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Abstract: To improve the concrete confinement and mechanical properties of concrete-filled steel
tube (CFST) columns, a new configuration of steel-tube-confined concrete-filled steel tube (T-CFST)
columns has recently been developed, in which an outer steel tube is employed externally, and the
additional tube does not sustain the axial load directly. This preliminary experimental study revealed
that, due to the effective concrete confinement by the outer steel tube, the T-CFST column achieves
higher compressive strength and more ductile deformation compared to the CFST columns of the
same steel ratio. In this study, two finite element (FE) models were developed for the T-CFST cross-
section and stub column, respectively. The numerical study results revealed that the concrete can be
constrained by the outer steel tube at the beginning of loading and the outer steel tube hoop stress
can reach its yield strength at the column’s compressive strength, showing its effective confinement
to the concrete. Numerous data were generated by the developed FE model to cover a wide range of
parameters. Based on that, the calculation methods for the stress components of the inner and outer
steel tubes are proposed. Finally, a suitable prediction method is proposed, utilizing the superposition
method to determine the compressive strength of the T-CFST stub column, and the results of the
calculation method and FE model agree well with each other. This research is the basis for promoting
further research of T-CFST columns.

Keywords: steel-tube-confinement; concrete-filled steel tubes; stub column; finite element models;
confining mechanism; design guidelines

1. Introduction

Concrete-filled steel tube (CFST) columns have been widely used in engineering prac-
tice for their excellent mechanical properties resulting from the composite action between
the steel tube and the infilled concrete [1–3]. However, the confinement of concrete by the
steel tube is not achieved and developed until the steel tube enters its elastoplastic stage.
Meanwhile, the steel tube directly sustains the axial load, and the longitudinal stress is fully
developed, resulting in reduced hoop stress in the steel tube and insufficient confinement
to the concrete [4]. Due to the delayed and inadequate concrete confinement by the steel
tube, CFST columns tend to suffer from poor load-bearing capacity and shear failure.

To improve the magnitude and efficiency of concrete confinement by the steel tube,
many different types of CFST columns have been developed by changing their config-
uration. The steel tube in the steel-tube-confined concrete (T-C) columns is prevented
from directly sustaining the axial load by cutting it off at the column ends, leading to
enhanced confinement of the concrete core [5–7]. Moreover, the infilled plain concrete can
be replaced by reinforced concrete (RC) [8–10] or steel-reinforced concrete (SRC) [11,12].
However, shear failure can still be observed in some cases for the CFST and T-C columns,
even with RC or SRC infilling [13]. Besides, external confinement is employed in the form
of steel tubes [14–18], fiber reinforced plastic (FRP) tubes [19,20], FRP jackets [21–24], FRP
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rings [25–28], or discrete stirrup [29–36], which enhances the mechanical properties of the
CFST columns to a certain extent.

Apart from that, the newly developed steel-tube-confined CFST (T-CFST) columns
have been proven to be effective in improving load-bearing capacity and preventing CFST
columns from experiencing shear failure [13,37,38]. The T-CFST columns are composed
of the internal CFST, an outer steel tube, and a sandwich layer (Figure 1). Both the outer
steel tube and sandwich layer terminate at the column ends and do not enter the beam–
column joint, which differentiates the T-CFST from the concrete-filled double-skin steel
tube (CFDST) columns. Therefore, the outer steel tube is prevented from directly sustaining
the axial load, leading to the maximized confinement to the concrete core. Meanwhile, the
beam–column joint is kept the same as the joints of the beam and CFST columns, which
are simple to construct. In addition, the new configuration is also able to retrofit and
strengthen deficient CFST columns. Considering the protection provided by the external
jacketing, the resistance to impact, blast, and seismic loads as well as to fire and corrosion
can be improved further for internal CFST columns. This preliminary experimental study
shows that, compared to the CFST and T-C columns with the same steel ratio employed,
the T-CFST column achieves 20.6~42.4% higher axial compressive strength and that shear
failure is prevented [13].
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gated. After that, design suggestions will be given to specify the column configuration 
and a corresponding calculation method will be developed for the T-CFST columns. 

Figure 1. Typical T-CFST column.

In recent years, experimental studies have been conducted to determine the mechanical
properties of T-CFST columns [13,37,38]. However, further research should be conducted
to illuminate the working mechanism of each component. Furthermore, the influence of
the critical parameters also should be illustrated and discussed within a broader scope. In
addition, a suitable prediction method also needs to be developed, and design suggestions
also must be provided. In response to that, a rigorous numerical study will be conducted in
this paper for T-CFST columns under axial compression. A suitable constitutive model is
proposed for the concrete material considering the confinement by the outer and inner steel
tubes. Then, based on the developed finite element (FE) model, the confining mechanism
will be determined, numerous data will be generated to cover a wide range of parameters,
and the configuration of the T-CFST columns will be investigated. After that, design sug-
gestions will be given to specify the column configuration and a corresponding calculation
method will be developed for the T-CFST columns.
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2. FE Modelling
2.1. General Description

To maximize the concrete confinement by the steel tubes in the T-CFST column,
the external jacketing is terminated at the column ends to avoid directly sustaining the
axial load.

However, due to the friction over the external jacketing and inner tube interface, a
partial axial load is transferred to the external jacketing. A continuously increased axial load
is obtained for the external jacketing as the interfacial height increases. The changed axial
load leads to unevenly distributed longitudinal and horizontal outer tube stresses along
the column height, further affecting the development of stress components and mechanical
performance. To eliminate the influence of friction on the confinement mechanism, an
FE model of the cross-sectional T-CFST column was established at first, and the mutual
influence of the tubes and concrete was revealed. After that, an FE model of the T-CFST
stub column was developed to determine the mechanical properties of the axially loaded
T-CFST column. The cross-sectional and stub column’s FE models are shown in Figure 2,
and the height of the former model is taken as 1/300 of the inner tube diameter while the
height of the stub column is three times the inner tube diameter.
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2.2. Material Models
2.2.1. Steel Material

The typical five-stage stress (σ)–strain(ε) model [39] is employed for the tubes. The
key parameters, including the yield strength f y, ultimate strength f u, elastic modulus Es,
and Poisson’s ratio µs, are given as the measured values to develop the FE model for the
experimental specimens. For the FE models in the parameter study, the values of 206 GPa
and 0.2 are taken for the Es and µs, respectively.

