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Abstract: This study critically reviews lithium slag (LS) as a supplementary cementitious material
(SCM), thereby examining its physiochemical characteristics, mechanical properties, and durability
within cementitious and geopolymer composites. The review reveals that LS’s particle size distribu-
tion is comparable to fly ash (FA) and ground granulated blast furnace slag (GGBS), which suggests it
can enhance densification and nucleation in concrete. The mechanical treatment of LS promotes early
hydration by increasing the solubility of aluminum, lithium, and silicon. LS’s compositional similarity
to FA endows it with low-calcium, high-reactivity properties that are suitable for cementitious and
geopolymeric applications. Increasing the LS content reduces setting times and flowability while
initially enhancing mechanical properties, albeit with diminishing returns beyond a 30% threshold.
LS significantly improves chloride ion resistance and impacts drying shrinkage variably. This study
categorizes LS’s role in concrete as a filler, pozzolan, and nucleation agent, thereby contributing to the
material’s overall reduced porosity and increased durability. Economically, LS’s cost is substantially
lower than FA’s; meanwhile, its environmental footprint is comparable to GGBS, thereby making it a
sustainable and cost-effective alternative. Notwithstanding, there is a necessity for further research on
LS’s fine-tuning through grinding, its tensile properties, its performance under environmental duress,
and its pozzolanic reactivity to maximize its utility in concrete technologies. This study comprehen-
sively discusses the current strengths and weaknesses of LS in the field of building materials, thereby
offering fresh perspectives and methodologies to enhance its performance, improve its application
efficiency, and broaden its scope. These efforts are driving the sustainable and green development of
LS in waste utilization and advanced concrete technology.

Keywords: lithium slag; cement; concrete; composite; durability; strength; hydration; carbon
footprint; review

1. Introduction

Lithium, known for its exceptional electrochemical properties, is extensively used
across various industries, including pharmaceuticals [1], lubrication [2], glass [3], and
ceramics [4]. The late 1990s marked a significant surge in lithium demand due to its
crucial role in portable electronic battery production [5]. These batteries have become
indispensable for modern life, thereby providing clean energy for smart devices and
vehicles [6]. Spodumene, the primary raw material for lithium batteries, is mainly found
in limited deposits globally, with Australia ranking second in lithium reserves after Chile,
thereby notably dominating the global battery market.

During the production of lithium carbonate from spodumene, chemical treatment
yields lithium slag (LS) and metal oxides [7,8]. Approximately 9–10 tons of LS are generated
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per ton of lithium carbonate produced, thus posing disposal challenges [9,10]. In 2022,
Australia contributed 68,500 tons to global lithium production, and demand has been
projected to increase from 114,400 tons in 2022 to 248,400 tons in 2026 [11]. Improper
disposal of LS could harm the environment due to the leaching of fluorine (F−) and
sulphate (SO4

2−) ions, thereby requiring careful management [12].
LS, which is rich in silicon, aluminum, and calcium oxides, has garnered interest as a

substitute for ordinary Portland cement (OPC) in concrete production, thereby offering a
reduced carbon footprint and costs [13,14]. However, its sulfuric acid extraction origins
with elevated SO3 levels necessitate caution in its use to maintain cement stability [15–18].
Adopting a prudent approach is vital to leverage LS sustainability without compromising
the cement matrix.

Considerable research efforts have been dedicated to the utilization of LS in cemen-
titious composites, particularly in China and Australia. Recent investigations conducted
by [19–21] have collectively affirmed LS’s potential as a supplementary cementitious mate-
rial and as a partial precursor for the formulation of alkali-activated geopolymers. This is
underpinned by the pozzolanic activity exhibited by LS, as well as its capacity to enhance
the pore structure of cementitious materials. As shown in Table 1, numerous studies have
incorporated LS into binary, ternary, and even quaternary systems in conjunction with other
cementitious materials to fabricate mortars, concrete, and geopolymers. Furthermore, the
application of LS has been explored in alkali-activated geopolymers [5,16,22–24], backfill
materials [25,26], ceramsite production [27], and brick manufacturing [28]. These diverse
applications underscore the versatility and potential of LS as a valuable resource in various
construction and material science endeavors.

Table 1. The raw material system of LS-based cementitious composites.

System Specific Combination References

Binary LS-C [29–31]

Ternary

LS-FA-C [25,32]
LS-SF-C [33]

LS-TIPA-C [34]
LS-LP-C [35,36]

Quaternary

LS-GGBS-FA-C [32]
LS-LP-SF-C [37]
LS-PS-SS-C [38]

LS-PCE-TEA-C [39]
C: cement; FA: fly ash; SF: silica fume; TIPA: triisopropanolamine; LP: limestone powder; SS: steel slag;
GGBS: ground granulated blast slag; PS: phosphate slag; PCE: polycarboxylate; TEA: triethanolamine.

To gain insight into the potential applications of LS and to enhance its utilization
efficiency, it is imperative to comprehensively understand the physicochemical properties
inherent to LS itself. Presently, numerous studies have embarked on an exploration of
the physicochemical properties of LS. Research has demonstrated that particle size, chem-
ical composition, and amorphous content (silica and alumina) are key determinants of
the pozzolanic activity exhibited by noncrystalline materials [40]. Therefore, investiga-
tions into the physical characteristics of LS encompass parameters such as the specific
surface area (SSA) [14,41], specific gravity [33], density [42,43], moisture content [41],
and particle size distribution [22,44]. In parallel, conventional analytical methods have
been employed to scrutinize the chemical composition of LS, including X-ray diffrac-
tion (XRD) [23,44] and scanning electron microscopy with energy-dispersive spectroscopy
(SEM/SEM-EDS) [44–46], as well as specialized techniques such as Fourier transform
infrared spectroscopy (FTIR) [31,45], nuclear magnetic resonance (NMR) [30,47], X-ray
photoelectron spectroscopy (XPS) [30], and thermogravimetry (TG)/thermogravimetric
and derivative thermogravimetric analysis (TG-DTG) [19,43,48].

