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Abstract: A high-entropy Fe30Co20Ni20Mn20Al10 (at%) alloy with a face-centered cubic (FCC) crys-
talline phase was produced through mechanical alloying. This study examined the development of
its phases, microstructure, morphology, and magnetic characteristics. Scanning electron microscopy
(SEM) was applied to assess the sample morphology in relation to milling times. The changes that
the material underwent during milling were investigated using X-ray diffraction. The milling time
affected the phase transformation. A single FCC solid solution (crystallite size = 12 nm) was found
after 50 h of milling. Additionally, the magnetic characteristics were examined and shown to be
associated with microstructural changes. The powder mixture exhibited behavior consistent with soft
magnetics, with an Hc value of 8 Am−1 and an Ms value of 165 emu/g. The excellent soft magnetic
characteristic may be related to the stability of the FCC phase, which was generated following a 30 h
milling process. In addition, the low value of Ms may have originated from the presence of Al atoms
in the solid solution and the development of large densities of interfaces and crystal defects.

Keywords: HEA alloy; mechanical alloying; X-ray diffraction; microstructure; magnetic characteristics

1. Introduction

Generally, bimetallic and trimetallic alloys have been effectively employed, with one
of the added metals acting as the major component and being frequently used in greater
quantities (solvent element) while the other additional metals (solute elements) are of-
ten employed in smaller amounts [1,2]. Nonetheless, it has been stated that remarkable
progress has been made in the last several decades in the development of specific alloys,
such as superalloys and stainless steel. The development of these alloys was based on
the complexity of their chemical compositions [3]. Typically, they are made up of many
elements and have higher mixing entropies than pure metals. However, it is possible to
add more alloying elements because as the alloy mixing entropy rises, so does its mixing
enthalpy, and the alloy characteristics are consequently markedly enhanced. The new
metal alloys are known as high-entropy alloys (HEAs). More than a decade ago, HEAs
were first introduced as a novel class of multicomponent alloys by Yeh and co-authors. [4]
and Cantor et al. [5]. HEAs frequently form a duplex (FCC + BCC)- or a single FCC- or
BCC-solid solution [6]. Amorphous structures can be seen in some other HEAs [7]. Be-
cause of their exceptional mechanical characteristics, such as hardness and resistance to
wearing, as well as their soft magnetic qualities, HEAs are thought to be very promising
materials [8]. HEAs have been produced via powder metallurgical processes, deposition
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techniques, and melting and casting methods [9]. The large compositional space as well as
complex dimensions of HEAs are further enhanced by the addition of a nanocrystalline
structure. Furthermore, it has been reported that nanostructured HEAs have good mag-
netic behavior [10], greater thermal stability [11], and superior mechanical properties [12].
The mechanical alloying (MA) method is a popular approach for creating nanoscale solid
solution structures with unique characteristics and provides a substitute for arc melting
and the use of foundries for producing high entropy alloys [13,14]. MA provides the benefit
of extended solid solubility even in immiscible solutions. This might be explained by the
higher diffusion times brought on by the nanosize of the powder components before the
alloying process. As a result, MA gives phases in HEAs greater stability in addition to
increasing configurational entropy. A detailed analysis of the impact of various milling
factors on the composition and behavior of HEAs was carried out by Murty et al. [15].
These factors include the kind of milling device, the atmosphere, the ball-to-powder ratio,
the milling frequency, and the processing time. Indeed, by modifying milling parameters
