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Abstract: This research presents a comprehensive analysis of deep neural network models (DNNs)
for the precise prediction of Vickers hardness (HV) in nitrided and carburized M50NiL steel samples,
with hardness values spanning from 400 to 1000 HV. By conducting rigorous experimentation and
obtaining corresponding nanoindentation data, we evaluated the performance of four distinct neural
network architectures: Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long
Short-Term Memory network (LSTM), and Transformer. Our findings reveal that MLP and LSTM
models excel in predictive accuracy and efficiency, with MLP showing exceptional iteration efficiency
and predictive precision. The study validates models for broad application in various steel types and
confirms nanoindentation as an effective direct measure for HV hardness in thin films and gradient-
variable regions. This work contributes a validated and versatile approach to the hardness assessment
of thin-film materials and those with intricate microstructures, enhancing material characterization
and potential application in advanced material engineering.

Keywords: deep neural network; hardness; nanoindentation; nitriding

1. Introduction

The hardness of a material serves as a crucial index, encapsulating the material’s
capacity to resist deformation or fracturing, bearing immense implications for disci-
plines such as materials science, engineering, and manufacturing [1–12]. Methods to
measure hardness, embracing Vickers hardness (HV) [13–16], Brinell hardness
(HB) [17–20], and Rockwell hardness (HR) [21–24], have garnered wide acceptance, con-
tributing a valuable perspective in the comprehension of materials’ mechanical behaviors.
Within the ambit of materials science, the process of hardness conversion is of paramount
importance [25–27]. It unearths not only the deformation-resistance properties of an identi-
cal material across varied hardness scales but also introduces the opportunity to evaluate
additional mechanical properties under non-destructive circumstances, thus bypassing
more invasive testing approaches. Moreover, hardness conversion extends essential refer-
ences for the selection and design of materials across a spectrum of application requirements.
Crucially, whether the materials’ scales are macroscopic, microscopic, or nanoscale, hard-
ness conversion enables the performance comparison across these scales, thus advancing a
deeper interpretation and evaluation of material performance. Researchers [27] have devel-
oped theoretical equations to transition between Brinell hardness (HB), Rockwell hardness
(HR), and Vickers hardness (HV). These equations are based on the power-law stress-strain
relationship and the equivalent energy principle. Furthermore, the pre-existing relationship
between tensile strength (σb) and Hollomon parameters (K, N) was integrated, allowing
the derivation of the theoretical conversion between hardness (HB/HR/HV) and tensile
strength (σb). These equations have undergone rigorous validation using an extensive
dataset from ASTM and ISO standards, demonstrating a high degree of agreement.
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However, these conventional hardness-characterization techniques may incur de-
structive consequences and require substantial time. Moreover, the precise hardness
quantification of thin films and coatings poses significant challenges, which restrict the
application of these measurement methodologies in such scenarios. With the advent of
nanoindentation technology, it is now feasible to gauge hardness at the nanoscale. This in-
novative method presents a more efficient and less destructive substitute for thin films and
coatings [28–31]. Determining the relationship between the comparatively microscopic
nanohardness and macrohardness proves to be exceptionally crucial. However, the con-
nection between Vickers hardness and nanoindentation hardness is far from linear, with
multiple factors such as the material properties and microstructures exerting substantial
influence. Certain researchers [26] observed in their investigations of Vickers hardness and
nanoindentation hardness of unalloyed titanium (Ti), nickel (Ni), tungsten (W), 304 coarse
grain stainless steel (CG-SS), and 304 nano-grain austenitic stainless steel (NG-SS) that the
relationship between Vickers hardness and nanoindentation hardness does not conform
to mathematical geometric relationships, owing to the sink-in and pile-up effects. This
intricate non-linear relationship poses significant challenges in predicting Vickers hardness.