Due to its analogous physicochemical properties to SCMs, LS has been widely adopted
as a cementitious material additive in mortar and concrete. Extensive research has been con-
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ducted on the performance of cementitious composite materials incorporating LS, including
aspects such as setting times [29,34], flowability [49], and rheology [16,50]. Furthermore,
the mechanical properties of cementitious materials with LS incorporation have been thor-
oughly investigated, thus encompassing parameters like compressive strength [50,51],
tensile strength [52,53], elastic modulus [54], and flexural strength [49]. Moreover, the dura-
bility of LS-based cementitious composites has received significant attention, including
studies on chloride migration [55,56], sulfate attack [57,58], shrinkage [56,59], freeze–thaw
resistance [57], acid corrosion [60], and creep [50]. Furthermore, the utilization of LS in
the construction materials industry not only mitigates environmental pollution but also
significantly enhances economic benefits. Therefore, the economic and environmental
benefits of incorporating LS into cementitious composites have been assessed, thereby
encompassing cost analysis, carbon emissions, and energy consumption [5,61].

This review provides a comprehensive analysis of the physiochemical, mechanical,
durability, and microstructural properties of LS-based cementitious composites. Addition-
ally, it incorporates an in-depth examination of the economic and environmental impli-
cations associated with LS utilisation in cementitious composites. Based on the findings,
this research offers valuable recommendations for the sustainable incorporation of LS in
concrete, and it identifies key areas requiring future research endeavors.

2. Physiochemical and Microscopic Analysis of LS

In this section, a review of the physiochemical and microstructural properties of
LS is conducted. Understanding LS’s physical, chemical, and microscopic properties is
paramount to harness its potential applications. Firstly, the physical properties of LS,
thereby encompassing aspects such as particle size distribution (PSD), density, specific
surface area (SSA), and moisture content, have been scrutinized. In terms of the chemical
properties, XRD and X-ray fluorescence (XRF) have been utilized to uncover its elemental
composition and structure. Microscopic analysis, facilitated by SEM, TG, XPS, and NMR
spectroscopy, has offered insights into the molecular-level characteristics of LS. This ground-
work research is essential for a comprehensive exploration of LS’s potential applications
across various domains.

2.1. Physical Properties of Raw LS
2.1.1. Particle Size Distribution

PSD is a crucial physical parameter used to assess the activity index of LS. PSD is
typically characterized by its 10% (D10), 50% (D50), and 90% (D90) percentiles, representing
the respective sizes finer than the nominated percentile. Variations in LS particle sizes
are evident across different studies, as are shown in Table 2. For instance, the D10 of
LS has been observed to range from 0.84 to 2.74 µm, with an average value of 2.01 µm.
Similarly, the D50 (mean particle size) exhibited a range of 4.53–30.39 µm and an average
value of 17.04 µm. Furthermore, the D90 was reported in the range of 28.00–83.65 µm,
with an average size of 58.86 µm. These variations primarily depend on the source of the
LS, roasting temperature, and the grinding methods and procedures [62]. Unfortunately,
there is limited literature on systematic studies of the grinding methods and grinding
parameters that can enhance the reactivity of LS. In response to the inherent characteristics
of raw LS particles, which are characterized by their large size and low amorphous content,
limited research endeavors have undertaken the examination of the grinding processes,
both dry [14] and wet [29,30], to reduce particle size and enhance amorphousness. Wet
grinding, in particular, has been effective in producing finely ground LS particles that
facilitate ion dissolution. The incorporation of wet-ground LS has shown promise in
improving the early strength of sulfoaluminate cement (SAC) [29]. Moreover, wet grinding
for 30 min has demonstrated remarkable grinding efficiency, thus reducing the D(50) of LS
from 30.38 µm to 3.04 µm. This process significantly enhanced the dissolution of aluminum,
lithium, and silicon in LS, thereby contributing to the expedited early hydration of the
SAC-LS system [29]. This improvement primarily stems from the nucleation-inducing effect
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on hydration, the refinement of pore structure, and the heightened pozzolanic reactivity
of micro-LS [30].

Table 2. Particle size distribution of LS in different studies.

Reference D10 (µm) D50 (µm) D90 (µm)

[38] 1.56 13.00 81.00
[45] 2.90 7.10 42.80
[39] - 11.80 -
[61] - 30.39 -
[37] 0.84 6.24 28.00
[63] 2.74 25.26 83.65
[43] - 4.53 -
[19] - 38.00 -

Average 2.01 17.04 58.86

To investigate the differences in particle size between LS and other commonly used
SCMs, the average values of the D10, D50, and D90 from Table 2 were compared with those
of conventional cement and SCMs. The particle size distributions of various cementitious
materials are depicted in Figure 1 based on different literature sources. It is evident that the
PSD of LS is comparable to that of FA and GGBS. This size similarity suggests that LS can
exhibit similar densification and nucleation effects when incorporated into concrete that
are akin to FA and other SCMs [64,65].
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Figure 1. Particle sizes of different cementitious materials (C [62], LP [66], GGBS [46], SS [67], SF [68],
FA [69]).

2.1.2. Density, Specific Surface Area, and Moisture Content

In addition to analyzing the PSD of LS, various physical properties, including density,
SSA, and moisture content, have also been examined. The SSA of LS, as reported by different
researchers [14,38,42], exhibited a range from 265 to 1362 m2/kg, with an average value of
698 m2/kg, which is attributed to the porous surface texture of LS [70]. It is generally finer
than the SSA of cement (350 m2/kg), fly ash (350 m2/kg), and GGBFS (400 m2/kg) [71–73].
The density of LS was found to fall within the range of 2480–2500 kg/m3 [43,57]. The
moisture content in LS varied from 2.5% to 28.3%, with an average value of 17.5% based
on different studies [45,70]. These physical properties of LS are closely linked to the
preparation methods and grinding parameters of LS. To achieve good quality control and
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high use efficiency of LS, further research into the manufacturing methods and production
parameters of LS is essential.