including the milling time, milling frequency, process control agents, milling media (atmo-
sphere, dry or wet milling), and ball-to-powder ratio, there is an opportunity to increase
the energy efficiency in the bulk manufacturing of HEAs. Moreover, the extension of the
solid solution and the creation of nanocrystalline/amorphous materials can result from the
production of a high degree of crystallographic defects, or grain boundaries, by MA and
the segregation of solutes at these defects [16]. High-energy mechanical milling was used
by Varalakshmi et al. [17] to create the first HEA, AlCrCuFeTiZn with a BCC structure and
crystalline size of about 10 nm. They reported that after annealing the alloys for 60 min
at a temperature of 800 ◦C, they remained stable. Moreover, Gómez-Esparza et al. [18]
synthesized the HEA FeCoNiAlCr using MA and revealed that the powder exhibited a
mixture of the cubic BCC- and FCC-phases following ten hours of milling. In a relatively
recent work, the HEA FeCoNiB0.5Si0.5 was properly formed using MA for 150 h with a
single solid solution phase; the thermodynamic criteria for creating such a phase were not
identified [6]. On the other hand, recent studies have revealed that HEAs exhibit excellent
soft magnetic characteristics in addition to their extraordinary mechanical properties [19,20].
Based on the work of Zuo et al. [19], the as-cast magnetic HEA CoFeMnNi has an inferior
Ms value of 18.14 emu/g, whereas the as-cast AlCoFeMnNi alloy has an elevated Ms value
of approximately 148.7 emu/g. As a result, the addition of Al considerably increased its
saturation magnetization. To meet the increasing performance and technological require-
ments in the field of electronics, a unique soft magnetic material should be developed. New
opportunities for developing innovative soft magnetic materials have been made possible
by the introduction of HEAs [10,19,20]. HEAs developed from ferromagnetic materials
(Fe, Co, and Ni) often also have good soft magnetic properties. Transformers and motors,
two types of electromagnetic equipment utilized in the electronics industry, depend on
these soft magnetic materials. A good soft magnetic material must have low coercivity,
electrical resistivity, and magnetic permeability and high saturation magnetization. For
instance, the CoFeMnNiGa [20] and CoFeMn0.25NiAl0.25 [19] alloys exhibit low coercivity
and high saturation magnetization. Additionally, recent measurements of magnetization
when Al is added to the HEA FeCoNiCr have demonstrated that, at room temperature, the
magnetic state changes gradually from paramagnetic to ferromagnetic [21]. The influence
of an additional component on phase formation and alloy characteristics, however, depends
on several variables, including the radii of atoms, the crystal structure, and the mixing
enthalpy with other elements in the alloy. For example, the phase evolution in HEAs is
most significantly influenced by Al, and through sequential alloying, Vaidya et al. [22]
showed how Al can promote the creation of the BCC phase. Additionally, due to its consid-
erable ductility, it results in lower contamination levels because it erodes milling media
less frequently. Additionally, in a soft CoCrFeMnNi-based FCC alloy, Al addition causes
ordered B2 precipitates to form and harden [23]. According to the previously mentioned
studies, HEAs have advanced significantly in a range of functional applications, including
superconducting materials, diffusion barrier films, photothermal conversion materials,
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soft-magnetic materials, corrosion resistance materials, and irradiation resistance materials.
Since there are several gaps in our understanding of the relationship between the structures,
microstructures, and functional properties of these materials, it is essential to research
functionally oriented HEAs. Consequently, this work focuses on the synthesis and analysis
of the effect of the milling time on the HEA FeCoNiMnAl during the mechanical alloying
procedure. The structural, microstructural, and magnetic characteristics are examined for
this purpose.