2.2.2. Concrete and Sandwich Material

Due to the sandwich material being restrained by the outer tube only, the three-
stage stress(σ)–strain(ε) model is employed, which is proposed by Tao [40] to simulate
the core concrete in CFST columns. Compared to unconfined concrete, the constitutive
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model is determined based on two key parameters, which are related to the concrete
confinement. The first parameter is the confinement index ξ, while the second one is the
concrete confining stress at the endpoint of the plateau stage f B. The sandwich material in
the T-CFST columns is confined by the outer tube only, and thus the two parameters can be
determined as ξ = f y2As2/f c2 A′

c2 and Equation (1), respectively, in which f y2 is the outer
tube strength while f c2 is the sandwich material strength. As2, and A′

c2 are the outer tube
area and the area surrounded by the outer tube. Comparatively, the confinement index of
the core concrete is determined as ξ = (f y2As2 + f y1As1)/f c1Ac1, in which f y1 is the inner
tube strength, f c1, and Ac1 is the core concrete strength and area. The experimental results
showed that the outer tube hoop stress can reach its yield strength at the column’s strength,
and the concrete confining stress f B thus can be determined by Equation (2), where D2 and
t2 are the outer tube diameter and thickness, while D1 and t1 are the corresponding values
for the inner tube.

fB =
(1 + 0.027 fy2)e−0.02D2/t2

1 + 1.6e−10( fc2)
4.8 (1)

fB =
(1 + 0.027 fy2)e−0.02D1/t1

1 + 1.6e−10( fc1)
4.8 +

2t2 fy2

D1 − 2t1
(2)

2.3. Elements and Meshing

Four-node shell elements with reduced integration (S4R) were employed for the tubes
and FRP wrapping, while eight-node solid elements with reduced integration (C3D8R) were
adopted for the concrete core and sandwich layer material. To balance the simulation time
and analysis accuracy of the FE model, mesh sensitivity evaluation work was conducted
carefully. According to the results, the radial size of the element is taken as 1/16 of the
inner tube diameter while the longitudinal size is twice that.

2.4. Interfacial Properties and Boundaries

Based on the experimental observation, a relative sliding can be seen between the
external jacketing and internal CFST for the axially loaded T-CFST stub column. A surface-
to-surface contact model with friction was employed to simulate the interfacial behavior
over the concrete–steel interfaces. “Hard contact” and “Coulomb friction modeling” are
adopted in the normal and tangential direction, respectively. According to the existing
experimental results [41–43], the friction factor is within 0.2~0.7 for the concrete–steel
interface, and a value of 0.6 is taken in this paper.

Considering the symmetry of the stub column in the axial direction, a 1/2 FE model
was developed for the cross-sectional FE model, in which the axial and rotational displace-
ment at the bottom surface were restrained while the vertical displacement was applied
at the top surface. The FE model for the stub column was also established. Two refer-
ence points were placed and coupled with the bottom and top surfaces, for which all the
freedoms were restrained except for the longitudinal freedom of the top surface.

3. Verification

The experimental results in reference [37,38] are taken to determine the accuracy of the
FE model, including the load–longitudinal strain curve and local strain/stress development.

3.1. Load–Longitudinal Strain Curve

The comparison of the experimental and calculated load(N)–longitudinal strain(εv)
curves is given in Figure 3, in which H1 and H2 are the inner and outer tube height. The
load–longitudinal strain curves obtained by the test and FE model fit well with each other,
showing the FE model is satisfactory in predicting the compressive behavior of the T-CFST
stub column.
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(a) TF-5.5-2.5; (b) TF#-2.75-5.5; (c) T-II-2.5-1.5-50; (d) T-I-2.5-2.0-50.

The compressive strength obtained by the test and FE model for specimens in a larger
parameter scope was given and compared in Figure 4, in which Nu, FEM, and Nu, EXP are
the results of the test and FE analysis. In total, the data for 33 T-CFST stub columns were
included in the comparison, and the confinement index was within 0.61~2.20, covering
the usual range in engineering practice. The error of the calculated compressive strength
was less than 10%, with the average ratio being 0.997 and the coefficient of variation
(COV) being 0.041. The comparison reveals that the established FE model is suitable for
determining the T-CFST stub column’s compressive strength.
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3.2. Strain and Stress Development

The strain and stress component of the tubes in the T-CFST stub column is the basis for
illustrating the confinement mechanism, and the tested and calculated results are compared
in Figure 5. εs1v and εs1h are the mid-height cross-sectional inner tube longitudinal and
horizontal strain, respectively, while εs2v and εs2h are the corresponding values of the outer
tube. σs1v and σs2v are the inner and outer tube longitudinal stress, while σs1h and σs2h are
the horizontal stress. Both the strain and stress development of the tubes can be predicted
precisely by the FE model, and all the tested and calculated curves agree well with each
other. The comparison again validates the accuracy of the FE model in illustrating the
mutual influence of different components and the working mechanism of the axially loaded
T-CFST columns.
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4. Confinement Mechanism

Deep insight into the working mechanism is beneficial for clarifying the compressive
behavior of the T-CFST columns, and a cross-sectional FE model with typical parameters
was employed to eliminate the influence of the interfacial friction; after that, the influence
of friction was illustrated by a T-CFST stub column’s FE model with the same parameters.

4.1. Cross-Sectional FE Model

To compare the axial compressive performance and working mechanism between
the T-CFST column and the ordinary CFST column, three cross-sectional FE models were
developed for the T-CFST and CFST columns. The key parameters of these FE models are
shown in Table 1.
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Table 1. Parameters of the cross-sectional FE models.

FE Model D1
(mm) D1/t1

D2
(mm) D2/t2

f y1
(MPa)

f y2
(MPa)

f c1
(MPa)

f c2
(MPa)

α1
(%)

α2
(%)

α
(%) ξ

T-CFST 300 50 350 100 355 355 60 40 8.5 5.8 14.4 0.85
CFST-1 300 50 — — 355 355 60 40 8.5 — 8.5 0.50
CFST-2 300 30 — — 355 355 60 40 14.8 — 14.8 0.88