2.2. Chemical Properties of LS
2.2.1. Chemical Composition

The chemical composition analysis of LS serves to provide fundamental data for
assessing its potential as a cementitious material. Numerous studies have investigated
the chemical composition of LS through XRF testing, as are depicted in Table 3. The
analysis reveals that the primary chemical components of LS are SiO2, Al2O3, and CaO.
SiO2 and Al2O3 are predominantly present in the form of H2O·Al2O3·4SiO2 (aluminum
silicate), while CaO primarily exists as CaSO4 (anhydrous gypsum) [74]. Furthermore, LS
exhibits a notable sulfur trioxide (SO3) content, thereby typically existing in the form of
CaSO4·2H2O, which, upon reaction with calcium hydroxide, can lead to expansion. This
limitation prevents the substantial inclusion of LS as a mineral admixture [75]. Interestingly,
in numerous pieces of literature, the chemical composition does not mention the content of
Li2O. This is primarily because the Li2O content in LS is generally less than 1%, and Li2O is
not considered to be a significant influencing factor on the performance of LS [39].

Table 3. Chemical compositions of LS (wt%).

Reference SiO2 Al2O3 Fe2O3 SO3 CaO MgO K2O Na2O LOI

[34] 52.21 20.60 0.84 9.18 4.63 0.16 0.26 0.33 11.39
[42] 40.33 34.51 2.25 - 18.47 0.05 - - -
[22] 54.53 21.08 1.45 5.62 7.54 0.58 0.89 0.72 6.76
[27] 48.97 21.32 1.07 16.2 8.26 0.19 3.37
[38] 54.55 25.38 1.41 10.14 6.44 0.60 0.70 0.10 -
[45] 55.94 24.83 0.82 10.02 5.89 0.30 0.22 - -
[24] 51.7 25.2 0.6 0.05 2.5 0.3 3.7 - 0.2
[19] 54.6 21.1 1.5 5.6 7.5 1.3 0.4 0.3 -
[37] 54.86 22.39 1.27 6.05 13.72 0.32 0.60 9.60
[63] 53.92 21.13 1.55 11.19 11.11 0.40 0.24 0.14 0.32

Moreover, the ratios of SiO2 + Al2O3 and CaO, as well as the Ca/(Si + Al) value, reflect
its potential as an SCM and reveal differences in the pozzolanic reactivity and hydration
activity. By analyzing the data presented in Table 3, the ranges of the SiO2 + Al2O3, CaO,
and Ca/(Si + Al) of LS in comparison with C, FA, GGBS, SS, and SF were determined, as
are shown in Figure 2 [76–79]. From this comprehensive analysis, it is evident that the
composition of SiO2 + Al2O3, CaO, and Ca/(Si + Al) in the relevant literature exhibits
considerable variations, thereby falling within the specified ranges of 17.7–97.6%, 2.2–62.9%,
and 0.02–1.94%, respectively. These disparities manifest significant distinctions in the
performance characteristics of cementitious materials. Specifically, when focusing on LS,
the parameters SiO2 + Al2O3, CaO, and Ca/(Si + Al) fall within the narrower ranges of
70.3–80.7%, 2.5–18.5%, and 0.04–0.14%, respectively. It is apparent that, in comparison to C,
where the Ca/(Si + Al) value typically resides around 1.4, a Ca/(Si + Al) value significantly
below one in LS signifies the potential presence of pozzolanic reactivity in the LS, rather
than predominantly indicating hydration reactivity [80]. In addition, upon comparing the
chemical compositions of LS with those of commonly used cementitious materials, as are
demonstrated in Figure 2, it becomes evident that LS shares compositional similarities
with FA, which are characterized by high SiO2 and Al2O3 contents while exhibiting a low
CaO content and Ca/(Si + Al) values. This resemblance categorizes LS as a low-calcium
precursor with pozzolanic reactivity akin to that of FA [81].
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2.2.2. XRD Results

XRD analysis provides a quantitative assessment of the mineral composition of LS.
According to references [34,39,45], the primary mineral phases in LS have been identified
through XRD patterns, as are illustrated in Figure 3. These phases mainly include gypsum,
quartz, and lithium aluminum silicate.
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Quantitative analysis conducted by Rahman et al. [19] revealed the relative composi-
tions of the crystalline mineral phases in LS. The analysis indicated that LS comprises 2.1%
β-spodumene (LiAlSi2O6), 6.6% bassanite (CaSO4·0.5H2O), 5.4% calcium magnesium car-
bonate (Ca0.845Mg0.155(CO3)), 23.8% quartz (SiO2), 28.2% anorthite (CaAl2Si2O8), 2.3%
albite (NaAlSi3O8), and 31.6% amorphous phase. Furthermore, the research conducted by
Zhai et al. [45] demonstrated that LS predominantly contains aluminosilicates in the form of
spodumene, anorthite, and albite. Traces of aluminosilicates were also found in orthoclase
(KAlSi3O8), while silica was predominantly present as quartz (SiO2). Additionally, the
calcium content was primarily associated with calcite (CaCO3), with traces detected in
anhydrite, actinolite (Ca2Si8O22(OH)2), and dolomite (CaMg(CO3)2). Karrech et al. [82]
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observed the presence of several minerals including quartz, bassanite/gypsum, and or-
thoclase (K-feldspar). The rest was leached pyroxene that is believed to contain amesite
and pyrophyllite. The particularity of those minerals is that they contain chemically bound
water and hydroxyl groups in their structures, which can be lost upon igniting the material
to 1000 ◦C.

