste incineration) bottom ashes through various implementation
programs and regulations [2–6].

In compliance with environmental standards set forth by national regulations, many
European countries have adopted the use of MSWI bottom ash (B.A.) as a sustainable
material for transportation applications [3,4]. Figure 1a compares MSWI BA generation
and its recycling rate for several countries. Interestingly, despite the larger production of
municipal solid waste (MSW) in the U.S. compared to any other country, the recycling rate
in the U.S. remains surprisingly low. Since 1980, the total amount of MSW generated in the
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U.S. has risen by 65%, resulting in an annual volume of 250 million tons, of which 53.6% is
disposed of in landfills, 34.7% is recycled, and 11.7% is used for energy generation through
incineration [7]. In the U.S., eighty-six MSW incineration plants were being operated
over twenty-four states [8], with New York, New Jersey, Connecticut, Pennsylvania, and
Virginia as the primary users of MSWI plants [6]. Those incineration facilities’ usual by-
products include MSWI fly ash (F.A.) and bottom ash (B.A.). As a common practice of
MSWI management, the fly ash, which is treated as hazardous waste, is combined with
bottom ash and the combined ash is often disposed in landfills [9].

There have been efforts to identify the beneficial utilization of MSWI BA in the construc-
tion sector. Cho et al. [10] conducted a comprehensive literature review to see the potential
of MSWI ashes as construction material. It has been investigated whether MSWI BA can be
utilized as a replacement for fine aggregate in HMA (hot mix asphalt). Thus far, research
suggests that this may not be economical because of B.A.’s high porosity/absorption [11,12].
Nevertheless, some studies recommend limiting the use of B.A. to lower than 25% [13].
Utilizing the B.A. in road construction can be beneficial as the reuse of waste materials
becomes increasingly important, particularly in construction and highway pavements. This
is due to the decrease in resources of virgin aggregates, an increase in transport distances,
and a decrease in landfill space [14]. As road materials, Tasneem et al. [15] investigated the
leaching behavior of the MSWI-BA-mixed HMA and reported that the toxic level from the
leachate is lower than the environmental regulations.

Recycled asphalt shingle (RAS) is another notable source of solid waste materials
generated from the construction–demolition debris sector. In the U.S., eleven million tons
of RAS are generated annually, accounting for a fraction of the total MSW generated,
amounting to around 250 million tons. Post-consumer scrap, represented by tear-off shin-
gles, constitutes 90% of this waste, while post-manufacture scrap represents the remaining
10% [2]. Among the states with the highest shingle production rates, California generates
approximately 1.2 million tons of shingles annually, of which 1.1 million tons of tear-off
shingles arise from roof replacement projects [3].

The predominant disposal mode of roofing shingle waste Is landfilling, estimated
at between USD 18 and USD 60 per ton [4]. Figure 1b illustrates, as an example, the
composition of construction and demolition (C&D) materials produced in the state of
Florida. Asphalt shingles (tear-off shingles) constitute approximately 7% of the C&D waste
on a weight basis. According to previous studies, assuming that the processed shingles
have a 20% asphalt composition, the addition of 5% shingles can result in a 1% reduction in
the total virgin liquid asphalt content in hot mix asphalt (HMA). Generally, those asphalt
shingles comprise fine aggregate, aged asphalt, fibers, etc.

Nam et al. [16] conducted a study on the mechanical properties of shingle-mixed
HMA and reported a decrease in rut depth from 3.7 mm to 1.4 mm with the addition of 5%
shingle. Moreover, they observed a reduction in the optimal virgin binder content from
5.77% to 4.77% with a 5% shingle addition. Another study has shown that the grounded
shingle was used in cement mortar and the fiber in the shingle helps to gain the strength of
concrete [17]. Cooper et al. [18] checked the concentration of asphaltene in the extracted
aged binder from the shingle. The results indicated that the asphaltene content in the
RAS-derived asphaltenes was much greater than that of a regular binder.