2. Materials and Methods

A high-energy planetary laboratory mill device (Fritsch Pulverisette P7, FRITSH
GmbH, Idar-Oberstein, Germany) was employed to mechanically mill the elemental pow-
ders of Fe, Co, Ni, Mn, and Al (purity~99.5%; particle size ≤ 30 µm; from Alpha Aesar,
Haverhill, MA, USA) in an argon atmosphere in order to achieve the desired composition
of Fe30Co20Ni20Mn20Al10 (at%). Experiments using mechanical alloying were conducted in
a stainless-steel container that had been hardened. The powder-to-ball weight ratio was
kept constant at 0.47. A 600 rpm milling speed adjustment was made. The processing
favors the formation of powder agglomerates, and adhesion to the container walls and
balls were avoided using a milling sequence that involved 10 min of milling followed by
5 min of idle time.

Using scanning electron microscopy (SEM, DSM960A ZEISS, Carl Zeiss GmbH,
Oberkochen, Germany) in secondary electron mode at a voltage of 15 kV, the morphology
of the particle powders was examined. The energy dispersive X-ray spectrometry (EDS)
analyzer Vega©Tescan (Brno, Czech Republic) was mounted in the SEM. The program
Image J (version 1.x) was used to determine the powders’ particle sizes.

The milled powders were examined via X-ray diffraction (XRD) using a Siemens
D500 powder diffractometer (Berlin, Germany) in (θ–2θ) geometry using CuKα radiation
(λCu = 0.15418 nm). The phase analysis was performed using ICDD (PDF-2, 2012) files.
Both structural and microstructural parameters were determined from the refined products’
XRD patterns using the MAUD program (version 2.55) based on the Rietveld method [24].

A thorough analysis of the XRD profiles can be carried out in the framework of
MAUD software (version 2.9) [24] using the Rietveld refinement and Warren–Averbach
methods [25,26]. This will enable the determination of the phase compositions as well
as the structural and microstructural parameters for each phase, including the lattice
parameters, average crystallite size 〈D〉, root-square lattice strain 〈ε2〉1/2, and stacking fault
probabilities (SFP).

Rietveld refinement was carried out in MAUD (version 2.55) software. It automatically
carries out the best-fit refinement using the databases and the trial patterns [27]. This
interesting program is available for free at (http://maud.radiographema.com/) (accessed
on 22 May 2023) [28]. MAUD requires two files: the network parameters of the phases that
need to be refined (*. CIF format) and the patterns to be refined (*.dat or *.xy formats). The
following strategies were used when employing the MAUD program: (i) The preparation
of experimental XRD patterns of studied samples, with verification of the quality of this
data; (ii) A qualitative analysis (XRD and XRF dual analysis) to determine the phases found
in the sample; (iii) The loading of standard data (*.CIF) for each phase (it describes the
phase information: symmetry, locations of atoms, etc). The latter data can be obtained from
ICSD databases or the COD (Crystallography Open Database); (iv) Starting the MAUD
program, which contains a graphical user interface (GUI); (v) Entering experimental XRD
patterns; (vi) Entering the *.CIF files of phases composing the sample; (vii) Establishing
certain parameters: background, 2θ range (θmin, θmax), etc.; (viii) Commencing standard
refinement: refinement of the background and density (a match must be made between the
experimental and calculated peaks); (ix) Refinement of atomic locations, shapes, and struc-
tures of peaks (by improving the crystallite size and microstrain parameters); (x) Launching
the quantitative analysis command.

http://maud.radiographema.com/
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It is feasible to compute a statistical parameter, known as the goodness of fit “χ2”, which
is the ratio of Rwp to Rexp and which must increase towards unity for a successful refinement:

χ2 =
Rwp

Rexp

The profile refinements continue until convergence is reached; the value of the quality
factor χ2 (GOF) approaches 1.

The SQUID MPMS-XL superconducting quantum interference equipment of Quantum
Design (Caledonia, MI, USA) was employed to measure the saturation magnetization
(Ms), remanence (Mr), and coercive field (Hc) of the as-alloyed powders at 300 K with a
maximum applied field of 50 kOe.

3. Results
3.1. SEM Analysis

SEM micrographs of the alloyed Fe30Co20Ni20Mn20Al10 (at%) powder mixtures pro-
duced before (Figure 1a) and after high-energy mechanical milling for 4, 10, 20, 50, and
100 h (Figure 1b–f) are shown in Figure 1. As shown, each image was obtained at a 100 µm
scale length using an ×300 magnification. The majority of the particles were smaller than
30 µm, and cold-welded particle clusters with sizes up to 150 µm were formed.
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Figure 1. SEM photos of the MA Fe30Co20Ni20Mn20Al10 powder mixture obtained after various MA
times: (a) 0 h, (b) 4 h, (c) 10 h, (d) 20 h, (e) 50 h, and (f) 100 h.

The particle shapes ranged from spherical to polygonal. The final microstructure
was the result of two deformation mechanisms, fracture in hard powders and plastic
deformation linked to cold welding in ductile powders, as previously reported [29,30].
Notably, Al particles are the softest and most ductile of all the metal mixtures; they were
therefore severely deformed and could bond the hardest particles into large cold-welded
particles (Figure 1c–f). However, the state of the tiny particles may be the result of the
intensive fracturing of particles (Figure 1b). This is due to the dissolution of metallic
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elements which form supersaturated solid solutions and an increase in hardening (longer
milling times resulting in a greater percentage of crystallographic imperfections).