2.3. Microscopic Analysis of LS
2.3.1. SEM-EDS Analysis

Javed et al. [23] employed SEM-EDS to explore the phase and morphological change
between raw LS and calcined LS. LS comprises angular particles that are rich in aluminosil-
icate minerals, while the prismatic/elongated particles consist of gypsum, as is evidenced
by the SEM/EDS analysis depicted in Figure 4a. The EDS points B and C on the micrograph
exhibited peaks corresponding to aluminum, silicon, and oxygen EDS spectra, thereby
confirming the presence of aluminosilicate particles. Conversely, EDS analysis of the
prismatic particles shown in Figure 4b displayed peaks of calcium, sulfur, and oxygen,
thus indicating the presence of gypsum. This observation supports the notion of sulfation
occurring during lithium extraction in refineries [83]. These prismatic particles possess
a size exceeding 50 µm. Through the calcination of LS, the aluminosilicate components
undergo a transformation into agglomerated amorphous (glassy) phases due to sintering.
Particle fragmentation is a consequence of the lithium refining process being applied to
spodumene ore, which induces a certain level of reactivity within LS. Notably, the crys-
talline phase transformation within LS initiates from temperatures exceeding 800 ◦C [84].
Thus, a calcination temperature of 700 ◦C is considered to be suitable for the production
of amorphous aluminosilicates [23]. Moreover, an approach combining thermal treatment
with chemical activation was employed in the study of Li et al. [31] to enhance the reactivity
of LS. The outcomes demonstrated that preheating effectively promoted the reactivity of
the LS, thereby leading to a significant increase in the proportion of active amorphous
components in the LS, which surged from 17.3 wt% to 50.7 wt% following heat activation at
700 ◦C. Karrech et al. [82] observed DβS, gypsum needles measuring about 20 µm in length,
larger aluminosilicate particles, and other minerals, thereby suggesting an aluminosilicate
grain with parallel cracks in it; such parallel cracks form during β-spodumene leaching
due to Li-H exchanges.

2.3.2. TG-DTG Analysis

TG-DTG testing provides valuable insights into the thermal behavior of LS. It allows
researchers to understand how LS reacts to changes in temperature, thus helping to iden-
tify important thermal transitions and decomposition processes. TG-DTG curves for LS
compared with cement were obtained by Rahman et al. [19], as are depicted in Figure 5.

The observed mass loss in the TG-DTG curves of the LS, occurring between room
temperature and 170 ◦C, primarily resulted from the removal of moisture and bassanite
water [85]. It is evident that the moisture content of LS was notably higher in comparison
to conventional cement. Subsequent mass losses in the temperature range of 400–750 ◦C
can be attributed to the dehydroxylation of the zeolite phases [86] and the decomposition
of carbonates [65]. These processes contribute to the reduction in the crystallinity of poz-
zolans. During this stage, there is a substantial decrease in the mass of LS, thus indicating
a continuous augmentation of the amorphous phases within LS, which can significantly
enhance its pozzolanic reactivity [87]. This research corroborates the previous conclusion
that the most optimal temperature for enhancing the reactivity of LS is approximately
around 700 ◦C [23,31]. It is noteworthy that the higher moisture content in LS compared to
cement, coupled with the more pronounced amorphous reactions, resulted in a total mass
loss of the LS reaching 8.4% at 990 ◦C. Importantly, the LS retained the 31.6% proportion of
amorphous phases confirmed by XRD analysis, which was primarily composed of alumi-
nosilicate glassy phases. The comprehensive analysis of the combined results from XRD
and TG-DTG tests suggests that these amorphous phases have the potential to participate in
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pozzolanic reactions during the hydration of cement particles. Consequently, it is valuable
to assess the pozzolanic activity of LS through various pozzolanic activity tests.
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2.3.3. NMR and XPS Analysis

NMR patterns provide insights into the chemical environment surrounding silicon-
oxygen tetrahedra, while XPS analysis yields binding energies that also reflect the chemical
environment of the atoms. Therefore, Tan et al. [30] employed microscopic techniques such
as XPS and NMR to investigate the chemical composition changes in LS as it transformed
into micro-LS through wet grinding.

The NMR results revealed a noticeable change: the peak ranging from −110 ppm
to −90 ppm, indicative of the Si-O tetrahedron, was prominent in LS but significantly
diminished in micro-LS. This phenomenon was attributed to the mechanical forces applied
during wet grinding or the self-hydration reactions of silicates, thereby altering the chemical
environment of the Si-O tetrahedron. On the other hand, XPS results showed that wet
grinding reduced the binding energy for silicon from 101.30 eV in the LS to 100.93 eV,
as well as for aluminum and calcium, which shifted from 73.19 eV to 72.9 eV and from
346.81 eV to 346.48 eV, respectively. The decrease in binding energy suggests that during
the wet grinding process, the silicates, aluminates, and calcium in LS could dissolve into a
liquid phase, thus improving its pozzolanic activity.

3. Fresh State Properties of Cementitious Composites with LS Incorporation

This section reviews the reported literature on critical aspects of the fresh state proper-
ties of cementitious composites incorporating LS. This includes the setting time, flowability,
and rheology. These factors are pivotal in determining the practical utility of LS in various
applications. Setting time influences the temporal aspects of LS handling, flowability affects
its ease of transport and placement, and rheology defines its flow behavior and viscosity.
Understanding and optimizing these parameters are essential for harnessing the full po-
tential of LS in the construction materials field, particularly as a potential supplementary
cementitious material.