Furthermore, the considerable variation in their molecular weight distributions sug-
gested that it is necessary to consider binder compatibility when using RAS-derived binders.
Wu et al. [19] performed a rutting test on HMA specimens mixed with RAS. Due to the
presence of the aged binder of the shingle, the test results indicated that the RAS-mixed
asphalt mixture has a much lower rut depth than the control mixture. Similarly, Cascione
et al. [15] evaluated the fatigue behavior based on a four-point bending beam and found
that the RAS-mixed specimens showed comparable fatigue performance. Willis et al. [20]
proposed that using RAP and RAS in HMA can significantly reduce the construction cost
by up to 35%.
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Some of the studies have also investigated the positive effect of nanoclay in asphalt
mixture [21,22] and potential use of those recycling materials in geo-applications [23,24].
Particularly, ash has been used in stabilizing subgrade soils of pavement systems [25,26].

The previous studies are limited to the use of individual recycling material in HMA.
The impact of each material alone was well characterized, but the combined use of both
recycling materials was not investigated, which was the research gap. As reported, MSWI
BA has high porosity and absorption; thus, the optimum asphalt content is increased when
the B.A. is used in HMA. RAS that contains about 30–40% aged binder may compensate
for this limitation. Therefore, the novelty of the presenting study is the combined use of
two recycling materials (MSWI BA and RAS) so that the mechanical performance of the
asphalt mixture is enhanced and the sustainability efficiency is maximized in resource
conservation and reduced CO2. The main hypothesis of our study is that MSWI BA, due
to high porosity, requires a higher amount of asphalt binder in the mixture and that the
aged binder in RAS can make up this limitation. The combined use of the MSWI BA and
RAS can compensate each other and the performance of the BA-RAS asphalt mixture can
be maximized. Therefore, the research objective is to investigate the effect of the combined
use of MSWI BA and RAS in HMA, investigating the mechanical performance of the HMA.
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construction and demolition debris (Nam et al. [16]).

2. Methodology and Scope

In this study, we employed MSWI BA as the aggregate and RAS as the additive in
HMA. Figure 2 shows the flow chart of the research methodology. MSWI BA was used
to partially replace the virgin aggregate and the ground RAS was used as an additive.
Based on the comprehensive literature review, a typical range of the aggregate replacement
and admixture content was adopted for the two recycling materials. MSWI BA was used
to partially replace the fine aggregate with 10, 20, 30, and 40%. RAS as admixture was
added to the mixture with 1, 2, 3, 4, 5, and 6% content. This mixing scenario aimed to
identify the optimum proportioning of the MSWI BA and RAS in the asphalt mixture. The
HMA mixtures were prepared and then tested by multiple laboratory tests to evaluate their
mechanical performance. As seen in Figure 2, the laboratory tests included the Marshall
test, indirect tensile test, moisture susceptibility test, and rutting test (asphalt pavement
analyzer). Table 1 summarizes all cases of specimen preparation. The sample I.D. represents
the material component and percentage of either replacement or addition. For example,
the sample code of “V100-B20-A5.7-R2” means that the mixture contains 100% of virgin
coarse aggregate (V), 20% of bottom ash (B), 5.7% of asphalt content (A), and 2% of recycled
asphalt shingle (R).
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Table 1. Mixture specimens and the sample I.D. (Note: OBC = optimum binder content, AC = asphalt
content).

Code Number Sample ID Description

Code 1 V100-B0-A5.7-R0 100% virgin coarse and fine aggregates @ 5.7% OAC
Code 2 V100-B20-A5.7-R0 100% virgin coarse + 80% virgin fine+20% BA fine agg. @ 5.7% AC
Code 3 V100-B20-A6.8-R0 100% virgin coarse + 80% virgin fine+20% BA fine agg. @ 6.8% AC
Code 4 V100-B20-A5.7-R1 100% virgin coarse + 80% virgin fine+20% BA fine agg. + 1% RAS @ 5.7% AC
Code 5 V100-B20-A5.7-R2 100% virgin coarse + 80% virgin fine+20% BA fine agg. + 2% RAS @ 5.7% AC
Code 6 V100-B20-A5.7-R3 100% virgin coarse + 80% virgin fine+20% BA fine agg. + 3% RAS @ 5.7% AC
Code 7 V100-B20-A5.7-R4 100% virgin coarse + 80% virgin fine+20% BA fine agg. + 4% RAS @ 5.7% AC
Code 8 V100-B20-A5.7-R5 100% virgin coarse + 80% virgin fine+20% BA fine agg. + 5% RAS @ 5.7% AC
Code 9 V100-B20-A5.7-R6 100% virgin coarse + 80% virgin fine+20% BA fine agg. + 6% RAS @ 5.7% AC