Discerning latent relationships among parameters is an area where neural networks
excel remarkably. Neural networks have experienced substantial advances within the
domain of materials science [32–43], with notable breakthroughs in facets such as materials
genomics and predictive modeling. Such networks have been harnessed to predict proper-
ties of a diverse array of materials, encompassing but not confined to varied compositions
of steel, hence propelling the progression of material design and discovery [44–48]. Fur-
thermore, neural networks have been employed to predict mechanical performance and
behavior under disparate conditions, offering invaluable insights that aid the design and
manufacturing processes. Karimi et al. [49] developed a Graph Neural Network (GNN)
model focused on predicting the nanoscale hardness of 310S steel. Utilizing grain location
and orientation data, the model learns from nanomechanical load-displacement curves,
effectively predicting the material’s micromechanical response. The findings not only pro-
vide a rapid and cost-effective method for hardness estimation but also guide more detailed
nanoindentation experiments. Moreover, this research underscored the complementary
nature of data-driven methods to traditional laboratory measurements and physical simula-
tions, marking a significant contribution to the field of materials science. In this context, our
predictive model, duly trained on a substantial dataset of corresponding Vickers hardness
and nanoindentation hardness measurements, is projected to contribute significantly to
this continuous trend.

In this research, we introduce an innovative approach that employs deep neural
network technology to predict the Vickers hardness (HV) values of materials from nanoin-
dentation experiments. Our goal was to construct and train a robust neural network model
based on detailed HV and nanoindentation hardness measurement data. Building upon
this, we innovatively generated a dataset spanning a hardness gradient of 400 to 1000 HV
by subjecting M50NiL steel to a dual process of carburization and nitriding. This model
focuses on the prediction of Vickers hardness within this hardness gradient range, with
an emphasis on assessing its interpolation accuracy within this interval. To determine the
optimal prediction model, we compared four contemporary neural network architectures:
Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Long Short-Term
Memory network (LSTM), and Transformer. After a series of tests and evaluations, Multi-
layer Perceptron (MLP) was selected as the best model due to its exceptional performance
in predicting Vickers hardness. The advancements of this study not only enhance our
characterization and understanding of the properties of thin films and coating materials but
also provide significant technological innovation in the measurement of hardness within
the field of materials science.
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2. Methodology
2.1. Collection of Data

In the quest for securing a substantial number of hardness data points, the fabri-
cation of an ample assortment of hardness standard specimens becomes a prerequisite.
Nonetheless, the voluminous data requirement of neural networks presents an obstacle,
rendering this approach practically unattainable. In the pursuit of an adequate hardness
dataset, we designed an innovative strategy: through the dual treatment of carburizing
and nitriding applied to M50NiL steel [50–52], we successfully procured a subtle hardness
gradient extending from the surface to the core. Our choice of M50NiL steel was driven
by its widespread use as a bearing material, reflecting its industrial relevance. Further-
more, the ability of M50NiL steel to achieve a wide range of hardness levels through these
treatments allowed us to generate a broad and diverse dataset, crucial for the accurate
training of our neural network models. This strategic choice not only enhanced the breadth
and applicability of our dataset but also ensured robust and wide-ranging applicability
of our models in real-world scenarios, particularly in industries where M50NiL steel is
prevalently used.

