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Abstract: It remains unclear in the literature what the cause of the so-called alkali–carbonate reaction
(ACR) damage to concrete is. However, expansion and cracks as distress features are often attributed
to the alkali–silica reaction (ASR). Therefore, this work aims to assess the damage to concrete
generated and propagated by the so-called ACR-susceptible reactive aggregate through mechanical
testing (i.e., the direct shear test), microscopy (the damage rating index—DRI), and other techniques.
Distinct induced expansion levels (i.e., 0%, 0.05%, 0.12%, and 0.20%) were selected to compare the
distress caused by ACR to concrete affected by ASR. The results show that the behavior of ACR,
namely, as captured through the DRI, is inconsistent with that of ASR, thus attesting to ACR being a
distinct distress mechanism. The damage captured through mechanical testing does not distinguish
ACR from ASR; however, microscopy reveals that cracks in the cement paste are the main damage
mechanism. The proportions of cracks in the cement paste are 40–50% of the total number of cracks,
whereas open cracks in the aggregates normally characterizing ASR represent only up to 20% of the
total cracks.

Keywords: alkali–aggregate reaction; alkali–carbonate reaction; internal swelling reaction; multi-level
assessment; damage rating index; semi-quantitative microscopy

1. Introduction

The alkali–aggregate reaction (AAR) is a harmful distress mechanism in concrete,
resulting in a reduction in its performance and leading to a shortened service life. AAR can
be divided into two main types of mechanisms: the alkali–silica reaction (ASR) and the so-
called alkali–carbonate reaction (ACR); the former is more widely spread and understood.
However, ACR in concrete presents many challenges since the mechanism of expansion and
deterioration is not yet fully understood. In ASR-affected concrete, cracks begin within the
aggregate and extend into the cement paste as the expansion increases. On the other hand,
ACR-affected concrete is subjected to dedolomitization, which turns the dolomite into
brucite and calcite (Equation (1)). However, these processes are said to not cause expansion
or expansion-related cracks [1], while it is believed that the mechanism causing cracks in
such concrete is the presence of ASR [1–3]. Dedolomitization (Figure 1b) is considered a
harmless process by some researchers [1,4] although the so-called ACR can cause significant
expansion and damage to concrete [5,6]. ACR can therefore be characterized by dark rims
on the aggregate’s boundary (also visible in ASR-affected concrete) and a white carbonate
halo around the aggregate in the cement paste (Figure 1a).

CaMg(CO3)2 + 2OH−
aq → Mg(OH)2 + CaCO3 + CO2−

3 aq

dolomite brucite calcite
(1)
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Figure 1. The so-called ACR in concrete, as represented by (a) Katayama [1], with the inclusion of 
ASR, and (b) Štukovnik et al. [7], without ASR. 

Most studies currently focus on revealing ACR’s mechanism through a variety of 
testing methods. However, ACR continues to be present in concrete infrastructure, and its 
distinction from other mechanisms is necessary through mechanical testing and micros-
copy. In a previous study by Sanchez et al. [8], an evaluation of the cause and extent of 
damage through multi-level assessment was conducted. This entails a combination of me-
chanical testing and microscopic observations. Tests able to capture cracking from a diag-
nostic perspective are limited, such as the stiffness damage test (SDT) and modulus of 
elasticity [9,10], along with the understanding of the influence of cracking on aggregate 
interlock [11,12]. As such, using the damage rating index (DRI) for various types of AAR-
reactive aggregates, it was found that the so-called ACR-reactive aggregate from King-
ston, Ontario, produced a completely different cracking behavior and pattern when com-
pared to ASR-reactive aggregate. It remains unclear whether ASR is the only mechanism 
responsible for such behavior. Meanwhile, it was found that some mechanical property 
losses in the so-called ACR-affected concrete are in accordance with losses observed in 
ASR-affected concrete. Cracking in concrete affects its mechanical properties and perme-
ability, and thus, its structural performance, serviceability, and further durability. Such 
cracks and representative ACR features are observed at scales that correspond to engi-
neering properties. Nevertheless, the DRI is a semi-quantitative microscopy tool that uses 
a stereomicroscope at 15–16x magnification while the petrographer/operator counts pet-
rographic/distress features in the field of view of 1 cm by 1 cm on the surface of a pol-
ished/reflective concrete section (Figure 2). The DRI was developed to establish areas of 
relative damage in a structure (i.e., a dam affected by ASR) based on the counted features, 
thus producing a semi-quantitative evaluation of the damage [13] influenced by [14]. Each 
feature count is multiplied by a weighting factor that represents the importance of the 
petrographic/distress feature towards the overall observable/measurable damage. The 
sum of all counts is set to 100 cm2 for comparative purposes and to account for differences 
in core/specimen sizes. Due to the various types of feature counts, bar charts can be gen-
erated to visualize the importance of certain features. The original method was used 
namely as a petrographic tool [13–17]; however, further developments attest to the DRI’s 
engineering capabilities by relating mechanical properties to the observed counts when 
using the weighting factors that provide the least variability [8,18,19]. Cracks observed at 
the meso-scale and quantified through counts can further be used to model damage de-
velopments [20,21]. 