3. Materials
3.1. Asphalt Binder

The study used PG 67–22 asphalt binder, which is commonly used in Florida, U.S., due
to its suitability for warm weather conditions. Table 2 summarizes the physical properties
of the asphalt, including viscosity, dynamic shear modulus, penetration, and flash point.
It is noted that the base binder used in the study was not modified [27–31].

Table 2. Properties of the asphalt binder.

Test Method Specification Results

Rotational viscocity @ 135 ◦C,
20rpm spindle #21

AASHTO
T316 [27] 3.0 Max 0.456 Pa.s

Rotational viscocity @ 165 ◦C,
20rpm spindle #21

AASHTO
T316 [27] 3.0Max 0.128 Pa.s

Dynamic shear
(G*/sinδ, 10 rad/s)

AASHTO
T315 [28] 1.0 min @ 67◦ 1.09 kPa

Ring and ball soft point AASHTO
T53 [29] - 54 ◦C

Penetration @ 25 ◦C AASHTO
T49 [30] - 59 dmm

Flash point AASHTO
T48 [31] 230 ◦C 344 ◦C

Note: Pa.s = pascal-second.
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3.2. Aggregate and Recycling Materials

Limestone, which is common in Florida (rich limestone bedrock), was selected as the
virgin aggregate for the HMA mixture. The maximum size was 25 mm. The limestone
aggregate was obtained from a local supplier in Orlando, Florida. The fine aggregate was
also made of limestone, obtained by fracturing larger particles.

The MSWI BA used in this study was found to be lightweight, porous, and absorbent
with a grayish appearance. The MSWI BA was obtained from a refuse-derived fuel (RDF)
incineration facility in Florida. Prior to sieving, manual separation was carried out to
remove unburned organics (e.g., glass, metal, paper, etc.). An example photo of the MSWI
BA can be seen in Figure 2 (center diagram). The MSWI BA passing sieve No. 4 (smaller
than 4.75 mm) was used to replace the virgin fine aggregate. Table 3 summarizes the
physical properties of the MSWI BA, including specific gravity, absorption, unit weight,
and L.A. abrasion loss [32–34]. The references of the standard testing methods are presented
in the table.

Table 3. Properties of MSWI bottom ashes and limestone aggregate.

Properties Limestone * MSWI Bottom Ash

Specific gravity (oven dry) ASTM C127 [32] 2.4 2.2
Absorption capacity ASTM C127 [32] 3.04% 12.8%

Unit weight (oven dry) ASTM C29 [33] n/a 2195 kg/m3

L.A. abrasion mass loss ASTM C53 [34] 36% 43%
* Limestone as a reference material.

RAS was also obtained from one of the local manufacturers in Orlando, Florida. The
basic physical properties of RAS were tested and visually inspected. The specific gravity is
2.25 and the fineness modulus is 2.25. The RAS sample includes some impurities, such as
wood and granules; thus, they were sieved out with sieve No. 8 (2.36 mm opening size) to
remove those impurities.

4. Specimen Preparation
4.1. Control HMA Specimen
Optimum Binder Content (OBC)

The OBC was estimated for the control specimen that contains no MSWI BA and RAS.
The heat was applied to aggregates and mixed with liquid binder at different binder content.
Our previous studies show that the optimum binder content ranges approximately between
4% and 7%; thus, we tried the binder content from 4% to 6.5% with a 0.5% increment (by
wt % of the mixture). The specimens were compacted with a Marshall hammer (75 blows
on each side) according to ASTM D6927 [35]. For each mix design (or binder content), we
prepared three samples in each case, resulting in a total of 18 samples.