2.1.1. Materials and Surface Treatment

The material under investigation was M50NiL steel, the constituents of which are
elucidated in Table 1. The specimens employed were annealed cylindrical entities, ex-
hibiting dimensions of Φ35 × 10 mm. The initial carburizing procedure was executed at
960 ◦C for a period of 20 h, followed by a 2-bar gas quenching process. Subsequent to this
was a high-temperature quenching protocol, with a specified quenching temperature of
1100 ◦C, an isothermal hold duration of 40 min, and a quenching pressure of 2 bar. The
carburizing process leverages a vacuum carburizing furnace (ECM, ICBP® Flex, Greno-
ble, France), while the quenching phase employs a miniature high-temperature vacuum
furnace (BMI, BMICRO, FL, USA). Plasma nitriding treatment ensued, conducted within
a glow ion nitriding furnace, an item of equipment custom-built by our research group.
Plasma nitriding was facilitated through the active screen nitriding technique, thereby
achieving a remarkably uniform nitriding layer [53–55]. A pulsed power supply (bias of
800 V, 40 kHz, adjustable duty cycle) was utilized for nitriding treatment. In the absence of
power supply activation and gas infusion, the chamber was evacuated to a pressure of 5 Pa.
The determined experimental parameters included an N2:H2 ratio of 1:20, a temperature of
500 ◦C, and a duration of 50 h. Upon the conclusion of nitriding, both the nitriding furnace
and the samples underwent a gradual cooling process to room temperature.

Table 1. Chemical composition (in wt.%) of M50NiL steel.

C Cr Mo V Ni Mn Si Fe

0.13 4.1 4.2 1.2 4.2 0.13 0.18 Bal.

2.1.2. Hardness Test

Prior to the execution of hardness testing, all specimens underwent ultrasonic cleans-
ing within an ethanol medium. Subsequent to this, surface cross-sectional hardness exami-
nations were conducted. The post-nitriding micro-Vickers hardness gradient was quantified
utilizing a Micro Vickers Hardness Tester (Buehler, VH3100, Bluff, IL, USA), operating un-
der a load of 500 g for a duration of 15 s. This process facilitated the acquisition of between
300 and 400 Vickers hardness data points at specified depths along the cross-section. All
data points used were subjected to error analysis, and data points with varying errors were
incorporated into the datasets. Nanoindentation hardness was assessed via the Continuous
Stiffness Measurement (CSM) method, enabling the detection and subsequent elimination
of anomalous data points throughout the testing process. This resulted in a final tally of
90 nanoindentation data points at predetermined depths. As illustrated in Figure 1, by
utilizing Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), we calibrated
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the locations for two types of hardness test points, thereby obtaining an accurate relation-
ship between position and hardness. Specifically, Figure 1a,b represent the OM images of
Vickers hardness and nanoindentation hardness, respectively, while Figure 1c,d are partial
images of the SEM for Vickers hardness and nanoindentation hardness, respectively. These
two datasets served as the foundation for the generation of subsequent datasets.
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Figure 1. OM and SEM images used for calibrating indenter positions in Vickers and nanoindentation
hardness tests. (a,b) are OM images for Vickers and nanoindentation tests; (c,d) are SEM images for
the same.

2.2. DNN Model

The comprehensive model workflow is depicted in Figure 2. Through the implemen-
tation of the two data sets, separate DNN models correlating depth with both Vickers
hardness and nanoindentation hardness were established. Utilizing these two models
allowed for the procurement of extended datasets corresponding to both Vickers and
nanoindentation hardness. Ultimately, a predictive model was achieved, facilitating the
determination of Vickers hardness based on nanoindentation hardness. In this study, to
ensure uniformity in experimental conditions, all deep learning models were trained on
graphics cards (NVIDIA, GeForce RTX 4080, Santa Clara, CA, USA), which possess equal
computational capabilities. Such a practice helped to eliminate the potential impact of
hardware differences on the experimental outcomes. Furthermore, the use of TensorFlow, a
widely recognized open-source framework, for building and training the models ensured
the standardization and reproducibility of the entire research process.
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2.2.1. Depth-Hardness Model

In the current study, we applied deep learning techniques to accurately construct
predictive models for nanoindentation and Vickers hardness. The model, implemented
using the TensorFlow library’s neural network architectures [56–58], was specifically opti-
mized for the complex relationship between hardness characteristics and material depth.
In an environment equipped with high-performance Graphics Processing Units (GPUs),
the model underwent a rigorous training process utilizing a specially collected dataset of
hardness tests. Our network utilized the depth of the material layers as input, with the
prediction target of corresponding hardness values.