3.2. XRD Analysis

Figure 2 displays the X-ray diffraction patterns of Fe30Co20Ni20Mn20Al10 powder
mixtures as a function of milling time. Figure 3 also displays the Rietveld investigations
of the XRD patterns. There was always a refinement parameter for goodness of fit (GOF)
less than 1.12. Controlling the alloying process was made possible by the subsequent
diffraction patterns.
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Figure 2. XRD patterns of the MA Fe30Co20Ni20Mn20Al10 powdered specimens collected after
selected MA times.

The X-ray pattern of the powder before milling is shown for comparison. The BCC
Fe (Im-3 m; a = 2.8667(1) Å), HCP Co (P63/mmc; a = 2.5071(1) Å and c = 4. 0713(1) Å),
FCC Ni (Fm-3 m; a = 3.5260(1) Å), BCC Mn (I-43 m; a = 8.9125(1) Å), and FCC Al (Fm-3 m;
a= 4.0478(4) Å) are the peaks that were recorded before milling (Figures 2 and 3). There
was a gradual disappearance of the Al peaks located at 2θ = 38.48◦ during milling, which
suggests that the MA caused the Al to dissolve in the other metal’s lattice. After 6 h, this
peak completely vanished, showing that Al was introduced into the BCC Fe lattice to
form the supersaturated solid solution BCC Fe(Al) (Im-3 m; a = 2.8668(2) Å, wt% = 20%)
(Figures 2 and 3). In contrast, a disordered BCC Fe(Mn) solid solution (Im-3 m; a= 2.8670(1)
Å, wt%~11%) appeared after the first 2 h of milling. This phase was also refined after 6 h
with a lattice parameter of 2.8637(12) Å and a phase proportion of 40.891%. We found that
the BCC Fe(Co,Mn) supersaturated solid solution with a lattice parameter of 2.9147(1) Å
and a phase proportion of approximately 55% appears when the milling period is extended
to 20 h. At the same time, we refined the BCC Fe(Al) phase (a= 2.8662(1) Å; wt% = 14.4)
with a proportion of HCP Co (a = 2.5071(1) Å and c = 4. 0713(1) Å; wt% = 14.6) and FCC
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Ni (a = 3.6057(1) Å; wt% = 16) phases. With milling time, the (110) BCC Fe strongest
diffraction peak became asymmetrical and shifted toward smaller angles, which suggests
that the lattice parameter increased. After 30 h of milling, the BCC and FCC solid solutions
converged, which can be attributed to the diffusion of Co, Ni, Mn, and Al into the BCC Fe
matrix, which caused the lattice expansion (see Figure 3).
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a multiplication sign.

An earlier report [31] stated that a new FCC structure with a lattice parameter greater
than the FCC Ni phase is formed as a result of the interdiffusion of Ni and Fe. The BCC
iron peak disappears as the milling time exceeds 30 h, leaving only the peaks associated
with an FCC solid solution phase apparent. Furthermore, the BCC phase disappears after
50 h, as shown by the significant displacement of the peak to the lower angle (see Figure 3).
Consequently, this refined FCC phase at extended milling times is a result of the diffusion
in the Ni matrix. Rietveld refinement using the FCC FeCoMnNiAl phase (a = 3.6250(1) Å,
wt% = 100) was acceptable after 100 h of milling (Figures 2 and 3). A considerable amount of
enthalpy could be preserved in nanocrystal alloys due to the large grain boundary domain
and the large number of defects that occurred during grain polishing with nanometric
crystallites [32]. As a result, the energy contained in the crystalline lattice’s distortion
and grain boundaries can help a solid solution form rapidly. Furthermore, the lattice
may deform due to the surface tension of nanometric grains, increasing the solubility.
Chen et al. [33] reported an inverse correlation between the melting points and alloying
efficiencies for elements with similar concentrations. The element’s diffusivity in the
solid-state increases with decreasing melting points [34]. Elements with low melting
temperatures, such as Fe (1811 K), Co (1768 K), Ni (1726 K), and Mn (1519 K), have alloying
rates that are directly correlated with the softness of the pure element [33]. Furthermore, as
the element concentration decreases, the element’s alloying rate rises [35]. As a result, the
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elements in the FeCoNiMnAl HEA should diffuse in the following order: Al → Mn → Co
→ Ni → Fe.