Figure 1. The so-called ACR in concrete, as represented by (a) Katayama [1], with the inclusion of
ASR, and (b) Štukovnik et al. [7], without ASR.

Most studies currently focus on revealing ACR’s mechanism through a variety of
testing methods. However, ACR continues to be present in concrete infrastructure, and its
distinction from other mechanisms is necessary through mechanical testing and microscopy.
In a previous study by Sanchez et al. [8], an evaluation of the cause and extent of damage
through multi-level assessment was conducted. This entails a combination of mechanical
testing and microscopic observations. Tests able to capture cracking from a diagnostic per-
spective are limited, such as the stiffness damage test (SDT) and modulus of elasticity [9,10],
along with the understanding of the influence of cracking on aggregate interlock [11,12].
As such, using the damage rating index (DRI) for various types of AAR-reactive aggregates,
it was found that the so-called ACR-reactive aggregate from Kingston, Ontario, produced
a completely different cracking behavior and pattern when compared to ASR-reactive
aggregate. It remains unclear whether ASR is the only mechanism responsible for such
behavior. Meanwhile, it was found that some mechanical property losses in the so-called
ACR-affected concrete are in accordance with losses observed in ASR-affected concrete.
Cracking in concrete affects its mechanical properties and permeability, and thus, its struc-
tural performance, serviceability, and further durability. Such cracks and representative
ACR features are observed at scales that correspond to engineering properties. Neverthe-
less, the DRI is a semi-quantitative microscopy tool that uses a stereomicroscope at 15–16x
magnification while the petrographer/operator counts petrographic/distress features in
the field of view of 1 cm by 1 cm on the surface of a polished/reflective concrete section
(Figure 2). The DRI was developed to establish areas of relative damage in a structure (i.e.,
a dam affected by ASR) based on the counted features, thus producing a semi-quantitative
evaluation of the damage [13] influenced by [14]. Each feature count is multiplied by
a weighting factor that represents the importance of the petrographic/distress feature
towards the overall observable/measurable damage. The sum of all counts is set to 100 cm2

for comparative purposes and to account for differences in core/specimen sizes. Due to the
various types of feature counts, bar charts can be generated to visualize the importance
of certain features. The original method was used namely as a petrographic tool [13–17];
however, further developments attest to the DRI’s engineering capabilities by relating me-
chanical properties to the observed counts when using the weighting factors that provide
the least variability [8,18,19]. Cracks observed at the meso-scale and quantified through
counts can further be used to model damage developments [20,21].

This work therefore aims to compare the distress mechanism of concrete made with
Kingston coarse aggregate to ASR-affected concrete through crack generation and prop-
agation to better understand the so-called ACR-affected concrete and its influence on
mechanical property losses. Moreover, a description of the damage generated by ACR
will be provided to allow stereomicroscopy operators to identify features caused by ACR
and distinguish them from ASR, allowing for optimization of the diagnostic process of
stereomicroscopy. Therefore, in this study, concrete made with the Kingston reactive coarse
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aggregate will be evaluated mechanically, microscopically, and through other techniques
at distinct expansion levels (i.e., 0%, 0.05%, 0.12%, and 0.20%) to understand the damage
generated as a function of the expansion level when compared to ASR-affected concrete.
The study encompasses a reference reactive aggregate that has been under evaluation for
several decades [1,6,22–24] and does not generalize among all ACR-susceptible aggregates.
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2. Materials and Methods
2.1. Concrete Specimen Manufacturing and Monitoring