The bulk specific gravity, Gmb, was computed by:

Gmb =
WD

WSSD − Wsub
(1)

where WD = weight dry in air, Wsub = weight submerged in water, and WSSD = weight dry
in saturated surface.

The void of total mix (VTM) was computed by:

VTM =

(
1 − Gmb

Gmm

)
100 (2)

where Gmb = specimen bulk density and Gmm = max theoretical specific gravity.
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We then computed the void filled with asphalt (VFA) by:

VFA =

[
VMA − VTM

VMA

]
100 (3)

The specimens were then tested to measure stability and flow, followed by ASTM
D6927. Figure 3 shows the relationship between binder content and each mixture’s physi-
cal/mechanical properties to determine the optimum binder content. Table 4 presents the
specification limits for the Marshall mix design. According to the data, the OBC is 5.7% for
the control HMA that contains no MSWI BA and RAS.
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Table 4. Optimum asphalt binder specification limits.

Test Property Specification Results

Marshall stability (1 bf) 1500 (minimum) 3005
Flow 0.01 inch 8–16 14.8

Void in total mix (%) 3–5 4
Void filled with Asphalt cement 70–80 78

4.2. BA-Mixed HMA
4.2.1. Mix Design

The MSWI BA partially replaced virgin fine aggregate in the asphalt mixture. The
bottom ash was sieved out with particle sizes smaller than 4.75 mm (passing sieve No. 4).
Figure 4 shows the particle distribution of the BA used in the mixture. The HMA specimens
were prepared with MSWI BA replacing 0% through 40% (with 10% increments) of the
fine aggregate (by total weight). To satisfy the fine aggregate requirements, both BA and
limestone aggregates were separated as individual sieve sizes and combined to the target
gradation (see Table 4).
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Figure 4. Particle distribution of the aggregate with the limits.

We adopted a smaller specimen size, a 4 in. diameter of HMA, because of the limited
amount of MSWI BA. Therefore, the Marshall mix design was used for the sample design.
Three specimens were made for each mix design and the average value was reported as
the representative value. HMA specimens with 0% MSWI BA, which is referred to as
the “control mix”, were made to investigate the optimum binder content (OBC) for the
limestone aggregate, which is 5.7% asphalt content. Subsequently, the HMA mixtures with
BA 10%, 20%, 30%, and 40% were prepared at the OBC (5.7%). Table 5 is organized for
details of the aggregate replacement by the MSWIBA.

Table 5. Details of the aggregate replacement by the MSWI BA (note: the value of each cell represents
the weight of each fraction).

Sieve No.
(Size)

Replacement Ratio of BA

0% 10% 20% 30% 40%

Virgin Agg (g) BA (g) BA (g) BA (g) BA (g)

19 mm 58 0 0 0 0
12.5 mm 173 0 0 0 0
9.5 mm 115 0 0 0 0

#4 207 0 0 0 0
#8 201 20 40 60 80
#16 109 11 22 33 44
#30 92 9 18 28 37
#50 75 7 15 22 30

#100 40 4 8 12 16
#200 31 3 6 9 12
Pan 49 5 10 15 20

4.2.2. Optimum Binder Content (OBC)

Based on the Marshall and moisture susceptibility tests results, it was determined
that a 20% aggregate replacement by the BA was optimal for the mixture. MSWI BA is
a lightweight aggregate with high absorption and porosity; thus, a greater amount of
asphalt binder is necessary to maintain the desired film thickness. Thus, we investigated
the optimum binder content for the 20% BA mixture. The Marshall mix design shown in
Figure 5 was used. The optimal binder content is determined by evaluating the mixture’s
stability, air voids, flow, and void filled with asphalt (VFA). The procedure shown in
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Figure 5 identified an optimal binder content of 6.8%. The control mix (0% BA) and the
20% BA mix indicate optimal binder contents of 5.7% and 6.8%, respectively. The 20% BA
requires additional asphalt binder of 1.1% based on the Marshall method. Even with a 5.7%
binder content, all the requirements are met. Table 6 indicates specification of the optimum
binder content at 20% MSWI BA replacement.
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Table 6. Specification of the optimum binder content at 20% MSWI BA replacement (note: same
specifications in Table 4 but different testing results).