4.1.1. Overall Deformation

With a lower steel ratio (α = 8.5%) employed, inadequate concrete confinement is
obtained for CFST-1. The compressive strength is only 5900.4 kN, and then the axial load
drops rapidly, indicating the poor deformation ability of CFST-1 (Figure 6). By increasing
the steel ratio to 14.8%, enhanced concrete confinement is achieved for the CFST-2, leading
to a 32.0% higher strength. Comparatively, the T-CFST column with the steel ratio of 14.4%
achieves a significantly improved compressive strength of 9055.2 kN, which is 53.5% and
16.2% higher than CFST-1 and CFST-2, respectively. Meanwhile, compared to the CFST-1
column, both the CFST-2 and T-CFST column achieve better ductility.
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To clarify in depth the reasons for the differences in the compressive behavior of the
different column types, Figure 7 depicts the development of the longitudinal deformation
as the axial load increases for the steel and concrete components of the three columns.
Compared to CFST-1, a thicker tube is employed for CFST-2, and the load sustained by the
tube is increased by 128.2%. T-CFST is obtained by setting an outer tube outside the internal
CFST portion, and the additional tube cannot sustain the axial load. Due to the confinement
by the additional tube, the load sustained by the inner tube decreases at a much slower
rate after the peak load. Meanwhile, due to the sufficient concrete confinement by the
outer tube, significantly enhanced mechanical properties are achieved for the core concrete
in T-CFST (Figure 7a). Compared to CFST-1, the axial load carried by the concrete core
of T-CFST at the peak load achieves 7833.3 kN with a significant improvement of 66.5%.
However, the effect of increasing the steel content of the inner tube is limited in improving
the concrete strength. When the load reaches the column’s compressive strength, compared
with CFST-1, the load borne by concrete can only be increased by 7.6% for CFST-2. The
above comparison shows that the increasing steel ratio has a margin effect on concrete
confinement for CFST columns, and the compressive behavior is thus improved slightly;
meanwhile, the concrete is effectively confined by the outer tube, leading to the significantly
enhanced mechanical properties of the core concrete, and the T-CFST column achieves
better axial compressive behavior.
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4.1.2. Confining Process

The internal CFST is restrained effectively by the outer tube for the T-CFST, leading
to significantly enhanced compressive strength and ductility. To better understand the
confinement by the outer tube, the difference in the confinement mechanism of the T-CFST
and ordinary CFST column will be further compared and discussed in depth. The radial
deformation and stress development of the two kinds of columns are shown in Figure 8,
in which Ur is the radial deformation; Uc1r, Us1r, and Us2r are the radial deformation of
the concrete, inner tube, and outer tube, respectively; Uc2s1r and Uc2s2r represent the radial
deformation of the sandwich material adjacent to the inner and outer tube. At the very
beginning of loading for CFST-1, a larger Poisson’s ratio of 0.3 is achieved for the steel
material compared to the concrete material (0.2), and the tube undergoes greater radial
deformation than the concrete core and they are separated as shown in Figure 8b. At this
stage, no concrete confinement is provided by the tube (Figure 8e). As the loading continues,
the concrete core begins to develop plasticity and the radial deformation increases rapidly;
the tube and concrete expand consistently as the axial strain reaches 0.018; after that, the
two portions begin to deform cooperatively, and concrete is confined by the tube, and
the tube achieves equivalent stress of 0.947f y1; with further increase in the axial strain,
the tube hoop stress keeps increasing while its longitudinal stress decreases rapidly as
shown in Figure 8e. However, no axial load is directly sustained by the outer tube for
T-CFST, hence producing almost no radial deformation, while the internal CFST bears the
axial load and produces radial deformation, pushing the external jacketing to develop
radial deformation cooperatively. Therefore, the concrete confinement is derived and
developed (Figure 8d); after that, the outer tube hoop stress increases rapidly until the
outer tube yields (Figure 8f); then, the outer tube hoop stress remains unchanged, whereas
the inner tube hoop stress begins to increase rapidly, providing continuously improving
concrete confinement. Moreover, the sandwich material sustains the confining stress by the
outer tube horizontally, leading to radial compressive deformation. The radial deformation
difference between the sandwich material adjacent to the inner and outer tube also increases
gradually as the confinement by the outer tube improves (Figure 8d). The above comparison
reveals that the concrete is confined by the tube only after developing plasticity for the
CFST, and the confinement is quite small. However, for the T-CFST column, concrete
confinement by the outer tube is developed at the very beginning of loading; at the same
time, the outer tube can be yielded horizontally, leading to greatly enhanced concrete
confinement and significantly improved mechanical properties of the T-CFST column.
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Figure 8. Confining mechanism of the typical columns: (a) loading diagram of the CFST-1 column;
(b) radial deformation of the CFST-1 column; (c) loading diagram of the T-CFST column; (d) radial de-
formation of the T-CFST column; (e) stress development of the CFST-1 column; (f) stress development
of the T-CFST column.

4.1.3. Stress Development

The stress development for the concrete and inner tube is depicted in Figure 9, further
illustrating the working mechanism of the T-CFST column. Meanwhile, the stress devel-
opment of the CFST column is also given in Figure 9 for comparison. The former analysis
indicates that the confinement is provided by the outer tube from initial loading (Figure 9a);
as the axial strain increases, the concrete confinement by the outer tube enhances rapidly
until the tube yields; thereafter, a continuously enhanced confinement is achieved by the
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inner tube instead, significantly improving the concrete properties. However, during the
initial loading stage of ordinary CFST columns, the inner tube hoop stress is zero, indi-
cating no confinement is offered to the concrete core (Figure 9b); after the tube develops
plastic deformation, the concrete begins to be restrained by the tube. Meanwhile, the tube
achieves a fully developed longitudinal stress and a slowly increased hoop stress, which
cannot effectively constrain the concrete core and has a slight influence on the mechanical
properties of the CFST column. Figure 9c shows the longitudinal stress of the core con-
crete for different columns. Significantly improved strength and ductility are obtained for
the concrete of the T-CFST owing to the dual confinement by the inner and outer tubes.
Compared to CFST-1 and CFST-2, the concrete strength is increased by 65.7% and 43.4% for
T-CFST, respectively. Lateral confinement is also provided to the inner tube by the outer
tube of the T-CFST column, leading to a horizontally compressed inner tube during the
initial loading stage. The inner tube hoop stress changes from compression to tension only
after the inner tube yields, and the stress is significantly lower than that of the ordinary
CFST columns (Figure 9b) before the column’s compressive strength. The reduced hoop
stress leads to a much more fully developed longitudinal stress. Therefore, the inner tube
longitudinal stress reaches 1.04 times its yield strength (Figure 9d). Additionally, the inner
tube longitudinal stress decreases at a much slower rate than that of the CFST column,
which further improves the column’s ductility.
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4.2. Stub Column FE Model

The analysis result of the cross-sectional FE model reveals that the outer tube in
the T-CFST column does not directly bear an axial compressive load but can effectively
confine the internal CFST, significantly improving the column’s compressive strength
and deformation abilities. However, the external jacketing still bears a partial load as
the load can be transferred over the interface between the sandwich layer and the inner
tube, affecting the stress development of the external jacketing, especially the outer tube.
Therefore, a T-CFST stub column FE model is established to determine the effect of friction
on the development of the outer tube stresses.