A total of sixty cylindrical (i.e., 10 cm in diameter by 20 cm in length) concrete
specimens were manufactured in a laboratory using ACR-reactive coarse aggregate from
Kingston, Ontario, combined with a local non-reactive fine aggregate (Table 1). The mixture
proportions followed those of the concrete prism test (CPT) as per ASTM C1293, using a
Type 1 GU cement (i.e., 0.86% Na2Oeq) at 420 kg/m3 and a water-to-cement ratio of 0.45
(Table 2). The total alkali content of the concrete mixture was raised to 5.25 kg/m3 and
1.25% Na2Oeq by cement mass, using reagent-grade NaOH to accelerate the reaction. After
fabrication, the concrete specimens were left to moist cure for 24 h (i.e., 100% RH and
20 ◦C), after which the specimens were demolded. Stainless steel studs were then installed
in both ends of the specimens, where holes (i.e., 8.5 mm in diameter and 19 mm in length)
were drilled using a press drill equipped with a masonry drill bit. The studs were fastened
using a quick-setting cement paste slurry, and the concrete specimens were left to cure for
an additional 24 h under the same aforementioned conditions. The initial zero readings
were then taken using a digital micrometer, and specimens were stored under conditions
enabling the reaction (i.e., 100% RH and 38 ◦C). Length-change measurements were taken
periodically to monitor the expansion over time.

Table 1. Aggregate characterization.

Material Location Rock Type Specific
Gravity (g/cm3) Absorption (%) CPT-365 Days,

Expansion (%)
AMBT–14 Days,
Expansion (%)

Non-reactive
fine

aggregate

Bracebridge,
Ontario

(Canada)

Orthoclase, Quartz,
Cristoballite, Albite,

Bytowmite,
Cordierite, Illite,

Muscovite, Larnite

2.73 0.37 0.018 0.027

Reactive
coarse

aggregate

Kingston,
Ontario

(Canada)

Dolomitic
argillaceous

limestone
2.61 0.63 0.232

[25]
0.110
[26]
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Table 2. Mix-design.

Cement Water Non-Reactive
Natural Sand

Reactive Coarse Aggregate

4.75–9.5 mm 9.5–12.5 mm 12.5–19 mm

kg/m3

420.00 180.00 766.10 326.78 326.78 336.68

2.2. Mechanical Testing: Direct Shear Resistance Test

The direct shear resistance of the concrete specimens was captured using the set-up
proposed by [12] and more recently adapted to evaluate the effect of AAR with respect
to the expansion level achieved [27,28]. Specimens were circumferentially cut at a depth
of 21 mm [12] using a masonry saw equipped with a notched diamond blade. The notch
width was equal to the blade’s width of 5 mm, which ensures maximum resistance. The
applied loading rate was selected to be 100 N/s since rates lower than this value did
not influence the shear resistance, whereas faster loading rates resulted in an increase in
the shear strength. The apparatus used is shown in Figure 3, and the maximum force at
which the concrete specimen failed was converted into shear resistance using Equation (2),
as follows:

τ =
4P

π(ϕ − 2a)2 , (2)

where P is the failure load (N), ϕ is the diameter of the cylinder (mm), and a is the depth of
the notch (mm).
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2.3. Microscopy: The Damage Rating Index (DRI)

The DRI was performed on the affected concrete specimens, which were cut in half
longitudinally in one motion using a masonry saw equipped with a notched diamond blade
to reduce the amount of heat generated and with water used as a coolant. The flat surfaces
were ground and polished using a mechanically rotating polishing table and magnetic laps
from coarse to fine grits of 30, 60, 140, 280 (80–100 µm), 600 (20–40 µm), 1200 (10–20 µm),
and 3000 (4–8 µm). Between each lap, the specimens were cleaned of loose debris, then
dried with compressed air to remove loose particles from the surface and avoid excessive
scratching of the reflective surface. A 3D-printed grid with squares of 1 cm by 1 cm was
placed on the reflective surface, and each square was evaluated using a stereomicroscope
at 16× magnification (i.e., field of view of the 1 cm2 square) by counting the observed
distress features in the form of cracks. Weighting factors were then applied to the types of
distress features encountered (Table 3), which were selected based on their influence on the
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concrete’s properties, whereby cracks in the cement paste have a higher weighting factor
due to the severity of such distress. A lower weighting factor was attributed to features
that least represented damage, while higher weighting factors represented more advanced
stages of damage and significant losses in mechanical responses. The sum of all weighted
counts was then normalized to 100 cm2, providing the DRI number (Equation (3)). More
than 100 cm2 per specimen was evaluated to ensure that the DRI result was statistically
significant, which will be graphically illustrated with the results.