The phase proportion evolution with the milling time is calculated by refining XRD
diffraction patterns with the MAUD software. The results are shown in the Figure 4.
Likewise, the change in the lattice strains and estimated crystallite sizes versus the MA time
is displayed in Figure 5. It is apparent that when milling duration increases over 20 h, the
grain sizes gradually reduce. The estimated values after 20 h of milling were approximately
15, 18, 30, and 39 nm for the FCC Ni, HCP Co, BCC Fe(Al), and Fe(Co,Mn), respectively
(Figure 5a). Then, the size of the crystallite of the FCC Ni phase continued decreasing up
to 12.5 nm. For higher milling times, the FCC FeCoNiMnAl phase is formed with a size
that is 39.41 nm greater than that of Ni after 20 h milling because of the effect of the solid
solution and the dynamic recrystallization of grains created due to local heating during
milling [36,37]. Then, at the end of the milling step, the size drops to a value of 12 nm.
In parallel, the lattice strain levels for all elements increase steadily over the first 20 h of
milling, reaching values of 0.84, 0.95, 0.76, and 0.3% for the FCC Ni, HCP Co, BCC Fe(Al),
and Fe(Co,Mn), respectively (Figure 5b). As the final byproduct of the MA process, the
value of the lattice strains of the FCC FeCoNiMnAl phase slowly increases from 0.337%
(after 30 h of milling) to 0.64% at the end of milling (Figure 5b). Lattice strain increases
are often caused by significant dislocation densities and an increase in the grain boundary
proportion [38]. Dislocations represent a significant concern during the refining process.
In particular, the early stages of milling are characterized by the generation of dislocation
cell blocks, separated by dense dislocation walls and containing dislocations arranged
cellularly within them. The inner dislocation structure becomes more random and has a
smaller space for cellular structures as the strain grows. Additionally, the density of heavy
dislocation walls increases, and the size of the cell blocks becomes closer to that of a cell
when the strain lowers.
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3.3. Magnetic Analysis

Figure 6 displays a superposition of the hysteresis loops (M–H) of the MA
Fe30Co20Ni20Mn20Al10 powder mixtures as a function of the selected milling time. Similar
hysteresis loops were present in all of the milled powders, showing that these samples
exhibit ferromagnetic activity. Furthermore, every hysteresis cycle displayed a sigmoidal
form with minimal loss, which is indicative of behavior found in nanostructured materials
with tiny magnetic domains [39]. Furthermore, soft magnetic materials are required to have
extremely low hysteresis losses [40].
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The correlation between the magnetization of saturation (Ms) and coercivity (Hc) as
a function of MA time is displayed in Figure 7. In general, the hard magnetic materials
have an Hc of up to 2800 kA m−1 (35.18 Oe), while the majority of the soft magnetic
materials have an Hc of less than 1000 Am−1 (12.56 Oe) [41]. As shown in Figure 7a, the
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magnetic behavior of all mechanically alloyed powders is soft (Hc~158 Am−1 (~2Oe)).
Coercivity increases quickly during the initial 8 h of the milling procedure, reaching
158 Am−1. According to reports, the increase in Hc values corresponds to a decreased
coupling between ferromagnetic grains via the intergranular region [42,43]. Moreover, due
to the ferromagnetic nature of the Fe, Co, Ni, and Mn metals, substituting one of these
elements with the non-magnetic Al results in a reduction in ferromagnetic coupling [44].
On the other hand, dislocation density has also been identified as another crucial element
influencing coercivity [45]. In the same context, Yu et al. reported experimental results
demonstrating a direct relationship between an increase in Hc and the appearance of grain
boundaries, precipitation, and disorderly processes [46]. Surface anisotropy could be
another factor contributing to enhanced Hc [47–49]. The latter phenomenon could have its
origin in the exchange connections between the spins of the surface and core atoms [47–50].
Surface anisotropy becomes more significant as the particle size is reduced to the nanometric
interval because of the increased surface/volume ratio [51,52]. Longer milling times cause
Hc to decrease to 5.4 Am−1. This reduction can be linked to the slow variation in grain
size and microstrain as well as the decline in magnetocrystalline anisotropy. After 30 h of
milling, Hc rises once more to a value of 78 Am−1 before decreasing once again to around
8 Am−1 and remaining constant up to the end of milling.
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It is well known that it is possible to characterize the coercivity, or Hc, variations
during the milling process as a progressive rise dependent on the milling time. Coercivity
behavior can be impacted by both the introduction of different structural faults and the
refining of grain size during the milling process. Therefore, the increase in coercivity may
be attributed to the fact that the grain sizes are larger than the thickness of the domain
wall and that the grain boundaries serve as barriers to domain wall motion. According to
the random anisotropy model [53], when the ferromagnetic exchange length, Lex, is larger
than or equal to the grain size, D, and the inverse grain size as a function of milling time,
then Hc obeys a 1/D-dependence law. As previously reported [54], the coercivity specified
by grain boundaries can be written as follows:

