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Abstract: Structures made of heterogeneous materials, such as composites, often require a multiscale
approach when their behavior is simulated using the finite element method. By solving the boundary
value problem of the macroscale model, for previously homogenized material properties, the resulting
stress maps can be obtained. However, such stress results do not describe the actual behavior of
the material and are often significantly different from the actual stresses in the heterogeneous
microstructure. Finding high-accuracy stress results for such materials leads to time-consuming
analyses in both scales. This paper focuses on the application of machine learning to multiscale
analysis of structures made of composite materials, to substantially decrease the time of computations
of such localization problems. The presented methodology was validated by a numerical example
where a structure made of resin epoxy with randomly distributed short glass fibers was analyzed
using a computational multiscale approach. Carefully prepared training data allowed artificial neural
networks to learn relationships between two scales and significantly increased the efficiency of the
multiscale approach.

Keywords: multiscale modeling; finite element method; homogenization; artificial neural network;
composite material; fiber-reinforced composite; machine learning

1. Introduction

Multiscale analysis has been a major research topic for decades, focusing on the role of
material microstructures in macroscale mechanical behaviors [1]. Modern heterogeneous
materials like fiber-reinforced [2] or multimetallic composites [3] are gaining more and
more popularity in engineering structures due to their application-specific tailored proper-
ties. To accurately describe their microstructural behavior, numerical methods such as the
multiscale finite element method [4–7], asymptotic homogenization method [8–10], coarse-
graining technique [11], and finite element and Fast Fourier Transforms method [12] have
been developed. High-fidelity microstructure material modeling is essential for macroscale
structural analysis prediction. However, this raises a computational efficiency issue. In
the classical multiscale finite element method, each integration point queries mechanistic
information from an evolving microstructure using a high-fidelity representative volume
element (RVE). This results in intractable computational costs, especially for industrial ap-
plications. The trade-off between accuracy and efficiency in classical multiscale simulation
has been reported by many researchers [13–16]. Despite its potential, computational cost is
a fundamental issue in large-scale structural analysis applications.

Furthermore, machine learning techniques have shown great potential in accelerating
multiscale simulations by learning microstructural responses through data from numerical
simulations. Machine learning methods, like Artificial Neural Networks (ANNs), have
been successfully used for speeding up homogenization methods, that is, estimating the
collective behavior of a heterogenous material and extracting effective material properties
of equivalent homogenous material at the macroscopic scale. Le et al. [17] used ANNs for
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nonlinear homogenization. Lu et al. [18] utilized ANNs for the computational homogeniza-
tion of the electric parameters of random graphene-polymer nanocomposites. In [19,20]
recurrent neural networks were implemented for modeling the history-dependent non-
linear microlevel response. Mozaffar et al. [21] used deep learning to predict the plastic
behavior of a given class of composite RVEs. Convolutional neural networks have also
been successfully adapted to predict complex effective parameters for certain composite
materials, like plastic [22] or anisotropic elastic [23]. Vlassis et al. [24] used graph neural
networks to predict homogenized responses of polycrystals. In addition to these, the
multiscale data-driven finite element-deep material network (FE-DMN) is a method that
connects machine learning techniques with mechanics. This multiscale material modeling
method correctly and efficiently predicts macroscale material responses compared to direct
numerical simulation of the RVE [25]. DMN captures the complexity of microstructural
interactions through a binary network structure with a two-layer mechanistic building
block [26]. The FE-DMN architecture allows for the prediction of non-linear material behav-
ior based on linear elastic training data [26]. Studies have explored potential applications
of DMN, including 3D DMN architectures [27] for composite materials and metallic ma-
terials, a unified DMN database [28], extensions for multiphase composites [15], woven
composites [29], porous microstructural materials [30], interfacial failure and damage anal-
ysis [31,32], and applications in multiscale simulation [13,14]. The data-driven FE-DMN
method offers great opportunities for industrial applications [33].

A data-driven multiscale finite element method has been applied to composite ma-
terials and structures [16]. This method originates from data-driven computational me-
chanics [34], and is applied to a multiscale simulation framework. Similar data-driven
multiscale methodologies have been conducted for biological and technological hierarchical
materials [35,36] and granular materials [37]. Most importantly, a multiscale modeling
technique based on a two-scale analysis approach was conducted [38], and multiscale
bone modeling was presented. The important modeling process considered in the pa-
per was the identification problem, formulated as an inverse problem that considered
two-scale analysis.