DRI =
[

∑(0.25(CCA) + 2(OCA + OCARP + DAP) + 3(CCP + CCPRP + CAD))

Number of analyzed 1 cm by 1 cm squares

]
× 100 cm2 (3)

Table 3. DRI distress features and weighting factors.

Distress Feature Weighting Factor [26]

Closed cracks in the aggregate, CCA 0.25
Open cracks in the aggregate without or with

reaction product, OCA/OCARP
2

Disaggregated/corroded particle, DAP 2
Cracks in the cement paste without or with

reaction product, CCP/CCPRP
3

De-bonded aggregate, CAD 3

2.4. Other Techniques: Apparent Porosity

The apparent porosity can be described as the open capillary voids/pores within the
concrete in which a liquid can intrude while under pressure. The apparent porosity was
determined using the Archimedes immersion method, as described by [29], and calculated
using Equation (3).

P =
Vinstrusion

Vobject
=

mSSD − mD
mSSD − mSub

, (4)

First, the concrete specimens were cut into three equal disks using a masonry saw
equipped with a notched diamond blade and washed to remove any remaining debris.
The initial mass of the disks was recorded, and the disks were placed in an oven at 60 ◦C
until they were dried at a constant mass, mD. The disks were immersed in a water bath
equipped with a vacuum pump, and the lid was sealed to ensure the pressure remained
constant. The pump was turned on for 3 min or until all air had been removed from the
concrete disks (bubbling had ceased) and left to submerge into the vacuum-sealed water
bath for 24 h. The mass in SSD condition, mSSD, was achieved by removing the concrete
disks from the water bath and drying the surface with a dry cloth, after which the disks
were placed in the submerged balance to record the submerged mass, mSub.

3. Results
3.1. AAR Expansion over Time

The average expansion as a function of time is shown in Figure 4, where an overall
increase in the expansion can be observed. The data range bars represent the minimum and
maximum achieved values at a given time, and the standard deviation for all measurements
ranges from 0.021% to 0.035%. An expansion level of 0.05% was achieved at 27 days, while
43 days were observed to produce an expansion level of 0.12%. Interestingly, a plateau
was reached between 217 and 328 days, at 0.23% of expansion, after which an increase in
expansion occurred, reaching 0.27% after 546 days.

3.2. Shear Resistance Loss

The direct shear resistance is shown in Figure 5, where each point represents the
average of three specimens. A slight loss of shear resistance can be observed at 0.05% of
expansion from initially 5.35 MPa to 4.18 MPa, after which the shear resistance increased at
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a constant linear rate up to 4.53 MPa at 0.20% of expansion. However, by visual comparison
of the data range bars, the difference between the tests for each expansion level is not
evident (extremities overlapping). This was further verified through a one-way ANOVA,
which showed that there wasn’t a significant difference between the expansion levels
(Table 4).
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Table 4. One-way ANOVA for the direct shear test.

Source of
Variation SS df MS F p-Value F Critic F > F Critic? p-Value ≤ 0.05?

Between Groups 2.61 3 0.87 0.59 0.64 4.07 no no
Within Groups 11.86 8 1.48

Total 14.47 11

3.3. The Damage Rating Index (DRI)

The damage rating index (DRI) was selected as a tool to quantify the damage features
observed at a scale representative of the affected material. Figure 6a,b illustrates the
comparison in the DRI numbers and weighted proportions, while Figure 6c,d shows the
extended version of the DRI as per [30], obtained in this study. For simplicity, the legend
for the bar chart (Figure 6a) only shows the features that were observed in this study (CCA,
OCA, and CCP). Traces (less than 1%) of products were observed; however, the distinction
between polishing residue and a reaction product couldn’t be made. Two specimens
were evaluated per expansion levels; however, the second specimen (labeled “_2”) was



Materials 2024, 17, 166 7 of 16

evaluated only after the first specimen (labeled “_1”). The decision to test a second specimen
was made upon observing inconsistencies in the crack generation and propagation with
reference to the expansion level. As such, the second specimens were stored for a longer
period of time (i.e., 12 ◦C), which is considered efficiently capable of mitigating ASR
damage [8]. Indeed, this mitigation was not effective for concrete affected by ACR, which
can be further observed in [8], where a non-negligeable DRI number was observed for
specimens considered sound made with the Kingston-reactive aggregate.