Hc ∼ 3
γω

Ms
1
D

where γω is the wall energy and Ms is the saturation magnetization. The wall energy,
γω, can be estimated using the equation:

γω ∼ 3

√
kBTcK1

a
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thus:

Hc ∼ 3

√
kBTcK1

aMs
1
D

where kB is the Boltzmann constant, K1 is the magneto-crystalline anisotropy, Tc is the
Curie temperature, and a is the lattice constant.

Lighter information on the mechanics behind mechanical alloying was provided
by the fluctuations in saturation magnetization (Ms) with milling time. This magnetic
property can be computed using the curve (M–H), which represents the atomic structure
of magnetism. The saturation magnetization can therefore be explained by the electronic
structure, magnetic exchange between its dipoles, and the chemical composition of the alloy.
However, each of these properties is greatly influenced by the quantum processes that exist
and the local surroundings of the atoms [55]. Furthermore, the Ms was determined through
the subsequent application of the classical approach to saturation [56]:

M = Ms
(

1 − a
H

− b
H2

)
− χH

where H is the applied field, χ is the field-independent susceptibility, and a and b are
coefficients that depend on the magnetic and structural properties of the sample [57,58].
According to semi-empirical relationships [59,60], the following relationship is generated
under the assumption of a random exchange interaction and the application of a field high
enough to fully saturate the sample:

A = α(4ρπMs)Pe f f

where α is a constant, which is usually around 0.1, ρ is the density of the material, and Pe f f
is the effective fraction of porosity and non-magnetic inclusions [59,60].

Rather than displaying an evolution based on processing time, as shown in Figure 7b,
the Ms is mostly dependent on the evolution of the system composition. However, within
the initial four hours, the Ms value increased slightly from 989 emu/g to 1091 emu/g. After
20 h, it dropped to 455 emu/g, and after 30 h, it rose once again to 1011 emu/g. After
30 h, the observed condition reaches Ms at approximately 165 emu/g. The crystal structure
and the quantity of magnetic components contribute to these changes in the Ms parameter.
Since the crystal structure provides the orientation arrangement of the magnetic moment
with a geometric basis, the composition and crystal structure can strongly influence the
saturation magnetization [61,62].