Prior to the formal training, we conducted thorough preprocessing of the dataset,
which included data cleansing, outlier handling, and the partitioning into training, valida-
tion, and test sets. To negate the impact that may arise from different scales of measurement,
we further implemented normalization of the input features. During this process, the Stan-
dardScaler() method from the scikit-learn library was employed.

The neural network model used in our study consisted of several fully connected
layers (dense layers), including an input layer, three hidden layers, and an output layer.
The arrangement of neurons in our hidden layers, set at 32, 64, and 128 units, respectively,
followed a well-established principle in neural network architecture. This progression al-
lowed our model to incrementally capture more complex features, with each layer doubling
its neuron count to effectively handle the increasing complexity of data representation. This
design ensured a harmonious balance between computational efficiency and the ability to
intricately model the characteristics of our dataset. The sigmoid function was chosen as
the activation function to effectively address non-linear problems. For model training, the
Adam optimizer was utilized, with the mean squared error (MSE) loss function serving as
the optimization target. The mean absolute error (MAE) was also monitored to assess the
quality of training.

During the training phase, the model underwent 5000 iterations of learning, with
a large batch size of 1024 implemented to execute the batch gradient descent algorithm.
Additionally, custom callback functions were utilized to track training progress and model
performance. Following rigorous testing and validation, this depth-hardness model was
successfully saved and confirmed to have stable and superior performance characteristics.
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2.2.2. Nanoindentation-Vickers Hardness Dataset

To overcome the limitation of insufficient original hardness data, our study adopted an
innovative strategy, namely, the augmentation of the dataset using deep learning techniques
through an established depth-hardness prediction model. The two TensorFlow-based neu-
ral network models, once trained, were capable of predicting hardness values at varying
depths. Using these models, we generated 25,000 data points covering a depth range
from 100 to 1800 nanometers. These data points comprehensively reflected the quanti-
tative relationship between nanoindentation hardness and Vickers hardness, and their
integration into an expanded dataset not only enriched the training material but also ex-
tended the model’s applicability beyond the specific steel initially used. This approach
significantly enhanced the model’s generalizability and predictive accuracy for a wider
range of materials. The generated data points were integrated to form an expanded dataset,
intended to provide the neural network with ample training resources to ensure the model’s
generalizability and predictive accuracy.

In this section, further explanation is required regarding the generation of these data
points and how they contribute to enhancing the model’s generalization capability and
predictive accuracy. Initially, these data points were generated through nanoindentation
experiments on M50NiL steel subjected to carburizing and nitriding, as this process yielded
a wide range of hardness data points (400–1000 HV). This ensured that our generated data
covered a broad spectrum of practical application scenarios. Regarding the construction
of the model, although it utilized only a few hundred data points, these points were not
entirely random. They exhibited a certain continuity or conformed to a specific curve
relationship. This characteristic enabled us to generate a large number of hardness values
at various depths using the model’s derived curves from a limited amount of data. This
implied that the model learned not only the hardness values but also how these values vary
with changes in the material’s microstructure and testing conditions. Finally, by integrating
these simulated data points with the original dataset, we significantly increased the volume
and diversity of data available for model training. This aspect was crucial for enhancing
the model’s generalization capability. Generalization capability refers to the model’s ability
to adapt and predict new data that it has not previously encountered. In our case, this
meant that the model could accurately predict the hardness of various materials, even if
those materials were not included in the original dataset.

2.2.3. Nanoindentation–Vickers Hardness Model

Building on the dataset established in Section 2.2.2, our study meticulously evaluated
the performance of four different structured neural network models in the prediction of
hardness. These models included MLP, CNN, LSTM, and Transformer. Despite differences
in their architectural structures, all models were constructed and optimized following the
fundamental design principles of the depth-hardness model outlined in Section 2.2.1.