3.1. Setting Time

This section compiles data from various references on the changes in initial and final
setting times with increasing LS content, as are depicted in Figure 6. The setting time
ratio is defined as the ratio of the setting time of the cementitious composite with added
LS to the setting time of the corresponding sample without LS (control group), with the
subsequent parameter ratios described later on in this paper (including flowability, strength
characteristics, chloride resistance, and shrinkage) being defined in the same manner. It is
evident that the majority of cementitious composites incorporating LS exhibited a setting
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time ratio of less than one, thereby indicating that the addition of LS reduces the setting
time of cementitious composites. Furthermore, for most of the literature reviewed, an
increase in LS content further decreased the setting time. Moreover, the similarity between
the initial setting time ratio and the final setting time ratio indicates an analogous trend
between the initial and final setting times.
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Figure 6. The setting time ratios of cementitious composites with varying levels of LS substitu-
tion [16,23,37,39,41,63,88].

This section provides a detailed analysis of these specific trends. Zhang et al. [37]
observed that as the proportion of LS replacing LP increased, both the initial and final
setting times of the paste decreased. In LS-UHPC (ultra-high-performance concrete), the
increased formation of ettringite (AFt) with higher LS ratios contributed to reduced setting
times by facilitating the solid network’s overlap reduction [89]. Javed et al. [23] investigated
the setting times of geopolymer pastes containing LS and increasing amounts of FA. Their
findings indicated an increase in both the initial and final setting times with higher FA
replacement. The abrupt setting observed in the LS geopolymer was attributed to false
setting due to the presence of over 5% gypsum/anhydrite in the LS. This phenomenon
was linked to the precipitation of interlocked needle-shaped gypsum (anhydrite), which
contributed to self-desiccation in the geopolymer paste matrix due to reduced water content
in the aluminosilicate gel [90]. In addition, Javed et al. [23] studied the setting time of an
LS-SF geopolymer paste at various Si/Al ratios. They observed that the initial setting time
increased by over 20% at a Si/Al ratio of 3.5, thereby indicating the significant suppression
of secondary anhydrite formation. In the LS-SF geopolymer, the setting accelerated at a
Si/Al ratio of 3.5 and decelerated with higher Si/Al ratios, thereby demonstrating the
influence of silica fume on the setting time. Moreover, Zhou et al. [63] concluded that as
LS content increased from 0% to 20%, the initial and final setting times of fresh mortar
decreased by 16.7% and 12.1%, respectively. A previous study also supported that LS
addition can expedite the setting time by accelerating ettringite formation, which is a major
hydration product of cement [16]. However, Haigh et al. [41] conducted experiments using
concretes with a strength grade of 40 MPa and 25% LS as an SCM and found that the initial
and final setting times were 580 and 690 min, respectively, which exceeded those of the
control specimens.

Furthermore, various researchers have conducted in-depth investigations into the
influence of LS on the setting time in special cementitious systems. Guo et al. [16] conducted
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a study in which ternary alkali-activated materials (AAMs) were synthesized using a
combination of LS, metakaolin (MK), and GGBS. They explored the impact of LS replacing
MK on the setting time. As the LS content increased, there was a significant reduction in
the setting time. This phenomenon was attributed to the LS requiring less time for the
dissolution of (Si, Al)O4 tetrahedra and Ca2+ ions in the same alkali activator, thereby
creating more favorable conditions for polymerization and resulting in a shortened setting
time. These findings were supported by Tan et al. [88] in the context of the SAC system,
where the setting process relied on calcium sulfoaluminate hydration and AFt formation.
Nano-LS prepared via wet grinding was found to markedly enhance the early hydration
process and AFt formation. The presence of dissolved lithium salt in LS expedited the
formation of the AFt due to SAC usage, thus often eliminating the induction period [91].
Additionally, He et al. [39] demonstrated the synergistic impact of C-S-H-PCE and TEA
on the setting behavior of LS-blended cement. The combined use of C-S-H-PCE and TEA
altered the setting of LS–cement binders, with a strong correlation observed between the
dosage of C-S-H-PCE and TEA and the setting behavior.

3.2. Flowability

The flowability of fresh paste is primarily characterized through slump tests and flow
table tests. Figure 7 summarizes the flowability ratios of cementitious composites with
varying proportions of LS based on different literature sources. It is evident from most of
the literature that flowability decreases with an increase in LS content. Specific details of
these changes are as follows.
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Figure 7. The flowability ratios of cementitious composites with varying proportions of
LS [24,37,49,52,53,63,92].

Zhang et al. [37] noted that the addition of LS reduced the flowability of UHPC due
to its irregular shape and strong water absorption. Additionally, LS led to increased AFt
formation in the initial stages of hydration, which has been attributed to its high sulfate
and aluminate content [45]. Zhou et al. [63] also observed that the flowability decreased
as the LS content increased: 85 mm at 5%, 80 mm at 10%, and 72 mm at 20%. This decline
in flowability has been attributed to LS’s high surface roughness, large specific surface
area, and irregular particle shape [93]. Moreover, Luo et al. [24] investigated the effect
of activators on the flowability of LS-based geopolymer binders. The NaOH + Na2SiO3
binder had the highest flowability at 192 mm, while the NaOH + CaCO3 binder had the
lowest at 188 mm, though the differences were relatively minor due to the low activator
content. Li et al. [49] found that the flowability of white reactive powder concrete decreased
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with increasing LS content, thereby ranging from 0% to 11% as an SCM. The flow values
decreased from 260 to 170 mm, which was attributed to the high specific surface area of
the primary cubicite crystalline phase in the LS, thereby increasing the water demand in
the slurry. Furthermore, Wu et al. [92] utilized LS and FA as SCMs for high-performance
concrete, where the slump decreased as the LS content increased. With an LS cement
substitution rate ranging from 0% to 30%, the slump decreased from 186 mm to 175 mm,
respectively. These findings align with previous research [53,82].