At 0.05% of expansion (DRI numbers of 316 and 779), sharp cracks were present within
the aggregate as both closed and opened, which is in accordance with [30]. A large portion
of cracks in the cement paste (CCP), however, were observed, which is considered abnormal
for a concrete affected by ASR (from 58–78%). However, at 0.05% of expansion, the cracks
in the cement paste and the cracks in the aggregate were not necessarily linked to one
another, indicating that two mechanisms may have been occurring, which merits further
analysis. At 0.12% of expansion (DRI numbers of 478 and 634), an increase was observed,
namely for the cracks in the cement paste, whereas open cracks in the aggregates remained
similar (from 13–17% of the total contributions towards the DRI calculation). At 0.20% of
expansion (DRI numbers of 336 and 708), no significant increase in the open cracks in the
aggregate was observed (from 17–25%), with the greater portion of cracks being in the
cement paste.

Another approach to visualizing the crack counts by adopting the concept of the
extended version of the DRI, as proposed by [8], is illustrated in Figure 7, in which the
bars represent the features’ counts. Uncertainty bars of ±10% were further added to these
counts to consider operator variability and further differentiate the results. In both cases,
for the 0.05% expansion level, the closed cracks in the aggregates (CCA) were similar
(207 and 205 counts/100 cm2), as observed by the overlapping means. However, these
counts decreased for the two other expansion levels. Interestingly, the counts of the cracks
in the cement paste (CCP) were very similar for each of the specimens labeled “2”, which
was the specimen that was conserved and later tested (i.e., 198, 174, and 183 counts/100 cm2

for expansions of 0.05%, 0.12%, and 0.20%, respectively).
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3.4. Apparent Porosity

Figure 8a,b shows the apparent porosity and absorption, respectively, of the affected
concrete with respect to the expansion level achieved. The absorption was calculated using
the dry and surface-saturated dry (SSD) masses over the dry mass. Interestingly, both
decreased as a function of expansion, whereby the apparent porosity for a sound concrete
(assuming that AAR was inhibited when stored at 12 ◦C for 47 days) was 9% and linearly
decreased to 6.3% at 0.20% of expansion. The same trend was indeed observed for the
absorption, whereby the absorption decreased as a function of expansion.

Through a one-way ANOVA, it was determined that there was a significant difference
between the expansion levels while using the porosity measurements to compare the results
(Table 5).
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Table 5. One-way ANOVA for the porosity measurements.

Source of
Variation SS df MS F p-Value F Critic F > F Critic? p-Value ≤ 0.05?

Between Groups 34.20 3 11.40 49.77 3.74 × 10−12 2.90 yes yes
Within Groups 7.33 32 0.23

Total 41.53 35

4. Discussion
4.1. What Does the Multi-Level Assessment Reveal about Damage Due to ACR?

A summary from [8] is shown in Table 6, and Figure 9 illustrates those results to depict
ACR-affected concrete in comparison to ASR-affected concrete, as captured through the
multi-level assessment. In general, the ACR-affected concrete showed a similar mechanical
behavior to ASR-affected concrete for each case (Figure 9a–e); the results from the concrete
made with the reactive Kingston aggregate fell within the range of expected values per
expansion level. However, the DRI number as a function of expansion (Figure 9f) shows
that the Kingston aggregate concrete was above the range, thus highlighting its abnormality
when compared to ASR-affected concrete.

Table 6. Summary of results in comparison with ASR.