During the model evaluation process, key metrics such as training time consumption,
response speed, mean squared error (MSE), and the coefficient of determination (R2) were
given special attention, while the models’ accuracy on the test set was also examined.
By synthesizing these performance indicators, this study identified the most suitable
neural network model for predicting the relationship between nanoindentation and Vickers
hardness through comparative analysis. The selected model possessed excellent predictive
capabilities and computational efficiency, meeting the demands for precise and rapid
hardness prediction.

3. Results and Discussion

The distance-hardness datasets for nanoindentation and Vickers hardness were ob-
tained using a method of cross-validation between OM and SEM images. Figure 3a,b
display the Pearson correlation graphs for nanoindentation and Vickers hardness relative
to nitriding depth, with correlation coefficients of −0.863 and −0.911, respectively. This
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high degree of correlation for both types of hardness with respect to depth indicates that
establishing neural network models was highly appropriate for this context.
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Figure 3. Pearson correlation charts for (a) nanohardness and (b) Vickers hardness against nitrid-
ing depth. Correlation coefficients are −0.863 for nanohardness and −0.911 for Vickers hardness,
indicating a strong negative correlation with depth for both hardness measures.

By establishing DNN models, we generated depth-hardness curves and compared
actual versus predicted hardness profiles. To address the limited data available for our
neural network model, and to preserve clarity in our graphical representations, all data
points—including those from the training, validation, and test sets—were plotted collec-
tively. This approach allowed us to provide a clear, comprehensive view of the model’s
performance across the entire dataset. Figure 4 illustrates the relationship between depth
and hardness, as predicted by our neural network models, with Figure 4a,b representing the
depth-hardness and actual-predicted curves for Vickers hardness, respectively. Figure 4c,d
correspond to the depth-hardness and actual-predicted curves for nanoindentation hard-
ness, respectively. Both models were trained through 3000 and 6000 iterations, utilizing
early stopping mechanisms to prevent overfitting. It is evident from Figure 4 that the
prediction data increasingly converged with the actual data as the number of iterations
rose. After training with 3000 iterations, the nanoindentation hardness model achieved
an R2 value of 0.9945, indicating an exceptionally high correlation between the model
predictions and the actual values. The corresponding RMSE was 0.13, signifying a rela-
tively small discrepancy between predicted and actual values. For the Vickers hardness
model, an R2 value of 0.9982 was attained after 6000 iterations of training, suggesting that
the model could explain nearly all the variability. The RMSE for this model stood at 8.53,
which was also comparatively low. Overall, the performance of both models was quite
impressive, underscoring the effectiveness of employing neural networks for hardness
modeling. This approach can be harnessed for the prediction of hardness and the analysis
of material properties.
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Figure 4. Neural network model predictions for depth vs. hardness. (a) Depth-hardness curve for
Vickers hardness, (b) actual vs. predicted Vickers hardness, (c) depth-hardness curve for nanoinden-
tation hardness, (d) actual vs. predicted nanoindentation hardness. Models were trained with early
stopping to avoid overfitting, showing high correlation between predictions and actual measurements.