The novelty of this study is that machine learning has been introduced in multiscale
analysis to successfully speed up a new class of problem: localization. The research thesis
is that a prediction model, based on ANNs, can significantly increase the efficiency of
multi-scale modeling by substituting the computationally expensive FEM model of the
microstructure. If the training data is carefully prepared, the ANN can be used to accurately
estimate microstructural stresses, for a given composite material, at any point, for any
macromodel geometry. The goal of this paper is to present a methodology for the applica-
tion of the data-driven multiscale finite element method and artificial neural networks for
the prediction of stress concentrations in composite structures. The values of stress con-
centrations in the microstructure of composite materials under load may be substantially
higher than those obtained from structural macroscale analysis, where only homogenized
material properties are considered. The microscale effects may be important when con-
sidering potential failure mechanisms in composite materials (microcracks, delamination,
etc.). The presented approach of time-efficient determination of stresses in inclusions and
matrix within composites could be used in the future, for example, in structural health
monitoring (SHM) of modern structures [39,40], and especially in the variant of SHM
known as Operational Load Monitoring processes (OLM, fatigue tracking) [41–43]. In OLM
the amount and characteristics of load cycles that a structure endured in its operational en-
vironment are measured and registered. The point is to determine the remaining in-service
life and maximize the usefulness of the structure before its replacement. Such processes
are applied mainly in aerospace and civil engineering industries [44,45], and are often
supported by machine learning [46–49]. As modern structures subjected to monitoring are
often composite with a nonlinear relation between macroscale and microscale behavior, the
authors suspect that efficient determination of microstructural behavior could improve the
accuracy of SHM and OLM processes in the future.



Materials 2024, 17, 154 3 of 14

To carry out the described goals, a computational multiscale approach with two-scale
(microscale and macroscale) analysis of composite material was used. The representative
volume element (RVE) was created for the microstructure with linear displacement bound-
ary condition and the computational homogenization method was employed to obtain
the averaged material properties of the microstructure [50,51]. Artificial neural networks
(ANNs) were trained based on a dataset generated from a carefully prepared series of
microscale analyses, to quickly and accurately determine the stresses in composite mi-
crostructure based on results obtained from macroscale finite element analysis. Substantial
efficiency improvement was achieved.

The proposed methodology of substituting micromodel by ANN in multi-scale anal-
ysis is defined in Section 2. In Section 3 a numerical example is described where the
previously defined methodology is verified. Conclusions and directions for future research
are summarized in Section 4.

2. Materials and Methods

Multiscale modeling considers dependencies between scales and uses computational
homogenization to replace heterogeneous materials with homogeneous ones [38]. This
method is useful for periodic microstructures. The influence between scales is obtained by
solving the boundary value problem in each scale using a numerical method [38,52].

The heterogeneous material is replaced by the homogeneous material as shown in
Figure 1. The heterogeneous periodic material can be modeled using a periodic microstruc-
ture model, namely the Representative Volume Element (RVE). The homogenization pro-
cedure allows one to obtain material properties for the macroscale based on results in the
microscale. The two-scale computational homogenization method is illustrated in Figure 2.
Macro strain values (average strain for microscale) are transferred to the micromodel for
each integration point of finite elements. The microscale model—RVE is analyzed with
boundary conditions defined by macrolevel average strains. The results of microscale
analysis are used to compute average stresses which are transferred to the macroscale.

For RVE, the average strain and stress are given as follows:

εavg = 1
|ΩRVE |

∫
ΩRVE

εdΩRVE

σavg = 1
|ΩRVE |

∫
ΩRVE

σdΩRVE
(1)

where ΩRVE is the domain of microscale model, εavg is the average strain tensor obtained
from the macroscale and applied in microscale, σavg is the average stress tensor obtained
based on averaging stresses in microscale, ε is the strain tensor in microscale and σ is the
stress tensor in macroscale.