Reference
Expansion
Level (%)

Compressive
Strength Loss

Tensile
Strength Loss SDI Stiffness Loss Shear Strength

Loss

Apparent
Porosity (%)

[31]
DRI

ASR

0.00–0.03 - - 0.06–0.16 - - 100–155
0.04 ± 0.01 −10 to 15% 15 to 60% 0.11–0.25 5 to 37% 6 to 15% 5.2 210–440
0.11 ± 0.01 0 to 20% 40 to 65% 0.15–0.31 20 to 50% 12 to 30% - 330–500
0.20 ± 0.01 13 to 25% 45 to 80% 0.19–0.32 35 to 60% 18 to 33% 6.72 500–765
0.30 ± 0.01 20 to 35% 0.22–0.36 40 to 67% 22 to 34% - 600–925

Kingston aggregate (ACR)

0.00–0.03 - - 0.13 - - 8.98 350
0.04 ± 0.01 10% 45% 0.19 20% 22% 8.25 575
0.11 ± 0.01 13% 47% 0.22 30% 21% 7.64 885
0.20 ± 0.01 27% 57% 0.24 43% 15% 6.33 900
0.30 ± 0.01 35% 54% 0.25 40% 910

Figure 9a,b shows the compressive and tensile strength reductions as a function of
expansion, respectively. The compressive strength reduced at a relatively constant rate up
to 35% at 0.30% of expansion, while the tensile strength was mostly lost at the beginning of
the expansion, where a drop of 45% was observed at 0.05% of expansion. Noticeably, the
loss in tensile strength was greatest at 0.20% of expansion, yet the largest difference was
between 0% and 0.05% of expansion.

Figure 9c–e shows the SDT outputs as modulus of elasticity reductions, SDI, and PDI
as a function of expansion, respectively. The SDI values increased with expansion in a
concave shape, where values between 0.13 and 0.25 were obtained from 0% to 0.30% of
expansion. The PDI values were somewhat more linear as a function of expansion, with
the exception of the PDI at 0.05% of expansion being close to that at 0.12% of expansion
(i.e., 0.15 and 0.17, respectively). Moreover, the greatest loss in modulus of elasticity was
observed at 0.20% at 43% reduction.

The DRI values for the Kingston aggregate concrete per expansion level (i.e., 0%,
0.05%, 0.12%, and 0.20%) were above the range of values obtained for concrete affected
by ASR, even at 0% of expansion (i.e., DRI of 350). When observing the results from [8],
one notices that at 0% of expansion, a large portion of cracks in the cement paste had been
generated, indicating that there was a mechanism affecting the concrete while being stored
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at 12 ◦C (previously verified to inhibit ASR damage [8]. The differences therefore observed
in this current study and that of [8] are likely due to the storage conditions being unable to
suppress ACR damage, since time intervals between the original storage conditions (i.e.,
38 ◦C and 100% relative humidity) and the storage at 12 ◦C until testing occurred could
have significantly varied. Both studies used the same aggregate (from the same storage)
and proportions of mixtures. Nevertheless, it is recommended that a time-based approach
be used when assessing concrete affected by ACR due to these differences in results.
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Figure 9. Results from the multi-level assessment per Sanchez et al. [8]: (a) compressive strength
loss, (b) elastic modulus loss, (c) tensile strength loss, (d) SDI, (e) PDI, and (f) DRI. The circular
tick-marked line represents the values obtained from the Kingston aggregate, while the light solid
lines represent the limits from ASR.
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In a previous study evaluating the ability of the direct shear test to capture damage due
to AAR, a range of values for the shear strength reduction was determined per expansion
level [27]. Figure 10 illustrates that the Kingston reactive coarse aggregate continued to
present a distinct behavior. As aforementioned, the direct shear test did not highlight
significant differences between the expansion levels in this study. The direct shear test,
however, measures the concrete’s ability to resist a sliding action between two surfaces. For
ASR-affected concrete, the aggregate interlock is diminished since ASR propagates from
within the aggregates. Based on the results from the DRI, ACR-affected concrete produces a
larger portion of cracks in the cement paste, which does not necessarily affect the aggregate
interlock of the concrete.
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Figure 10. Comparison of shear strength loss from [27] with the results of this current study. The
circular tick-marked line represents the values obtained from the Kingston aggregate, while the light
solid lines represent the limits from ASR.

4.2. Common ACR Features and Physical Property

An abundance of micrographs and images depicting the alkali–silica reaction (ASR),
the most commonly studied and encountered form of AAR, has been shown in the literature;
however, since ACR is a less-understood mechanism, its appearance under a stereomicro-
scope at 15–16× magnification can likely help to distinguish ACR features from others
should they be present in concrete under analysis through the DRI. This section, therefore,
aims to present some of the frequently observed features that may indicate damage due to
ACR. It is important to note that the analysis used to collect the data for the DRI calculation
allows the operator to visualize the spread of the damage at a scale most representative of
the affected material when an internal swelling reaction occurs.