When the load reaches the compressive strength of the component in T-CFST columns
of different thicknesses and yield strengths, the variation of the outer tube hoop stress along
the height of the outer layer is shown in Figure 10, in which y represents the distance of the
specific cross-section from the bottom surface of the external jacketing. At the top surface
of the external jacketing, the outer tube bears no axial load, and its hoop stress also can
reach yield strength. As the length of the friction force transmission gradually increases, the
longitudinal stress of the outer tube continuously increases while the hoop stress decreases
correspondingly. Also, a linearly decreased outer tube hoop stress is obtained for the
T-CFST columns.
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5. Mechanical Properties of the Cross-Sectional FE Model

The cross-sectional FE model is beneficial to obtain a deep insight into the column’s
compressive behavior and develop the methods to predict the compressive strength.

5.1. Configuration

Three parts, including the internal CFST, sandwich layer, and outer tube, comprise
a typical T-CFST column. Among these, the CFST directly bears the applied load while
the outer tube offers lateral confinement. The sandwich material is filled between the
internal CFST and outer tube, which is designed to coordinate the radial deformation of
different portions and transfer confinement. A systematic analysis based on the established
and verified cross-sectional FE model was conducted to determine the suitable sandwich
material, and suitable design recommendations for the sandwich material were proposed.

5.1.1. Sandwich Layer Thickness

Keeping the outer tube ratio the same and increasing the diameter results in decreasing
thickness, leading to weaker concrete confinement. Therefore, to clarify the influence of
the sandwich layer thickness, the outer tube thickness is kept consistent in this section.
The influence of the sandwich layer thickness on the columns with different outer tube
thicknesses t2 (5 mm and 10 mm) is shown in Figure 11, where tc2 is the sandwich layer
thickness. At the very beginning of loading, the columns employing sandwich layers of
different thicknesses behave similarly. However, the column achieves a lower stiffness
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at the plastic stage as the sandwich layer thickness increases. After the peak load, the
columns with outer tubes of different thicknesses behave in different ways as the sandwich
layer thickness changes. Specifically, for the column with a thinner outer tube (t2 = 5 mm),
increasing the sandwich layer thickness leads to improved strength but has a marginal
effect on the stiffness.
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thickness is 15 mm.

The compressive strength is given and compared in Figure 12 for columns with
different thicknesses of sandwich layer and outer tube. Nu0 is the compressive strength of
the column with a sandwich layer thickness of 10 mm. Within a certain range of sandwich
layer thickness, the strength of the columns does not correlate with this thickness. However,
when the sandwich layer thickness exceeds this range, the further increase in thickness will
significantly reduce the bearing capacity. For the T-CFST columns employing outer tubes
of different thicknesses, there is also a difference in this range. Specifically, for columns
with outer tube thicknesses of 5 mm, 10 mm, and 15 mm, the range limit values of this
sandwich layer are 100 mm, 70 mm, and 30 mm, respectively. Due to the sandwich layer in
the T-CFST column mainly transferring the confinement, the sandwich layer thickness is
suggested to be reduced as much as possible while ensuring pouring quality. Within the
scope in this paper, a thickness of no more than 30 mm is suggested.
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5.1.2. Sandwich Material Strength

The sandwich material fills the gap between the internal CFST and outer tube, co-
ordinating their radial deformation and bearing their radial compression. To clarify the
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influence of the sandwich material strength for the columns employing different strength
sandwich materials is compared in Figure 13. The sandwich material strength has a margin
effect on the column’s compressive behavior. Specifically, increasing the sandwich material
strength leads to a slightly reduced compressive strength of the T-CFST column, but the
decrease is within 2.5%, indicating low-strength materials can be utilized as sandwich
material to further reduce the column’s cost.
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5.2. Parameter Study

To quantify the key parameters of the T-CFST column on its cross-sectional compres-
sive strength, a systematic parameter study is conducted based on the developed and
verified cross-sectional FE model. The considered parameter includes the outer tube thick-
ness t2, inner tube diameter-to-thickness ratio D1/t1, concrete strength f c1, yield strength of
outer tube f y2 and inner tube f y1, and the detail values of different parameters are listed in
Table 2. The diameter of the inner and outer tube is 300 mm and 350 mm, respectively, and
the sandwich material axial compressive strength is 40 MPa.

Table 2. Parameters value.

Parameter Value

Outer tube thickness t2 (mm) 5, 7.5, 10, 12.5, 15
Inner tube diameter-to-thickness ratio D1/t1 20, 30, 50, 70, 100

Concrete strength f c1 (MPa) 20, 40, 60, 80, 100
Outer tube yield strength f y2 (MPa) 235, 355, 420
Inner tube yield strength f y1 (MPa) 235, 355, 420

5.2.1. Outer Tube Thickness

The enhanced strength of the T-CFST column is derived from the confinement by
the outer tube. Figure 14 depicts the strength and corresponding inner tube stress for
the FE models employing outer tubes of different thicknesses. The outer tube does not
develop the longitudinal stress, and a hoop stress of yield strength is obtained at the
compressive strength. The confinement can be enhanced greatly by increasing the outer
tube thickness. Hence, keeping the inner tube diameter-to-thickness ratio unchanged, the
strength is linearly improved with the increase of the outer tube thickness for the T-CFST
columns with different core concrete strengths employed (Figure 14a). In addition, the
inner tube hoop stress decreases while the longitudinal stress increases (Figure 14b). The
inner tube may be remains compressed horizontally at the compressive strength for the
columns employing lower strength concrete (f c1 ≤ 40 MPa), and the longitudinal stress may
exceed the yield strength. For the T-CFST columns with inner tubes of different diameter-to-
thickness ratios, the strength is also linearly improved as the outer tube thickness increases
(Figure 14c). Meanwhile, as the outer tube thickness increases, the inner tube hoop stress
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gradually decreases linearly while its longitudinal stress increases linearly. When a thicker
outer tube is employed, the inner tube is also compressed horizontally at the column’s
compressive strength, and its longitudinal stress will also exceed the inner tube yield
strength (Figure 14d).
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Figure 14. Influence of outer tube thickness: (a) Compressive strength (D1/t1 = 50); (b) Inner tube 
stress (D1/t1 = 50); (c) Compressive strength (fc1 = 60 MPa); (d) Inner tube stress(fc1 = 60 MPa). 
Figure 14. Influence of outer tube thickness: (a) Compressive strength (D1/t1 = 50); (b) Inner tube
stress (D1/t1 = 50); (c) Compressive strength (f c1 = 60 MPa); (d) Inner tube stress (f c1 = 60 MPa).