In many cases especially when the linear material properties in macroscale are used, the
homogenization method can be used for upscaling—the material properties of macroscale
material are computed based on prescribed unitary strains in microscale. The micromodel
is computed for six cases (for 3D problems) and the average stresses and strains are used for
macromodel stiffness tensor evaluation. The constitutive relation between average strain
and stress and stiffness tensor is expressed as follows:

σavg = Chεavg (2)

where Ch is the stiffness tensor of equivalent homogeneous material that satisfies the elastic
deformation characteristic of the heterogeneous material.

In the homogenization problems, three types of boundary conditions can be used:
periodic, Dirichlet (displacement), or Neumann (traction). When the size of RVE is suffi-
ciently large, the homogenization convergence allows to eliminate geometrical periodicity.
Therefore, the Dirichlet boundary conditions are equivalent to the Neumann boundary
conditions in the sense of average material properties obtained during homogenization
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(both approached converge to the same solution) [53]. In the presented case, Dirichlet
boundary conditions were applied.
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It should be also noted that for particle-based composites with randomly distributed
inclusions, the lack of periodicity makes it difficult to identify RVE therefore, Statistical
Volume Elements are processed to homogenization [54]. Pingaro et al. [55] improved that
process by developing fast statistical homogenization procedure.

The localization analysis of micromodel based on strains computed on macroscale
is important also in linear problems and allows to computing the maximal stresses in
microscale-composite material. The analysis of the micromodel for each average strain
tensor can be computationally expensive. The cost of microscale analysis is important,
especially in the case of real-time systems monitoring maximum stress levels in structures.
As FEM is a computationally demanding method [56,57], to significantly reduce the time
needed for microscale model analysis the ANN can be used as a metamodel (Figure 3)
replacing the FEM microscale analyses. ANNs can serve as efficient fast surrogate models
for problems that require excessive computations. The idea is to use a metamodel instead
of the FEM model. The inputs of the metamodel are average strains from the macroscale,
while the output is the maximum value of stresses in the micromodel.

ANNs mimic the principles of operation of animal brains and consist of interconnected
nodes, or artificial neurons, organized into layers. The signals are transferred from the
input layer, through one or more hidden layers, to the output layer. Each node in the input
layer represents a feature of the input data. The connections between nodes in adjacent
layers have an associated weight. These weights determine the strength of the connection.
Additionally, each node in the hidden and output layers has an associated bias. Each node
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performs a weighted sum of its inputs, adds a bias, and applies an activation function that
can be non-linear. The output information of the neurons is passed through the layers
until the output is obtained. The network can be trained and learn complex patterns and
relationships from provided reference data, by adjusting the weight and bias values of all
its neurons [58–60].
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In the investigated research, the input layer received six average strain components
from macroscale and the output layer returned the maximal value of the stress on the
microscale. The ANN will work for stress estimation in the considered composite ma-
terial, at any point, and for any macromodel geometry. The feedforward ANN of the
presented architecture works in elastic stress-strain ranges, as elastic-plastic problems are
path-dependent [61].

To prepare a reference dataset to train ANNs, a Latin hypercube sampling plan (LHC)
was used [62]. The sampling plan was created on six dimensions. The parameter ranges
were defined over appropriate and realistic ranges for each selected parameter based on
the physical limits of the system and domain knowledge. The number of samples for the
LHC plan was determined, considering that the sample size should be large enough to
provide a representative data set but should also be manageable within the computational
resources. Additionally, randomness was incorporated into the LHC sampling process to
avoid predictable patterns in sample selection, which could bias the results.

The microscale boundary value problem was solved for many strain tensors (input
vectors for ANN) based on LHC sampling and maximum stress values in microstructure
(ANN output) were collected.

To obtain as much accuracy as possible ANN with minimal size, an excessive grid-
search hyperparameter optimization was implemented, considering different activation
functions and different numbers of hidden neurons.

3. Numerical Results

Multiscale analysis of a structure made from a glass-epoxy composite is considered as
the numerical example. The geometry of the structure in macro scale is shown in Figure 4
and its hexahedral mesh (with about 40,000 elements of size 1 × 1 × 1) is presented in
Figure 5. The boundary conditions are shown in Figure 6: two bottom areas are fixed and
force is uniformly applied on the marked surface on top of the structure.
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Figure 6. The boundary conditions applied to the macromodel.