Test Property Specification Results

Marshall stability (1 bf) 1500 (minimum) 3080
Flow 0.01 inch 8–16 16.2

Void in total mix (%) 3–5 4
Void filled with Asphalt cement 70–80 78

4.3. BA-RAS-Mixed HMA
Mixture Design

As the MSWI BA replaces 20% of the virgin fine aggregates, the optimum asphalt
content (OAC) was increased by 1.1% (wt%). RAS was added into the HMA mixture at
various percentages to mitigate this increase by the additional binder from RAS. At a fixed
asphalt content of 5.7%, we added the RAS, ranging from 1% to 6% with an increment of
1%, into the HMA. Table 7 shows the composition of the BA-RAS-mixed HMA specimens.

Table 7. Composition of the BA-RAS-mixed HMA.

Asphalt Content Coarse Aggregate Fine Aggregate RAS as Admixture

5.7% limestone aggregate 20% replacement by
MSWI BA 1, 2, 3, 4, 5, 6%

5. Experimental Program

Details of the laboratory testing methods are presented herein. It is noted that the
Marshall and moisture susceptibility test characterized the BA-mixed HMA, while the
BA-RAS-mixed HMA was tested using indirect tensile strength and rutting tests.
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5.1. Marshall Test

The Marshall stability and flow test was carried out (ASTM D 6927) [35]. We employed
75 blows by the Marshall hammer to achieve the target compaction level. The values
of “flow” and “stability” from the Marshall test represent the displacement and strength
characteristics of the mixture, respectively. For each test, three specimens were prepared
and the test results were then averaged for the representative value. A loading rate of 50.8
mm/min was employed.

5.2. Moisture Susceptibility Test

The Lottman test was carried out for the moisture susceptibility assessment (ASTM
D4867) [36]. This test investigates the negative influence of water on the mixture’s tensile
strength. Each set of samples was divided into two groups with a similar air void content
(71%) after testing. One group was kept dry while the other was exposed to moisture, with
the test being conducted at a temperature of 25 ◦C. The moisture susceptibility test method,
as shown in Figure 6, was utilized to evaluate the impact of water on the tensile strength of
HMA paving. Dry samples were sealed and kept in a water bath at 25 ◦C, whereas wet
samples were partially saturated before being soaked in distilled water for 24 h at 60 ◦C
and 1 h at 25 ◦C to maintain the temperature. The indirect tensile test (IDT) equipment was
utilized to determine the indirect tensile strength of each sample at a strain rate of 2 inches
per minute. The formula for calculating the indirect tensile strength was as follows:

St =
2P

πtD
[psi] (4)

where P = maximum loading, St = tensile strength, t = thickness of specimen, and D =
diameter of specimen.

TSR =

(
Stm

Std

)
100 [%] (5)

where TSR = tensile strength ratio, Stm = average tensile strength of the moisture sample,
and Std = average tensile strength of the dry sample.
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Many highway agencies (e.g., state DOTs) normally require the use of anti-strip agents
for asphalt pavements. FDOT’s regulations specify that an antistrip agent can be blended
with an asphalt binder at a concentration ranging from 0.25% to 0.50% by weight. In this
study, an anti-strip agent was not used in order to better investigate the sole effect of the
BA content on moisture-induced damage.