However, some studies have shown different patterns. Wu et al. [52] conducted
research on concrete slumps using water-to-binder ratios ranging from 0.27 to 0.35 and a
ternary combination of 25–65% OPC, 15–35% LS, and 20–40% SS content. The sand ratio
and superplasticizer dosage were adjusted to maintain the concrete mixture’s slump within
the range of 190 ± 20 mm. Due to the numerous variables involved, the slump values did
not exhibit a certain trend with the LS contents. Furthermore, He et al. [36] studied concrete
with LS contents ranging from 40% to 60% and reported a reduction in workability as the
LS content increased. To achieve satisfactory flowability, this study increased the dosage of
the superplasticizer, thus keeping the slump value within the range of 180 to 200 mm [94].
In addition, Shi et al. [53] reported that the slump values of high-performance LS concrete
initially increased and then decreased with increasing LS substitution for cement. For
a 20% LS substitution rate, the slump reached a maximum of 196 mm but then sharply
decreased to 165 mm with a 45% LS dosage. Lastly, Gu et al. [95] observed that the addition
of SS increased the flowability of blended mortar, while the addition of LS reduced the
flowability. Overall, the flowability of fresh mortar gradually decreased with an increasing
LS/SS ratio.

3.3. Rheology

Rheology, which is a branch of science focused on the deformation and flow of mat-
ter, explores the relationships between the stress, strain, and shear rate. In the context
of cementitious materials, the rheological behavior of fresh mixtures plays a significant
role in determining their optimal mixing, casting, and stacking properties. This is espe-
cially crucial in specialized construction techniques like 3D printing and self-compacting
concrete [96–98].

He et al. [39] noted that an increased dosage of synthetic calcium silicate hydrates–
polycarboxylate (CSH-PCE) led to a notable enhancement in the rheological properties of
fresh LS–cement paste. This enhancement was evident in decreased viscosity and yield
stress. It resulted from the physically combined PCE in C-S-H-PCE, which could dissolve in
the solution and then adsorb onto minerals, thereby improving the flowability of the fresh
paste. However, the addition of TEA had a negative impact on the rheological properties
of the LS–cement paste. The incorporation of 1% C-S-H-PCE into the LS–cement binder,
along with increasing the TEA content (from 0% to 0.5%), progressively increased the
yield stress and viscosity values of the fresh binder. Furthermore, the influence of Na2SO4
on the rheological performance of LS binders was explored by He et al. [99]. The results
indicated that Na2SO4 adversely affected the viscosity properties of LS–cement binders.
An increased Na2SO4 dosage resulted in heightened viscosity properties and reduced flow
behaviors of LS–cement binders. This effect was attributed to the accelerating impact
of Na2SO4 on the hydration process, thereby leading to increased hydrate content and
expedited development of the hardened microstructure. Additionally, the rheological
characteristics were well fitted using the Herschel–Bulkley model, while the Bingham
model accurately described all of the system [100]. Rahman et al. [70] employed various
rheological models, including the Bingham, modified Bingham, and Herschel–Bulkley
models, to characterize the yield stress and plastic viscosity values of LS cement pastes
across different volume fractions. Their study suggested that a 40% LS cement paste is
a viable option for producing green concrete with optimal fresh state and rheological
properties. Tian et al. [101] investigated the impacts of low surface free energy mineral
admixtures, such as CaF2-dominated fluorite and LS, on the rheological behavior of alkali-
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activated slag (AAS) pastes. As the LS content increased from 0 to 30 wt%, both the
yield stress and plastic viscosity decreased by 60.1% and 24.4%, respectively. Additionally,
the attraction between particles, which encompasses electrostatic, van der Waals, and
Lewis acid–base forces, decreased with a higher LS content. This suggests that the particle
dispersion in AAS pastes improved as the LS content increased. However, there is currently
limited research on the rheological properties of cementitious composites using LS. The
impact of incorporating LS into concrete systems on the rheological performance of concrete
warrants further investigation.

4. Mechanical Properties of Cementitious Composites with LS Incorporation

This section investigates results of the reported literature on the mechanical properties
of LS-incorporated cementitious composites. It focuses on key parameters: the compressive
strength, flexural strength, splitting tensile strength, and elastic modulus. Understanding
how LS impacts these properties is essential for assessing the suitability of these composites
in various construction applications. This section explores the relationship between LS
content and these mechanical characteristics, thereby shedding light on the potential use of
LS as a sustainable SCM to improve the performance of cementitious materials.

4.1. Compressive Strength

Figure 8 summarizes the findings from numerous studies investigating the compres-
sive strength ratios under different age and LS substitution conditions. A recurring pattern
in most of the literature indicates that as the LS content increases, the compressive strength
ratio initially rises before gradually declining, thereby implying an optimal LS content. He
et al. [33] observed that an LS content exceeding 20% had an adverse effect on the com-
pressive strength of concrete, while Luo et al. [102] noted that the geopolymer compressive
strength significantly improved with LS-based geopolymer contents below 70%. Further-
more, as the curing period increases, there is a growing trend in compressive strength ratios.
This phenomenon can be attributed to the late-stage pozzolanic activity of LS, as has been
discussed in Section 2.2.
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Figure 8. The compressive strength ratios of cementitious composites at various ages and levels of LS
substitution [19,37,45,49,63,92,94,95].