The micromodel RVE is built from an epoxy matrix and short fiber glass inclusions
and is shown in Figure 7. The geometry was created using Material Designer module in
ANSYS Workbench 2022R2 software, where the fiber volume fraction was assumed as 0.3.
The model was meshed in MSC.Patran 2022.4 software using about 470,000 tetrahedral
elements. The material properties are given in Table 1. The MSC.Patran file of the RVE
micromodel is available as Supplementary Materials File S1.

Table 1. Material properties of composite components.

Epoxy Matrix Glass Fibers

Young’s modulus, MPa 3780 78,000

Poison’s ratio 0.35 0.22
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In the applied numerical procedure, first the homogenized material properties were
determined by RVE analysis in microscale and are presented in Table 2. The RVE was
computed for unitary strains in each direction to obtain the average stiffness tensor. Then
the homogenized material properties were used in the macroscale. The macroscale model
for defined boundary conditions was analyzed and the strain tensors for chosen points
were used in microscale analyses to determine the maximum stress values in the composite
material. This procedure was performed in two ways: (a) using FEM in the microscale and
(b) using previously prepared ANNs as a microscale metamodel.

Table 2. Homogenized material properties for macroscale.

Young’s moduli E1 = 7962.6 MPa E2 = 7951.3 MPa E3 = 7912.7 MPa

Poison’s ratios ν12 = 0.2891 ν23 = 0.2874 ν31 = 0.2879

Shear moduli G12 = 5863.2 MPa G23 = 5852.6 MPa G31 = 5863.2 MPa

3.1. Results of an Example Multiscale FEM Analysis

In the first case, results are obtained using FEM in both scales. The macromodel was
solved, for example, load value and the map of strains in all directions are shown in Figure 8.
The strain tensor for the most dangerous areas of the structure was later transferred to the
micromodel to obtain local stresses, as shown in Figure 9. The Hexagon/MSC.Nastran
2022.4 solver was used for finite element computations in both scales. Procedures developed
by the authors were used for applying boundary conditions of the micromodel by changing
the solver input file with values read from relevant results of the macromodel.

3.2. Finding the Microscale Metamodel

The metamodels were created to reduce computational cost of microlevel analysis.
Two artificial neural networks were trained from the data obtained based on micromodel
analyses, according to LHC plan. Each network has six inputs that are independent
elements of the strain tensor of microstructure, and one output that is maximal von Mises
stress in the inclusions and maximal von Mises stress in the matrix, for the first and second
ANN, respectively. To obtain reference data, 4988 microscale finite element analyses were
performed, and it took about 4 weeks on 2 processors AMD (Sunnyvale, CA, USA) EPYC
64 core server.

Grid search hyperparameter optimization was performed to obtain the best-fitted
ANNs for the given problem. It was assumed that both networks would have one hidden
layer and a linear activation function in the output layer. Fifteen different activation
functions were considered for the hidden layer: competitive, Elliot symmetric sigmoid,
hard limit, symmetric hard limit, log-sigmoid, inverse, positive linear, linear, radial basis,
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normalized radial basis, saturating linear, symmetric saturating linear, SoftMax, hyperbolic
tangent sigmoid, and triangular basis function. Twenty-six different sizes of the hidden
layer were considered, from 5 to 30 neurons. For each combination of activation function
and hidden layer size (390 combinations), 100 ANN training trials were performed, from
which the one that gave the smallest mean squared error (MSE) was for validation data
that was not seen during the training. Therefore, for each of the two ANNs, the best
of 39,000 trials was chosen. For each trial, 70% of data were used for training, 15% for
validation, and 15% for testing. The Levenberg-Marquardt algorithm [63], with random
initial solution (normalized with the method of Nguyen and Widrow [64]), was used to
train the ANNs.

Architectures of the optimized ANNs are presented in Figure 10. For the first ANN,
estimating the maximal von Mises stress in the inclusions, the best parameters were
24 neurons of radial basis activation function in the hidden layer. For the second ANN,
estimating the maximal von Mises stress in the matrix, the best parameters were 25 neurons
of hyperbolic tangent sigmoid activation function in the hidden layer.
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inclusions and (b) second ANN, estimating stress in the matrix.