3.1. Validation of Nanoindentation–Vickers Hardness DNN Model

Utilizing two depth-hardness models, we generated a dataset comprising 25,000 pairs
of nanoindentation and Vickers hardness data. A neural network model was estab-
lished to analyze this dataset. Validation was conducted on four distinct neural network
architectures—MLP, CNN, LSTM, and Transformer—from which we first obtained their
training curves, as depicted in Figure 5. The experiment monitored the models’ loss curves
throughout the training process, including both training and validation losses. In all cases,
the training curves exhibited similar trends. Initially, both training and validation losses
decreased rapidly, indicating that the models were effectively learning patterns from the
training data during the initial learning phase. As the number of training epochs increased,
the training loss continued to decrease, whereas the validation loss exhibited some fluctua-
tions. These oscillations can arise when a model, particularly if it is of a high capacity, learns
inconsistent features across different data subsets, introducing volatility into the loss curves.
Despite these fluctuations, the overall trend was a decrease, signifying that the models were
improving their performance on the validation set throughout the training process. More
importantly, these oscillations did not necessarily affect the final experimental outcomes.
Experimental results typically depend on a model’s final performance, rather than on every
step of the entire training process. As long as there was a general downward trend in the
MSE on the validation set, the model was considered to be improving.
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Upon evaluation of the four fully trained models, as illustrated in Figure 6, the MLP,
CNN, LSTM, and Transformer demonstrated varying performance in predicting Vickers
hardness. The MLP model showed near-perfect prediction in both the actual vs. predicted
plots (Figure 6a) and the predicted hardness plot (Figure 6b), achieving an R2 value of
1.0000 and an RMSE of just 0.10, indicating extremely high accuracy and minimal error
in its predictions. The CNN model, with an R2 value of 0.9998 and an RMSE of 1.84, as
shown in the actual vs. predicted plots (Figure 6c), also displayed high prediction precision
in the predicted hardness plot (Figure 6d), although it was slightly less precise compared
to the MLP model. The LSTM model maintained an R2 value of 1.0000 and an RMSE of
0.11 in the actual vs. predicted plots (Figure 6e), showcasing prediction capabilities on
par with those of the MLP, and exhibited similar prediction trends to those of the MLP
and CNN in the predicted hardness plot (Figure 6f). Lastly, the Transformer model’s
performance, with an R2 value of 0.9975 and an RMSE of 6.54 in the actual vs. predicted
plots (Figure 6g), although consistent with the actual hardness trend in the predicted
hardness plot (Figure 6h), indicated a larger prediction error compared to those of the
other models.

In summary, the MLP and LSTM models exhibited the highest accuracy and lowest
error in predicting Vickers hardness, while the Transformer model performed slightly less
well on these metrics. Interestingly, the LSTM model demonstrated high accuracy and low
error in the predictions, which may be attributed to its design for handling and predicting
significant events in time-series data, as it can learn long-term dependencies. This suggests
that the Vickers hardness data may contain time-series characteristics or sequential patterns,
which the LSTM is capable of capturing, thereby enhancing its predictive performance.
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Table 2 and the corresponding radar chart (Figure 7) present a comparative perfor-
mance analysis of the four neural network models: MLP, CNN, LSTM, and Transformer.
The MLP had the shortest duration per iteration (0.25 s) and boasted the lowest mean
squared error (MSE = 0.10) coupled with a perfect coefficient of determination (R2 = 1.00),
indicating its efficiency and accuracy. Although the total training time for the MLP was
relatively long (2469.2 s) and required a high number of iterations (10,000), it demonstrated
high efficiency per iteration. In contrast, the CNN had a shorter total training time but less
accuracy (MSE = 1.84). The LSTM was comparable to the MLP in terms of accuracy but had
the longest training duration (4793.6 s). The Transformer, while faster, lacked in accuracy
(MSE = 6.54), leading to its minimal representation on the radar chart in Figure 7. This
visual anomaly was due to the scale of MSE values, where the Transformer’s significantly
higher MSE resulted in a much lower score on the radar chart. Upon comprehensive
consideration, given its outstanding iterative efficiency and accuracy, the MLP was the
most suitable model under the conditions of this study.

Previous studies posited that the relationship between nanoindentation hardness and
Vickers hardness is generally linear [59–61]. Observations from Figure 6 also suggest an
approximately linear relationship. This correlation may persist regardless of its linearity
due to material characteristics, testing errors, and inherent coupling effects. The capacity
to refine accuracy by incorporating more data is precisely where the strength of neural
networks lies. This adaptability to enhance precision with additional data input demon-
strates the neural networks’ robustness in modeling complex relationships, even when they
deviate from linearity.