5.2.2. Inner Tube Diameter-to-Thickness Ratio

A significantly enhanced core concrete is achieved for the T-CFST column owing to
the dual lateral confinement by the inner and outer tubes. The compressive strength and
the inner tube stress components are given in Figure 15 to determine the effect of inner tube
diameter-to-thickness ratio. The steel ratio of the inner tube decreases as the ratio increases,
and the direct axial load bearing and concrete confinement also decrease, resulting in an
inverse proportionally decreasing compressive strength (Figure 15a). Meanwhile, the inner
tube hoop stress gradually while the longitudinal stress decreases as the ratio increases
(Figure 15b). The relationship between the compressive strength of T-CFST columns
utilizing outer tubes of different inner tube steel ratios is compared in Figure 15c. With
an increase in the inner tube diameter-to-thickness ratio, the compressive strength also
basically decreases in an inverse proportional pattern, and the inner tube hoop stress also
increases while its longitudinal stress gradually decreases. The above analysis reveals that
although increasing the inner tube diameter-to-thickness ratio will increase its hoop stress,
the concrete confinement by the inner tube is reduced. Furthermore, the increase in inner
tube hoop stress will also reduce its longitudinal stress and load-bearing capacity. As a
result, the T-CFST column’s compressive strength is continuously decreased owing to the
weakened concrete confinement and load-bearing capacity of the inner tube.
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(t2 = 10 mm); (b) Inner tube stress (t2 = 10 mm); (c) Compressive strength (f c1 = 60 MPa); (d) Inner
tube stress (f c1 = 60 MPa).

5.2.3. Concrete Core Strength

An improved compressive strength is obtained for ordinary CFST columns employing
concrete of higher strength. Similarly, a linear improvement in compressive strength is
obtained for the T-CFST columns employing a higher-strength concrete core (Figure 16a).
Meanwhile, a more brittle behavior is expected for the higher-strength concrete, and the
inner tube hoop stress is thus increased, leading to enhanced concrete confinement. How-
ever, the inner tube longitudinal stress is decreased gradually, leading to a slight reduction
in its load-bearing capacity (Figure 16b). As the concrete core strength increases, the com-
pressive strength of the T-CFST column is increased linearly (Figure 16c). Furthermore,
the inner tube hoop stress is increased with the increase of the concrete strength, while its
longitudinal stress is decreased (Figure 16d).

5.2.4. Outer Tube Yield Strength

Besides the outer tube thickness, its yield strength is also critical in determining
concrete confinement. As the outer tube yield strength increases, more effective confinement
is offered to the internal CFST, and the compressive strength of the T-CFST columns is
thus increased linearly (Figure 17a). Meanwhile, the decreased inner tube hoop stress is
obtained for the columns employing thicker outer tube, and even compressed stress can
be developed for the inner tube, leading to improved inner tube longitudinal stress and
compressive strength of the members (Figure 17b).
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Figure 17. Influence of outer tube yield strength: (a) Compressive strength; (b) Inner tube stress.

5.2.5. Inner Tube Yield Strength

The compressive strength and inner tube stress components are given in Figure 18 for
the T-CFST columns. The T-CFST column’s compressive strength can be improved linearly
as the inner tube yield strength increases (Figure 18a). Meanwhile, increasing the yield
strength of the inner tube leads to an enhanced inner tube longitudinal stress but reduced
inner tube hoop stress (Figure 18b).
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5.3. Cross-Sectional Compressive Strength

Based on the parameter study on the cross-sectional FE model under axial compression,
the calculation methods for the hoop stress of the inner and outer tubes, and the inner tube
longitudinal stress are proposed. The concrete strength under dual confinement thus can be
determined. After that, the compressive strength is obtained for the T-CFST cross-section.

The outer tube hoop stress is taken as the yield strength f y2. Based on the stress compo-
nents of the inner tube obtained by the cross-sectional FE model, the calculation methods are
proposed for the inner tube longitudinal and hoop stress, as shown in Equations (3) and (4),
respectively. The inner tube stress components with different parameters are thus deter-
mined and compared with the results of the FE model (Figure 19), where σs1v, CAL, and
σs1h, CAL represent the inner tube longitudinal and hoop stress calculated by the formulas,
while σs1v, FEM, and σs1h, FEM are corresponding value determined by the cross-sectional
FE model. The proposed calculation methods are satisfactory in predicting the inner tube
stress components. Specifically, the difference between the inner tube longitudinal stress
determined by the equation and the FE model is within 5%, with an average value of 1.004
and a coefficient of variation of 0.021. In addition, the difference between the inner tube
hoop stress predicted by the equation and the FE model is less than 0.2f y1, with an average
value of 0.019f y1.

σs1v = (0.0018t2 fy2 + 45.8328)(0.0003 fy1/(D1/t1) + 0.0359)(−0.0008 fc1 + 0.5143) fy1 (3)

σs1h =
(√

4 f 2
y1 − 3σ2

s1v − σs1v

)
/2 (4)

Based on the calculation methods for the outer and inner tube stress components,
the prediction method is proposed for the cross-sectional compressive strength, as shown
in Equation (5). f cc1 represents the confined concrete compressive strength, which is
determined by Equation (6); p is the concrete confining stress, and it can be calculated
by Equation (7). The T-CFST column’s cross-sectional strength is determined and given
in Figure 20, where NCAL and NFEM represent the compressive strength obtained by the
calculation method and FE model, respectively. The difference is within 10%, with a mean
ratio being 2.6% and a coefficient of variation being 0.032, indicating that the proposed
calculation method is precise enough.

N = fcc1 A c1 + σs1v A s1 (5)

fcc1 =

(
1 + 3.5

(
p
fc1

)0.85
)

fc1 (6)
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p =
(
2 fy2t2 + 2σs1ht1

)
/(D1 − 2t1) (7)
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6. Mechanical Properties of FE Model for Stub Column

The influence of the interfacial friction is discussed in the following and the mechanical
properties of the T-CFST stub columns are further determined.