As the milling process continues, the proportion of magnetic crystalline phases dimin-
ishes, causing the magnetism to dissipate and limiting crystallinity [12]. The coexistence of
magnetic phases, namely, FCC and BCC phases, leads to a greater Ms in the sample milled
for 30 h, as reported previously [7,61]. However, extended milling durations cause the
orientational magnetic moment in the crystalline magnetic phases to be destroyed, which
lowers Ms. [62]. The variation in Ms is frequently linked to a change in the proportion
of the magnetic phases comprising the magnetic components Fe, Ni, and Co, which are
present in the solid solution phases. The saturation magnetization increases with the
proportion of magnetic phases because it increases the total magnetic moment per unit
of mass [61,63]. The resultant enrichment of the solid solution Fe(Co,Mn,Ni) phase in
the formed alloy at 30 h subsequently generates the increase in saturation magnetization.
Furthermore, the primary cause of the long-term mechanical alloying’s decrease in Ms
is the creation of high densities of defects and interfaces, which significantly restrict the
ability of domain walls to move [64,65]. The interaction between the ferromagnetic Fe,
Co, and Mn atoms and the non-ferromagnetic Al atoms is another factor contributing to
the drop in Ms. Indeed, the Al atoms diminish the magnetic moment of the individual
sites of Fe, Co, and Mn because they mediate an anti-ferromagnetic super-exchange in-
teraction between the ferromagnetic atoms and decrease the direct connection between
ferromagnetic M–M sites [66,67]. According to Plascak et al. [68], Al decreases the magnetic
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moment of individual Fe sites by reducing the direct ferromagnetic interaction between
Fe–Fe sites as well as by mediating an anti-ferromagnetic super-exchange interaction be-
tween Fe sites through Al atoms. Further, Sato et al. [69] discussed the reason why the
Al addition improved the soft magnetic properties and reported that there are two major
factors influencing the soft magnetic properties: (i) the microstructure and (ii) the intrinsic
properties of the material. They indicate that the Al addition to Fe generally decreases
the crystal magnetic anisotropy (Ku) and reduces the magnetostriction constant (λ). It is
believed that it is reasonable that such a change in the coercivity is a function of milling
time where Al diffusion progresses, and it influenced the soft magnetic properties shown
in Figure 7a. Furthermore, through their simulation results of the addition of Al to the
FeCoNiMn alloy, Feng et al. [70] presented another term in the enhancement of the soft
magnetic character of alloys: the short-range order (SRO) parameter. According to their
findings, the SRO dramatically alters the atomic nearest-neighbor environment, which
affects the alloys’ magnetic characteristics. The rise in Mn and Fe magnetic moments is
primarily responsible for the enhancement of saturation magnetization. Between pairs of
Al–Al, Co–Co, and Co–Ni, the SRO parameters are positive; however, between pairs of
Ni–Al, Co–Al, Co–Mn, and Mn–Ni, they are negative [70].

When milling periods exceed 30 h, we see a decrease in Ms toward lower values in
the 179–163 emu/g range. This decrease can be linked to the FCC phase’s stability [70].
They reported that Al atoms that are non-magnetic change the local atomic magnetic
moments and decrease saturation magnetization. Preferentially, FeCoNiMn alloy forms
FCC energetically to prevent magnetic frustration. Furthermore, during the MA process,
the evolution mechanism of particle powders such as repetitive cold welding and fracturing
generate distortions that eventually result in a decrease in Ms. On the other hand, the range
of values for the (Mr/Ms) ratio in all samples processed by MA is between 0.066 and 0.003.
Nevertheless, it has been noted that in single-domain particles (uniaxially anisotropic) the
reduced remanence is on the order of 0.5 [53]. This indicates that the magnetic nanograins
retain a multi-domain microstructure even if the particle sizes are in the nanometer range.

4. Conclusions

Mechanical alloying was used to produce an HEA Fe30Co20Ni20Mn20Al10 (at%)
alloy with an FCC crystal structure. Phase evolution, microstructure, morphology, and
magnetic characteristics were all studied. The SEM analysis shows that plastic deformation,
fracture, and cold welding are the three deformation mechanisms that interact to define the
final microstructure. Due to their extreme ductility and softness, Al particles may undergo
severe deformation and serve as a bonding agent to fuse the toughest particles into larger
cold-welded particles. On the other hand, intensely fractured hard particles could be the
result of metallic components dissolving to create supersaturated solid solutions, which
would raise the work difficulty. Through the use of XRD analysis, a single FCC phase with a
nanocrystallite size of 12 nm was found at the end of milling. Al has a major impact on phase
formation because, as milling times increase, it progressively dissolves in the metal lattices
and may eventually impose its FCC structure. Magnetic responses were investigated and
were shown to be connected to the microstructural alterations. An Hc value of 8 Am-1 and
an Ms value of 165 emu/g were found in the final powder mixture, which demonstrated
behavior compatible with soft magnetics. This soft magnetic property could be attributed to
the non-magnetic Al atoms which reduce the saturation magnetization and change the local
atomic magnetic moments. Additionally, the development of large densities of structure
defects can be identified as another crucial element influencing soft magnetic behavior. In
industrial applications, the present HEA FeCoNiMnAl may be an excellent option if its
milled powders are processed using the spark plasma sintering method.
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