Table 2. Performance comparison of four different machine learning models—MLP, CNN, LSTM,
and Transformer—in terms of training time, number of epochs, time per epoch, coefficient of deter-
mination (R2), and mean squared error (MSE) for predicting Vickers hardness within the range of
400–1000 HV.

Time (s) Epoch Time/Epoch(s) MSE R2

MLP 2469.2 10,000 0.25 0.10 1.0000
CNN 1291.8 5000 0.26 1.84 0.9998
LSTM 4793.6 7500 0.64 0.11 1.0000

Transformer 1790.5 3000 0.60 6.54 0.9975
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3.2. Experimental Verification of DNN Models

The model developed in this study was validated on an established dataset to en-
sure its predictive accuracy within a specific parameter range. To further investigate the
robustness of our model in predicting the hardness of M50NiL steel materials, our team
implemented a series of laboratory-level validation measures. Moreover, to comprehen-
sively evaluate the model’s generalization capabilities, we compared the performance of
different steel grades under identical testing conditions. Tables 3 and 4 document the data
for these materials from Vickers hardness tests. Due to space constraints, not all test data
could be listed in the tables. Within the hardness range designed for the model, namely
400–1000 HV, the model demonstrated a relatively precise predictive capability, with an
error rate below 4%. However, beyond the dataset’s hardness range, particularly in regions
above 1000 HV, the model’s prediction accuracy significantly decreased, revealing limi-
tations when extrapolating to uncovered data. We believe that by further expanding the
dataset to encompass a broader range of hardness, this issue might be effectively addressed.

Table 3. Predicted, actual, and error values for the Vickers hardness within the range of 400–1000 HV.

M50NiL M50NiL Carburizing M50NiL Carburized and Nitriding M50 M50 Nitriding Others

Predicted 453.6 517.4 651.8 660.2 713.0 819.3 924.5 965.6 750.5 842.8 924.8 /
Actual 460 515 645 670 730 830 940 1000 740 860 935 /
Errors 1.40% 0.46% 1.05% 1.47% 2.33% 1.33% 1.70% 3.50% 1.41% 2.01% 1.10% 1.80%

Table 4. Predicted, actual. and error values for Vickers hardness outside the range of 400–1000 HV.

M50 Nitriding Compound Layer M50 Nitriding Diffusion Layer Others

Predicted 965 965 965 965 965 965 / / /
Actual 1350 1340 1290 1100 1110 1090 / / /
Errors 28.52% 27.99% 25.19% 12.27% 13.06% 11.47% 30.29% 27.38% 41.56%
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4. Conclusions

In summary, our research on the prediction of hardness in M50NiL steel using deep
neural network models led to several key findings:

• Model Performance Comparison: The MLP and LSTM models demonstrated superior
performance in terms of accuracy and error metrics, with the MLP showing particularly
commendable iteration efficiency and precision in prediction. While the CNN model
benefited from shorter training times, its accuracy was comparatively lower. The
Transformer model was notably deficient in accuracy.

• Applicability Across Steel Varieties: The developed predictive models proved effective
not only for M50NiL steel but also for other types of steel, indicating a broad adapt-
ability. This suggests that the neural network models we developed hold the potential
for widespread application in the field of materials science.

• Advancement in Measurement Techniques: This study supports the adoption of
nanoindentation as a direct measurement method for HV hardness, particularly apt
for thin films and areas with significant gradient variation. This method offers a
more precise and convenient approach to determining hardness in materials with
complex microstructures.

The demonstrated efficacy of MLP and LSTM models for predicting the hardness of
various steels paves the way for the development of more sophisticated, real-time predictive
algorithms in materials science. The potential expansion of these models to a wider range
of materials, coupled with the precision offered by nanoindentation techniques, heralds
a future of enhanced material design and smarter manufacturing processes tailored to
specific performance criteria.

All the DNN models and codes mentioned in this study have been uploaded to the
Supplementary Material section for the convenience of readers who wish to delve deeper
into and utilize these technologies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17010148/s1.
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