6.1. Configuration

To make it easier to connect the beam and CFST column, an internal or external steel
plate is welded to the CFST column in the beam-column joint area, which has an effective
constraint on the CFST column end. The influence of the reduction of the external jacketing
at the column ends and the strong local constraint by the connecting steel plate at the
T-CFST column end is quantitatively studied based on the developed FE model for the stub
column, then a suitable column end’s configuration is suggested.

The effect of the column end length is shown in Figure 21, where Nu0 is the compressive
strength for the T-CFST columns when the end length is 5 mm. The connecting steel plate
at the column effectively strengthens the column end area when the end length is within
60 mm. As a result, the column fails at the column mid-region, and the compressive
strength almost remains unchanged. However, if the column end length exceeds 60 mm,
the connecting steel plate is not enough to constrain the column end area, and the column
thus fails at the column end, resulting in a rapid reduction of the compressive strength.
The above analysis indicates that decreasing the end length of the T-CFST stub column is
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beneficial to fully develop its compressive behavior, but the column end length should not
be too small to allow the longitudinal relative slip between the internal CFST and external
jacketing. Therefore, the T-CFST stub column end length is suggested to be less than 60 mm
within the scope of this paper. For the T-CFST column with an end length exceeding 60 mm,
additional strengthening measures should be employed to fully develop its compressive
strength, and the experimental study has shown that CFRP wrapping at the column end is
efficient and convenient [37].
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Figure 21. Influence of end length.

6.2. Parameter Study

Based on the developed and validated FE model of the stub column, the influence of
key parameters is quantitatively analyzed. The FE model’s dimensions and parameters
are the same as those in the cross-sectional FE model, and detailed information is given
in Section 5.2. The height-to-diameter ratio of the stub column is taken as three, and the
column end length is adopted as 50 mm.

6.2.1. Outer Tube Thickness

Increasing the outer tube thickness is effective in improving concrete confinement,
leading to a significantly enhanced compressive strength (Figure 22). As the outer tube
thickness increases, the compressive strength is increased linearly, as shown in Figure 22a.
The mid-height outer tube hoop stress corresponding to the compressive strength is given
in Figure 22b. For the stub column with an outer tube thickness of no more than 7.5 mm,
the outer tube hoop stress remains unchanged. However, the outer tube hoop stress
increases linearly as its thickness increases when the thickness exceeds 7.5 mm. A linearly
increased compressive strength is obtained as the outer tube thickness increases (Figure 22c).
Furthermore, the outer tube hoop stress is also increased linearly as the outer tube thickness
increases, when its thickness is larger than 7.5 mm, as depicted in Figure 22d.

6.2.2. Inner Tube Diameter-to-Thickness Ratio

The steel ratio of the inner tube decreases as the diameter-to-thickness ratio increases,
and the direct axial load bearing and concrete confinement also decrease, resulting in
an inverse proportionally decreasing compressive strength (Figure 23a). In addition, the
increasing inner tube diameter-to-thickness ratio also leads to a slightly decreased outer
tube hoop stress (Figure 23b). The relationship between the stub column’s compressive
strength and the inner tube diameter-to-thickness ratio is showed as follows. As the inner
tube diameter-to-thickness ratio increases, the compressive strength also decreases in an
inversely proportional manner, as depicted in Figure 23c. At the same time, the mid-height
outer tube hoop stress decreases slightly as the inner tube diameter-to-thickness ratio
increases (Figure 23d).
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Figure 22. Mechanical properties of stub columns with different outer tub thicknesses: (a) compres-
sive strength (D1/t1 = 50); (b) outer tube hoop stress (D1/t1 = 50); (c) compressive strength (fc1 = 60 
MPa); (d) outer tube hoop stress (fc1 = 60 MPa). 

 

Figure 22. Mechanical properties of stub columns with different outer tub thicknesses: (a) compressive
strength (D1/t1 = 50); (b) outer tube hoop stress (D1/t1 = 50); (c) compressive strength (f c1 = 60 MPa);
(d) outer tube hoop stress (f c1 = 60 MPa).
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hoop stress (fc1 = 60 MPa). 
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6.2.3. Concrete Strength

To clarify the effect of the concrete strength, Figure 24 depicts the relationship between
the compressive strength of the stub column and the concrete strength. Improved concrete
strength leads to a linearly increased compressive strength for the T-CFST stub columns
(Figure 24a) and a slightly increased outer tube hoop stress (Figure 24b). For the T-CFST
columns employing outer tubes of different thicknesses, the compressive strength also in-
creases linearly, while the outer tube hoop stress increases slightly, as shown in Figure 24c,d,
respectively.

Figure 23. Cont.
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6.2.3. Concrete Strength

To clarify the effect of the concrete strength, Figure 24 depicts the relationship between
the compressive strength of the stub column and the concrete strength. Improved concrete
strength leads to a linearly increased compressive strength for the T-CFST stub columns
(Figure 24a) and a slightly increased outer tube hoop stress (Figure 24b). For the T-CFST
columns employing outer tubes of different thicknesses, the compressive strength also in-
creases linearly, while the outer tube hoop stress increases slightly, as shown in Figure 24c,d,
respectively.

Figure 23. Influence of the inner tube diameter-to-thickness ratio: (a) compressive strength
(t2 = 10 mm); (b) outer tube hoop stress (t2 = 10 mm); (c) compressive strength (f c1 = 60 MPa);
(d) outer tube hoop stress (f c1 = 60 MPa).

6.2.3. Concrete Strength

To clarify the effect of the concrete strength, Figure 24 depicts the relationship between
the compressive strength of the stub column and the concrete strength. Improved concrete
strength leads to a linearly increased compressive strength for the T-CFST stub columns
(Figure 24a) and a slightly increased outer tube hoop stress (Figure 24b). For the T-CFST
columns employing outer tubes of different thicknesses, the compressive strength also in-
creases linearly, while the outer tube hoop stress increases slightly, as shown in Figure 24c,d,
respectively.

6.2.4. Outer Tube Yield Strength

The effect of the outer tube yield strength gradually enhances as its thickness increases
(Figure 25a). When the outer tube thickness is within 7.5 mm, its yield strength almost
has no influence on the ratio of the outer tube hoop stress and the yield stress σs2h/f y2.
However, when the thickness exceeds 7.5 mm, an improved ratio of the outer tube hoop
stress and yield strength σs2h/f y2 is achieved as the outer tube yield strength increases.

6.2.5. Inner Tube Yield Strength

As the inner tube yield strength increases, a linearly enhanced compressive strength
is obtained for the T-CFST stub column. In addition, the magnitude of the improvement
in compressive strength gradually increases as the inner tube diameter-to-thickness ratio
decreases. (Figure 26a). Meanwhile, as the inner tube yield strength increases, the outer
tube hoop stress slightly decreases (Figure 26b).