In the study by Zhou et al. [63], experiments were conducted to evaluate the reactivity
of LS and SS as SCMs. The addition of 10% LS powder resulted in substantial hydration
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product formation at 28 days. LS exhibited a superior advantage over SS in enhancing
the paste compressive strength. The pozzolanic reactions of LS and SS contributed to
the development of the compressive strength at later stages. Additionally, in an effort to
enhance the performance of ultra-high-performance concrete containing limestone powder
(LP-UHPC), Zhang et al. [37] explored the partial replacement of LP with LS. The compres-
sive strength of the LP-UHPC initially decreased and then increased with increasing LS
content at all ages. Replacing 5% or 10% of the LP with LS led to improved compressive
strength in the LP-UHPC across all age groups. However, the pozzolanic reaction of the LS
exhibited limited the activity at the early stages of hydration. Rahman et al. [19] harnessed
LS as an SCM to develop the pozzolanic activity. Inert and slowly reactive SCMs became
pozzolanically active after 28 days, thereby making it convenient to assess inert, moder-
ate, and highly reactive systems ranging from 0% to 60% in LS content in mortars. The
results demonstrated that the 40% LS mortar achieved a 93% strength ratio compared to
the mortar without LS within 28 days. Moreover, Zhai et al. [45] observed that when the
LS powder content exceeded 30%, the early strength of the composite material decreased
as the LS powder dosage increased. However, when the LS powder dosage was at 10%,
the compressive strength at 28 days achieved a 21.5% increase compared to the sample
group without LS. This improvement can be attributed to the increased reactivity of LS
powder with age, thereby leading to a significant enhancement in the strength of the cured
pastes over time. Gu et al. [95] employed LS as a replacement for SS in the preparation
of cement mortar. They found that the 7-day compressive strength of the blended mortar
increased as the LS/SS mass ratio increased. This enhancement was attributed to the high
content of the reactive silica and alumina in the LS, along with a substantial amount of
SO4

2−, which provided early strength enhancement, as previously noted [34]. However,
at 28 days, as the LS/SS mass ratio continued to increase, the compressive strength of the
composite system showed an initial increase followed by a decrease. It can be concluded
that when the LS content exceeds 20%, the reduced portlandite content in the matrix is
insufficient to react with more LS to produce hydration products that can enhance the
matrix strength. This conclusion is supported by findings from the studies of Wu et al. [92]
and Li et al. [49]. He et al. [94] delved into the hydration mechanism of LS and concluded
that with prolonged curing, the active and amorphous silicon dioxide and aluminum oxide
within the LS slowly dissolved in the alkaline environment. These dissolved components
then reacted with calcium hydroxide to form calcium silicate hydrate (C–S–H), thereby
contributing to the increased later-age strengths of the samples. However, as the volume of
the LS increased, its pozzolanic reaction became relatively slower. This occurs due to the di-
lution effect of cement, particularly at higher LS volumes; with the amount of cement being
reduced in the mix, the calcium hydroxide content produced also reduces. The LS present
in the mix reacts with the already available calcium hydroxide, and the excess LS material
does not have any calcium hydroxide to prolong the pozzolanic reaction. Therefore, the
excess LS slag particles are present as idle unreacted material, without contributing to the
hydration characteristics of the cement blend.

4.2. Flexural Strength

Figure 9 provides a summary of the flexural strength ratios reported in various studies
at different levels of LS incorporation and testing ages. The general trend of the flexural
strength ratios closely resembles that of compressive strength, as has been discussed in
Section 4.1. In most cases, the strength ratio tends to increase initially and then decrease
with increasing LS content, with early-age strength ratios being slightly lower than later-age
ratios. This behavior can be attributed to several factors: Firstly, when a small quantity of
LS (e.g., 10% or 20%) is mixed with cement paste, it is initially considered inert, thereby not
actively participating in the early-age hydration reactions. This results in a higher retention
of water, thereby promoting the formation of gel and subsequently increasing the strength.
Additionally, LS contains gypsum, which enhances the reactivity of silica and alumina,
thereby leading to the production of more C–S–H and hydrated calcium aluminate.
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Figure 9. The flexural strength ratios of cementitious composites at various ages and LS substitution
ratios [14,35,48,49,51,101].

Li et al. [49] demonstrated that the flexural strength of white reactive powder concrete
increased with an added LS content of up to 8% at both 3 and 28 days but continued
increases in the LS content led to reduced flexural strength. Their tests revealed that LS ex-
hibited an impressive activity index of 82%, thereby surpassing that of fly ash and calcined
gangue. Wen [35] also explored the flexural strength of green concrete by incorporating 10%
LS and 10–40% LP. The flexural strength of the concrete showed an upward trend when the
combined LS and LP amount was below 20%, thereby indicating that a moderate LS and
LP had a positive effect on enhancing flexural strength. Additionally, Tan et al. [14] investi-
gated the flexural strength in cementitious materials by replacing 10–50% of the cement
with LS. Their results revealed that the early-stage flexural strength decreased significantly
with higher LS content due to reduced cement content in the mixture. However, when the
LS content remained at or below 20%, the compressive strength at 28 days exceeded that
of OPC, although it decreased with an LS content beyond 20%. Moreover, in a study by
Qin et al. [51] examining the effects of replacing cement with LS (10%, 15%, 20%, and, 25%),
the maximum flexural strength was achieved with 20% LS across all the classes. These
values exceeded the control specimens by significant margins, with increases of 17.8%, 33%,
46.1%, and 35.2% observed on the 28-day tests, respectively. The research concluded that
higher LS replacement led to slower strength development in concrete samples.

Li et al. [48] conducted a study to investigate the flexural strength of 20% LS cement
mortar under both wet curing and steam curing conditions. Their findings indicated
that the addition of LS led to improved flexural strengths in mortars subjected to initial
standard curing as well as steam curing. This enhancement was attributed to several
factors, including the higher SO3 content in LS, which promotes the formation of more
ettringite within the mortars. Additionally, the pozzolanic reaction of LS plays a role in
consuming CH within the interfacial transition zone, thus further contributing to improved
flexural strengths, particularly in the case of steam-cured LS samples [103]. However,
Tian et al. [101] observed a different trend in modified AAS mortars following LS incor-
poration. They reported a decrease in the flexural strength with increasing LS content.
Specifically, when the LS content reached 30 wt%, the flexural strength at 28 days decreased
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by 20.1%. This decline was attributed to the high degree of crystallization and resulting
low reaction activity of the LS.