The plots of the error values of the training record against the number of training
epochs, for both networks, are presented in Figure 11. For the first network, the best
validation performance of 7.49 × 10−3 was achieved at epoch 21. For the second network,
the best validation performance of 2.04 × 10−5 was achieved at epoch 322. The points of
best validation performance were marked with green circles.
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3.3. Multiscale Analysis with Metamodel

The metamodel created in Section 3.2 was used to determine maximum stress val-
ues in the micromodel for different values of loads and points from the macroscale. The
accuracy of ANN prediction was tested against exact values from microscale FEM sim-
ulations. The results for chosen loads in the macroscale are given in Table 3. The mi-
crostresses are calculated for the point with the highest stress value in the macroscale (for
homogenized material).

Table 3. Maximum von Mises stress values in microscale.

Load Case L [N] [50, −100, 50] [100, 0, 0]

εx [µm
m ] 466.1 −120.1

εy [µm
m ] −265.8 36.4

εz [µm
m ] 161.5 27.5

εxy [µm
m ] 9.31 10.44

εyz [µm
m ] −19.41 0.04

εzx [µm
m ] −85.39 3.70

FEM: Max. macro stress [MPa] 6.70 2.96

FEM: Max. micro stress epoxy [MPa] 43.07 8.59

ANN: Max. micro stress epoxy [MPa] 43.02 8.87

FEM: Max. micro stress glass [MPa] 33.30 8.31

ANN: Max. micro stress glass [MPa] 33.11 8.16
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4. Discussion

This study focused on advancing the prediction of stress concentrations in composite
structures through the application of artificial neural networks to multiscale analysis. The
multiscale FEM analyses show that there is a notable reduction in maximum von Mises
stress when transitioning from the microscale analysis (which considers the material at a
finer level of detail) to the macroscale analysis (which represents a more generalized view
of the material). For example, for the first load case presented in Table 3, a difference of one
order of magnitude was observed. This highlights the importance of considering multiple
scales when evaluating the mechanical behavior of composite materials.

Introducing machine learning (in this case ANNs) as a metamodeling tool for esti-
mating maximal von Mises stress provided a faster and computationally more efficient
alternative to the detailed multiscale simulations. Solving the full finite element micro-
model on a single processor core took about 26 min while estimating the stresses on a
microscale using the presented ANNs can be measured in milliseconds.

Plots of training performance proved that the pattern between strains on the macroscale
and stresses on the microscale could be efficiently learned by the utilized ANNs. Grid-
search hyperparameter optimization of the ANN architecture allowed us to find as accurate
a metamodel as possible. Hyperparameter optimization turned out to be a reasonable
approach in the presented case, as the most accurate ANNs did not reach the upper limit of
the considered neurons in the hidden layer.

The developed methodology and obtained results consist of a starting point for future
research on introducing a multiscale approach combined with machine learning to Struc-
tural Health Monitoring and Operational Load Monitoring processes of modern composite
structures. The authors believe that implementing metamodels that efficiently describe the
microscale behavior of composite materials, based on measurable macroscale features of
structures under load, can increase the accuracy of the monitoring processes, especially
when microscopic failure mechanisms of composites (microcracks, delamination, etc.)
are considered.

Another direction for future research is building a prediction model, based on machine
learning, that takes elastic-plastic strains into account. In such cases, the simulation results
are loading-path dependent therefore, preparing a training set will be a difficult and time-
consuming task. Recurrent networks, including deep network models, will be considered.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/10.3390/
ma17010154/s1, File S1: FEM database of the micromodel RVE, to be opened in MSC.Patran software.
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56. Jaszak, P.; Grzejda, R.; Kluczyński, J.; Zmarzły, P. Basic Design Parameters Influencing on Axial Stiffness of the Spiral Wound
Gasket. Materials 2023, 16, 6209. [CrossRef]

57. Mucha, W. Application of Dynamic Condensation for Model Order Reduction in Real-Time Hybrid Simulations. Meccanica 2023,
58, 1409–1425. [CrossRef]

58. Livingstone, D.J. Artificial Neural Networks: Methods and Applications; Methods in Molecular Biology; Humana Press: Totowa, NJ,
USA, 2011; ISBN 978-1-61737-738-9.

59. Mucha, W.; Kokot, G.; Viana, J.C.; Nunes, J.P. New Operational Load Monitoring Approach Using Digital Image Correlation and
Image Classification Networks. J. Phys. Conf. Ser. 2023, 2512, 012015. [CrossRef]
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