6.3. T-CFST Stub Column Compressive Strength

The effect of the interfacial friction on the stress development of each portion is
quantitively studied based on the parameter study, and suitable calculation methods are
proposed correspondingly. Finally, the prediction method is derived for the compressive
strength of the stub column.

6.3.1. External Jacketing Bearing Capacity

The axial compressive loading test shows that the external jacketing will slide relative
to the internal CFST before reaching the column compressive strength [13,37]. Therefore,
the interfacial friction is assumed to follow the Coulomb friction principle, in which
the friction stress is proportional to the normal compressive stress. The sandwich layer
develops evenly distributed radial cracks before the column’s compressive strength, and
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its confinement is thus ignored. Therefore, the interfacial normal compressive stress ps2s1(y)
can be determined by the outer tube hoop stress σs2h(y) only, as shown in Equation (8),
where y is the distance from the specific cross-section to the external jacketing.

ps2s1(y) = 2σs2h(y)t2/D1 (8)

Due to the friction over the external jacketing and the internal CFST interface, the outer
tube hoop stress is not uniform. The analysis in Section 4.2 shows that the outer tube hoop
stress reaches the steel material yield strength at the external jacketing end cross-section
and then decreases linearly to the column mid-height. With the determination of the outer
tube hoop stress at the column mid-height σs2h,m following Equation (9), the variation of
the stress along the external jacketing height can thus be determined.

σs2h,m = (0.0300t2 + 3.1490)(0.00001t2 fy2 + 0.1650) fy2 (9)

The outer tube hoop stress obtained by the equation σs2h,m, CAL and the FE model
σs2h,m, FEM is given and compared in Figure 27. The difference between σs2h,m, CAL and
σs2h,m, FEM is within 10%, and the average of σs2h,m, CAL, and σs2h,m, FEM is 0.985, with a
coefficient of variation of 0.086, indicating the equation is precise enough.
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Figure 24. Mechanical properties of stub columns with core concrete of different strengths: (a) com-
pressive strength (t2 = 10 mm); (b) outer tube hoop stress (t2 = 10 mm); (c) compressive strength (D1/t1 
= 50); (d) outer tube hoop stress (D1/t1 = 50). 
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Figure 24. Mechanical properties of stub columns with core concrete of different strengths:
(a) compressive strength (t2 = 10 mm); (b) outer tube hoop stress (t2 = 10 mm); (c) compressive
strength (D1/t1 = 50); (d) outer tube hoop stress (D1/t1 = 50).
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Figure 24. Mechanical properties of stub columns with core concrete of different strengths: (a) com-
pressive strength (t2 = 10 mm); (b) outer tube hoop stress (t2 = 10 mm); (c) compressive strength (D1/t1 
= 50); (d) outer tube hoop stress (D1/t1 = 50). 
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Figure 25. Mechanical properties of stub columns with outer tubes of different yield strengths:
(a) compressive strength; (b) outer tube hoop stress.
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Figure 26. Effect of inner tube yield strength: (a) compressive strength; (b) outer tube hoop stress. 

6.3. T-CFST Stub Column Compressive Strength 
The effect of the interfacial friction on the stress development of each portion is quan-

titively studied based on the parameter study, and suitable calculation methods are pro-
posed correspondingly. Finally, the prediction method is derived for the compressive 
strength of the stub column. 

6.3.1. External Jacketing Bearing Capacity 
The axial compressive loading test shows that the external jacketing will slide relative 

to the internal CFST before reaching the column compressive strength [13,37]. Therefore, 
the interfacial friction is assumed to follow the Coulomb friction principle, in which the 
friction stress is proportional to the normal compressive stress. The sandwich layer devel-
ops evenly distributed radial cracks before the column’s compressive strength, and its 
confinement is thus ignored. Therefore, the interfacial normal compressive stress ps2s1(y) 
can be determined by the outer tube hoop stress σs2h(y) only, as shown in Equation (8), 
where y is the distance from the specific cross-section to the external jacketing. 

s2s1 s2h 2 1( ) 2 ( ) /p y y t Dσ=  (8) 

Due to the friction over the external jacketing and the internal CFST interface, the 
outer tube hoop stress is not uniform. The analysis in Section 3.2 shows that the outer tube 
hoop stress reaches the steel material yield strength at the external jacketing end cross-
section and then decreases linearly to the column mid-height. With the determination of 
the outer tube hoop stress at the column mid-height σs2h,m following Equation (9), the var-
iation of the stress along the external jacketing height can thus be determined. 
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Figure 26. Effect of inner tube yield strength: (a) compressive strength; (b) outer tube hoop stress.
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Figure 27. Validation of the mid-height cross-sectional outer tube hoop stress prediction method.

Based on the above analysis, the outer tube hoop stress along the external jacketing
height can be determined by Equation (10). The axial load sustained by the external
jacketing can be determined by Equation (11). Meanwhile, the axial load sustained by the
external jacketing should not exceed its load-bearing capacity, which can be calculated
by Equation (12), in which f cc2 is the confined sandwich material strength and can be
determined following Equation (13). ps2c2 is the sandwich material confining stress at the
external jacketing mid-height cross-section, which can be calculated by Equation (14). With
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the above parameters determined, the load sustained by the external jacketing Nf thus can
be adopted by Equation (15).

σs2h(y) = fy2 − 2y( fy2 − σs2h,m)/H (10)

N f1 = πµD1

∫ H/2

0
ps2s1(y)dy =

1
2

πµt2H( fy2 + σs2h,m) (11)

Nf2 = fcc2 Ac2 + fy2 As2 (12)

fcc2 =

(
1 + 3.5

(
ps2c2

fc2

)0.85
)

fc2 (13)

ps2c2 = 2σs2h,mt2/(D2 − 2t2) (14)

Nf = min(Nf1, Nf2) (15)

6.3.2. Internal CFST Bearing Capacity

The axial load sustained by the internal CFST portion can be determined by consider-
ing the contribution of both the inner tube and core concrete, and the inner tube longitudinal
stress σs1v,m, and hoop stress σs1h,m can be calculated by Equations (16) and (17), respec-
tively. The comparison of the inner tube stress components obtained by the equations and
the FE model is depicted in Figure 28, where σs1v,m, CAL and σs1v,m, FEM is the longitudinal
stress determined by the formula and FE model, while σs1h,m, CAL and σs1h,m, FEM is the
hoop stress given by the corresponding methods. The difference between σs1v,m, FEM and
σs1v,m, CAL is no more than 10%, with the average ratio of the two values being 1.001 and
the coefficient of variation being 0.043. Meanwhile, the difference between the inner tube
hoop stress determined by the equation and the FE model is less than 0.15f y2, with an
average error of 0.00 f y2. The above comparison reveals that the calculation methods are
satisfactory in calculating the stress components of the mid-height inner tube.