5.3. Indirect Tensile Strength (IDT) Test

The cylindrical specimen was loaded diametrically, as seen in Figure 2. For the loading,
a strain rate of 2 in/min. was employed. The perpendicular deformation of the loading
direction results in tensile failure. The maximum load and specimen dimensions were
recorded to calculate the material’s indirect tensile strength using Equation (4).
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5.4. Rutting Test (Asphalt Pavement Analyzer Test)

The rutting resistance of each specimen was investigated and the asphalt pavement
analyzer (APA) test was employed. This test was chosen to ensure the comparability of the
data since the APA measurement assesses mixture stiffness and measures sample rut depth
directly. The testing was performed on 75 mm dry compacted HMA cylindrical samples
that have 7.0 ± 0.5 percent air voids. The specimens were tested under 64 ◦C and 8000
cycles of loading were applied. Rutting is a complex phenomenon influenced by various
factors, according to the literature on the subject.

6. Results and Discussion
6.1. BA Mixed HMA
6.1.1. Marshall Test

The results of Marshall testing are shown in Figure 7. The stability was observed
to increase by 2%, 16.5%, 13.3%, and 0.5% with the addition of BA in the mixture at 0%,
10%, 20%, and 40% by weight, respectively. Similarly, the flow was observed to increase
by 4%, 8%, 38%, and 61% as the amount of bottom ash in the mixture increased from 0%
to 10%, 20%, and 40%, respectively. The increase in stability of the bottom ash aggregate
was attributed to the surface roughness of the particles, which enhanced the interlocking
between the particles. However, beyond the 20% replacement, the stability began to
decrease due to a decrease in the binder content.
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6.1.2. Moisture Susceptibility Test

Figure 8 depicts the findings of the moisture susceptibility test, wherein it can be
observed that the 20% replacement of MSWI BA displays the greatest tensile strength
of 1720 kPa, indicating an increase of 288 kPa compared to the control specimen with
a tensile strength of 1432 kPa. All MSWI-BA-combined HMA samples exhibit a tensile
strength greater than the control, except for the 40% MSWI BA substitution. However, only
the HMA mixtures with a 10% and 20% BA substitution exhibit greater tensile strength
ratios (TSRs) than the control specimen, as per the results of the test, indicating that they
are better suited for use in practical applications. Most highway agencies require the
minimum criterion of 80%; thus, based on the criterion, only the 20% replacement of MSWI
BA satisfies the requirement. This is attributed to the fact that MSWI BA is more porous
compared to conventional aggregates such as limestone and granite, leading to increased
water absorption. Consequently, the utilization of MSWI BA in the HMA mixtures may
result in a reduced effective asphalt binder content, thereby diminishing the HMA’s ability
to withstand moisture. Notably, the study did not assess the cracking resistance of the HMA
mixtures, and thus it is plausible that the mixtures may exhibit low cracking resistance
despite the observed enhancements in stability and TSR up to a 20% MSWI BA substitution.
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6.2. BA-RAS-Mixed HMA
6.2.1. Indirect Tensile Strength Test

The 20% MSWI BA replacement resulted in an increase of 1.1% (wt%) of the optimum
asphalt content. In order to minimize this percentage increase, RAS was incorporated into
the trial mixture in varying amounts of 1 through 6 percentage points based on the total
aggregate mass. The outcomes of this experiment are presented in Figure 9.
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Figure 9. Results of the tensile strength test (BA-RAS-mixed HMA specimens at fixed 20% of BA).

Incorporating RAS into the HMA blend enhances the binder’s tensile strength, with
a 29.5% higher increment observed at a 5% ratio compared to a 0% ratio. However, the
excessive addition of binder causes the mixture to become more ductile, resulting in a 6%
reduction. Moreover, a 6% inclusion of RAS has the potential to replace the quantity of fine
aggregates in the mixture by up to 60%. As a consequence, the mixture transforms from a
viscoelastic state to a plastic state with the incorporation of additional filler.