At 0.05% of expansion, evidence of ACR was observed through carbonate halos,
where a white deposit was seen at the aggregate boundary (Figure 11a). Likewise, the ACR
signatures became more prominent at 0.12% of expansion (Figure 11b), with more frequent
carbonate halo observations and cracks in the aggregate–paste interface, linking open
cracks in the aggregates to each other through the cement paste. Figure 11c shows a crack
in the aggregate–paste interface where a halo was also observed, without an association
to cracks in the aggregate. At 0.20% of expansion (Figure 11d), cracks in the aggregate
were propagating from the aggregate to the cement paste, with a white discoloration at
the sides of the cracks, which was observed in Locati et al. [32]. Interestingly, the cracks
in the cement paste also showed the white edges along the crack, with some slight white
discolouration in the open crack. Cracks in the aggregate–paste interface were more often
observed, as well as in the bulk cement paste, with and without association to the cracks in
the aggregate (Figure 11e,f). Moreover, cracks appeared wider as the expansion increased.
Cracks generated in the aggregate appeared empty of any residue, indicating expansion
from such cracks.
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The apparent porosity presented an interesting behavior when compared to the poros-
ity taken from an ASR-reactive coarse aggregate (i.e., Springhill–Greywacke), where the
porosity tended to increase with expansion for ASR-affected concrete [27], while a decrease
was observed for the Kingston aggregate concrete. It is possible that the carbonate halo
decreases the apparent porosity of the concrete, which is observed when concrete is sub-
jected to carbonation by calcite filling the pores, due to calcite’s increase in volume of
12% [33], and may further explain why cracks are observed in the interfacial transition zone
(ITZ), which is known to be the weakest point in the concrete, resulting in the observed
expansions and detachments. Further research is necessary, however, to confirm such
a phenomenon.

4.3. Sample Size Used for Microscopy Evaluation

Due to reservations about the use of the DRI as an objective method to measure
damage, a plot illustrating the cumulative DRI as a function of the sample size (number
of analyzed squares) is presented in Figure 12. This plot helps establish the required
surface area to be analyzed to obtain a representative sample. Generally, one may identify
a sample as the number of physical specimens or cores tested. However, for an analysis in
which features are counted, weighted, and their relative proportions compared, the area
of analysis used to represent the overall captured damage must be established. The DRI
therefore converges towards a mean after a certain number of squares are analyzed. It is to
be noted that this convergence refers to the “law of large numbers”, and the sample size (n)
at which the DRI converges differs for each test. Nevertheless, this plot serves as a starting
point to objectify the DRI as a damage evaluation tool and provides some transparency in
the results presentation.
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5. Conclusions

This study showed that the Kingston aggregate concrete does not behave as purely
an ASR-affected concrete when observing its cracking behavior. The following highlights
from this study are thus presented:

• The mechanical responses using the multi-level assessment conducted by [8] show
that the damage due to ACR is similar to that of ASR; however, the DRI numbers
as a function of expansion were found to be above the range of expected values for
ASR. The cracking pattern varies significantly from that of ASR, suggesting ACR as
a distinct mechanism. Cracks in the cement paste were found to be the dominant
damage feature.
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• The direct shear resistance loss was not captured throughout the expansion levels, nor
were the differences between the expansion levels, likely due to the crack propagation
being within the cement paste as opposed to within the aggregate.

• The apparent porosity showed a statistically significant decrease with expansion,
which can be attributed to the carbonate halos further reducing the porosity in the
aggregate–paste interface. These haloes were frequently observed through the stere-
omicroscope at 16x magnification, along with cracking of the interface. A study is
currently being conducted to better understand the role of the halos with respect to
concrete deterioration.

Concrete affected by ACR is less widespread than that affected by ASR; however,
with the rise of new efficient and sustainable materials and the unprecedented demand to
build concrete infrastructure, it is imperative to provide practitioners with micrographs
of concrete affected by ACR while using a readily available, practical, and accessible (low
initial and operation costs) evaluation tool. Further research is necessary to understand the
cause of this distinct damage through a parametric study using various ACR-susceptible
aggregates.
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