σslv,m =0.89σslv

=0.89 × (0.0018t2σs2h,m,CAL + 45.8328)(0.0003 fy1/(D1/t1) + 0.0359)

(−0.0008 fc1 + 0.5143) fy1

(16)

σs1h,m =
(√

4 f 2
y1 − 3σ2

s1v,m − σs1v,m

)
/2 (17)
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Figure 28. Comparison of the mid-height cross-sectional inner tube stress obtained by the equation 
and the FE model: (a) longitudinal stress; (b) hoop stress. 
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is given by Equation (5), and the inner tube longitudinal stress σs1v is adopted as σs1v,m. 
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The concrete confining stress by the inner and outer tubes pc1,m can be calculated by
Equation (18), and the confined concrete strength can thus be determined by Equation (6),
in which p needs to be replaced by pc1,m. Finally, the load sustained by the internal CFST is
given by Equation (5), and the inner tube longitudinal stress σs1v is adopted as σs1v,m.

pc1,m = (2σs2h,mt2 + 2σs1h,mt1)/(D1 − 2t1) (18)

6.3.3. Compressive Strength of the T-CFST Stub Column

Based on the above calculation methods of the load sustained by the external jacketing,
inner tube, and the concrete core, the compressive strength of the T-CFST stub column is
given by Equation (19) based on the superposition method.

Nu = Nf + σs1v,m As1 + f cc1 Ac1 (19)

Figure 29 shows the comparison of the compressive strength obtained by the equation
Nu, CAL and numerical analysis Nu, FEM as well as experiment Nu, EXP in reference [37]. The
comparison reveals that the average ratio of the calculated result and the results of the
FE model is 0.962, and the difference between the two values is less than 15%, with the
coefficient of variation being 0.059, indicating the calculation method is accurate enough to
predict the compressive strength of the T-CFST stub column. It should be noted that the
conclusion is drawn based on the results of the FE models within the scope of this paper.
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7. Conclusions 
In this paper, the FE model is firstly developed for the T-CFST cross-section and stub 
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properties are clarified; finally, the calculation method is proposed to determine the com-
pressive strength. The following conclusion can be drawn: 
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columns can be divided into the following stages: the internal CFST portion directly 
sustains the applied axial load while the outer tube does not; once the axial load is 
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crete develops quickly with the increase in axial load, leading to an increasing con-
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after the outer tube yields, the confinement by the outer tube stays unchanged, and 
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(2) The lateral confinement by the outer tube is determined by the outer tube steel ratio 
and yield strength. The variation of the confining pressure by the outer tube along 
the column height is illustrated through the consideration of the interfacial friction 
over the interface between the external jacketing and the internal CFST portion. The 
prediction method considering the confinement by the outer tube is proposed to de-
termine the inner tube hoop stress, and the inner tube longitudinal stress can thus be 
given based on Mises yielding criterion. The strength and deformation ability of the 
core concrete is enhanced significantly by the effective confinement of the outer and 
inner tubes, and a calculating equation is also proposed to determine the strength of 
the core concrete at the compressive strength of the T-CFST columns. 

(3) Considering the distribution of the interfacial friction and its transferring length, the 
axial load carried by the external jacketing can be determined; based on the compo-
site action between the external jacketing, inner tube, and the core concrete, a suitable 
calculation method is proposed to determine the compressive strength of the T-CFST 
columns. 

Author Contributions: Conceptualization, X.L., S.Z., and B.Z.; methodology, X.L. and S.Z.; software, 
X.L. and Y.T.; validation, X.L. and Y.T.; formal analysis, X.L.; investigation, X.L.; resources, X.L.; data 
curation, X.L. and Y.T.; writing—original draft preparation, X.L., S.Z., Y.T., and B.Z.; writing—re-
view and editing, X.L., S.Z., Y.T., and B.Z.; visualization, X.L. and Y.T.; supervision, S.Z. and B.Z.; 
project administration, S.Z.; funding acquisition, S.Z. All authors have read and agreed to the pub-
lished version of the manuscript. 

Funding: This study is funded by the National Natural Science Foundation of China, grant number 
51878219, and the Shenzhen High-level Talents Research Start-up Project. 

Figure 29. Comparison of the column strength obtained by equation and FE model or test [37].

7. Conclusions

In this paper, the FE model is firstly developed for the T-CFST cross-section and stub
column; then, the confining mechanism and effect of key parameters on the mechani-
cal properties are clarified; finally, the calculation method is proposed to determine the
compressive strength. The following conclusion can be drawn:

(1) The development of concrete confinement by the inner and outer tubes in the T-CFST
columns can be divided into the following stages: the internal CFST portion directly
sustains the applied axial load while the outer tube does not; once the axial load
is applied, the outer tube begins to offer lateral confinement to the internal CFST
while the inner tube is compressed horizontally; the horizontal expansion of the core
concrete develops quickly with the increase in axial load, leading to an increasing
confinement by the outer tube, and the inner tube is still under compression laterally;
after the outer tube yields, the confinement by the outer tube stays unchanged, and
the inner tube hoop stress gradually turns from compression to tension, leading to
continuously increasing concrete confinement.

(2) The lateral confinement by the outer tube is determined by the outer tube steel ratio
and yield strength. The variation of the confining pressure by the outer tube along
the column height is illustrated through the consideration of the interfacial friction
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over the interface between the external jacketing and the internal CFST portion. The
prediction method considering the confinement by the outer tube is proposed to
determine the inner tube hoop stress, and the inner tube longitudinal stress can thus
be given based on Mises yielding criterion. The strength and deformation ability of
the core concrete is enhanced significantly by the effective confinement of the outer
and inner tubes, and a calculating equation is also proposed to determine the strength
of the core concrete at the compressive strength of the T-CFST columns.

(3) Considering the distribution of the interfacial friction and its transferring length,
the axial load carried by the external jacketing can be determined; based on the
composite action between the external jacketing, inner tube, and the core concrete, a
suitable calculation method is proposed to determine the compressive strength of the
T-CFST columns.
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