6.2.2. Rutting Test

The results of the rutting test, as presented in Figure 10, along with the effective binder
content (EBC) of the suggested samples, exhibit an irregular pattern inconsistent with the
trend observed in the tensile strength outcomes. The variability in the EBC is responsible



Materials 2024, 17, 46 12 of 15

for this phenomenon, given that the EBC is directly related to the amount of mixture binder.
The substitution of 20% of the fine aggregates with MSWI BA reduces the EBC, resulting
in lower resistance to permanent deformation, as demonstrated in the specimens labeled
“V100-B20-A5.7-R0”. The presence of porosity on the surface of MSWI BA particles means
that the addition of 1, 2, and 3 percent of RAS does not have a significant effect on the
EBC. Instead, the extra filler materials provided by RAS enable greater plastic deformation.
Samples containing 4, 5, and 6 percent of RAS show an increase in the EBC, which has a
greater impact on rut depth than the filler materials in RAS. However, the sample with 6
percent of RAS has only a slightly higher EBC percentage than the control sample, leading
to an increase in rutting.
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6.3. Correlation Analysis between Stiffness and Rut Depth

A new stiffness index has been introduced to establish the correlation between stiffness
and rut depth. The stiffness is computed by identifying the slope of the load–displacement
curve, as seen in Figure 11. This slope is referred to as “IDT stiffness (k)”. Steeper slopes
(higher k values) indicate stiffer mixtures that can be associated with greater resistance
to permanent (or plastic) deformation. In order to determine the IDT stiffness (k), an
algorithm was developed based on MATLAB (R2020b) software. A tangential line over a
small segment was computed and continuously plotted along the entire load–displacement
curve. The maximum slope represents the point with maximum stiffness, and the failure
point is indicated by a zero slope after the maximum. The mixture displays linear behavior
over a section before and after the maximum stiffness under monotonic loading. The data
points in the section of 95% of the maximum slope are chosen for Polyfit, and the best-fit
line is obtained (see Figure 11). This best-fit line is then denoted as the “k” value.

The correlation between rut depth and IDT stiffness (k) is illustrated in Figure 12.
A higher “k” value corresponds to a smaller rut depth. It is widely known that stiffer
materials are more susceptible to fatigue cracking. Thus, the rut resistance and fatigue
crack resistance are trade-offs (see Figure 12).
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7. Conclusions

Unlike the previous studies that focused on the individual use of recycling material
in HMA, the presented study explored the beneficial use of MSWI BA and RAS in HMA,
particularly their combined effect on mechanical performance. RAS was used as an additive
and the MSWI BA was used as a replacement for aggregate in HMA. Our main hypothesis
is that the increased optimum asphalt binder, due to the high porosity of MSWI BA, will be
supplemented by the extra asphalt binder from RAS. It is important to note that MSWI BA’s
high absorption will require a higher amount of asphalt binder in order to provide sufficient
asphalt film (or coating) around the aggregate when compared with normal aggregates
such as limestone, granite, etc. However, RAS can supply those required asphalt binders
because it has an about 30–40% binder component. The following conclusions have been
drawn based on a series of laboratory tests.

• The control HMA (0% MSWI BA, 0% RAS) indicates the optimum binder content
as 5.7%.
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• The optimum replacement of the fine aggregate is 20% MSWI BA in HMA and the 20%
BA-mixed HMA shows its optimum binder content as 6.8%. Thus, the 20% replacement
of the MSWI BA increases the optimum binder content of the mixture by 1.1%.

• When the 20% MSWI BA replacement is fixed, as the RAS content increases, the
strength of the HMA increases. A 5% addition of RAS exhibits the greatest strength of
the mixture.

• All mixtures demonstrated greater strength than the control specimen (regular HMA),
indicating a greater mechanical performance than typical HMA.

Based on the findings, it is believed that the combined use of MSWI BA and RAS in
HMA is a cost-effective alternative and that their mechanical performance is compatible
with normal HMA mixtures. Therefore, the combined use of MSWI BA and RAS in HMA is
preferred over individual usage. It was also observed that the asphalt mixture exhibits the
best mechanical performance at a 20% aggregate replacement by MSWI BA and 5% RAS as
an admixture.

As a future study, one may quantitatively evaluate not only cost–benefit analysis
(including life cycle cost analysis) but also life cycle assessment (LCA) for the combined
use of MSWI BA and RAS in HMA prior to their field implementation. Additionally, the
authors understand that the current study was limited to basic mechanical performance
such as strength and stiffness; therefore, future studies may evaluate fatigue and fracture
performance as part of ongoing research.
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