4.3. Splitting Tensile Strength and Elastic Modulus

The splitting tensile strength ratios of cementitious composites at various ages and
LS substitution ratios are depicted in Figure 10. It is evident from various literature
sources that as the LS content increases, both increases and decreases in the splitting tensile
strength ratios have been observed. However, with an increase in the curing period, the
splitting tensile strength ratios were shown to consistently rise. At 28 days, the cementitious
composites incorporating LS outperformed the control groups in the following studies,
thereby highlighting the favorable long-term pozzolanic activity of LS. Qin et al. [51]
employed LS derived from industrial waste to replace cement, thus aiming to enhance
concrete’s mechanical properties. The results indicated that the splitting tensile strength
initially increased and then decreased with a rising LS content, thereby reaching its peak
improvement when the LS content substitution was at 25%. In addition, Wu et al. [92]
observed that as the LS content ranged from 0% to 30%, the splitting strength values at
28 days exceeded those of the reference concrete. The maximum splitting strength was
achieved at a 10% LS dosage, with a subsequent decline recorded as the LS content exceeded
this threshold. Furthermore, Shi et al. [53] utilized LS as an SCM, thereby substituting
15–45% of the cement in high-performance concrete. The study revealed that the reduction
in splitting tensile strength increased with a higher LS content at 7 and 14 days of testing.
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Figure 10. The splitting tensile strength ratios of cementitious composites at various ages and LS
substitution ratios [51,53,92].

The elastic modulus serves not only as an indicator of concrete’s deformation char-
acteristics, but it is also closely related to its compressive strength. Hence, variation in
the elastic modulus ratio shares similarities with changes in the compressive strength, as
indicated in Figure 11. Qin et al. [51] conducted an investigation into the impact of different
LS substitution rates (0%, 10%, 25%, and 35%) on the elastic modulus ratios of concrete.
As the LS content gradually increased, the peak elastic modulus was reached at a 35%
LS content, thereby exhibiting an approximate 8.02% increase compared to the control
group. This increase can be attributed to the secondary pozzolanic reaction of LS, which
generates additional hydration products (C-S-H) to fill pores, thus consequently leading to
an upward trend in the elastic modulus. However, exceeding this optimal point by adding
excessive LS amounts can result in an overly pasty mixture, which is detrimental to the
elastic modulus. Moreover, He et al. [50] experimentally assessed the influence of LS on the
elastic modulus using specimens containing varying LS contents (0%, 10%, 20%, and 30%
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of the binder). It was observed that the LS had a noticeable impact on the elastic modulus
development of the specimens. At 28 days, specimens with 10% or 20% LS exhibited higher
elastic modulus ratios than the control specimen without LS. However, excessive paste
content, resulting from an abundance of LS, hampers the enhancement of the concrete’s
elastic modulus.
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Figure 11. The elastic modulus ratios of cementitious composites at various ages and LS substitution
ratios [50,51].

5. Durability of Cementitious Composites with LS Incorporation

This section probes into the essential durability properties of cementitious composites
with the incorporation of LS. By investigating the chloride resistance, shrinkage, sulfate
attack, and carbonation, we aim to gain insights into the long-term performance and
resilience of these innovative materials. The interaction of LS with these durability aspects
presents a critical dimension in understanding their practical applicability. Understanding
these durability characteristics is pivotal in ensuring the sustainability and reliability of
such composites in diverse environmental conditions.

5.1. Chloride Resistance

This study compiles the impacts of varying the LS content and the age of LS-based
cementitious composites on chloride ion migration, as are summarized in Figure 12. The
consistently observed chloride resistance ratio below one indicates that the LS enhanced the
chloride ion migration resistance of cementitious systems. Furthermore, with an increase
in the composite age, the resistance of the cementitious system to chloride ions has been
shown to strengthen. Specific reasons for these findings are elucidated upon synthesizing
the results from diverse studies. To begin with, Qi et al. [56] demonstrated a positive
correlation between the LS content and the chloride penetration resistance. They reported
a significant 43% reduction in the electric flux in concrete containing 30% LS compared to
concrete without LS after 6 h of electrification. This improvement was attributed to the rapid
secondary hydration of the LS and cement hydration products. This secondary hydration
process transforms loosely bound Ca(OH)2 crystals, which tend to grow at the concrete
interface, into a more compact gel-like layer, thereby reducing porosity and increasing
chloride resistance. Additionally, Wu et al. [92] observed that the chloride ion diffusion
coefficient gradually decreased with an increase in the total dosage of admixtures and
extended curing time. The minimum chloride ion diffusion coefficient was achieved when
the LS content was 30%, and the FA content was 20%. This reduction was due to the Al2O3
and SiO2 from the LS and FA engaging in secondary hydration reactions with the Ca(OH)2
in cement hydration. These reactions generated more hydrated aluminate and Friedel’s salt,
thereby optimizing the structure of the interfacial zone and blocking penetration channels.
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Furthermore, Li et al. [49] measured the electric flux in samples at 28 days and found that
different LS amounts enhanced the chloride penetration resistance. An 8% LS content led
to an 18.9% reduction in the electric flux compared to the control group.
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Figure 12. The chloride resistance ratios of cementitious composites at various ages and LS substitu-
tion ratios [49,56,92].

Therefore, the specific mechanism can be summarized as follows: The resistance of
LS-based cementitious composites to chloride ion penetration is determined by two key
factors—the inherent resistance to chloride ions and its physical or chemical capacity to
bind with chloride ions. The introduction of LS plays a significant role in reducing concrete
porosity and enhancing pore structure, thereby increasing the compactness of the interface
between the aggregates and cement paste. Moreover, due to its highly active nature, LS
undergoes a chemical reaction with the Ca(OH)2 and chloride ions in the cement matrix to
form Friedel’s salt, thereby solidifying and preventing the migration of chloride ions as
have been previously observed [104].

5.2. Shrinkage

Figure 13 presents a compilation of the shrinkage ratios in cementitious materials
with varying LS contents and different ages, as have been reported in various studies. It is
evident that increasing the LS content generally reduces the concrete’s shrinkage values.
However, with the progression of age, the pattern of drying shrinkage exhibits various
trends. The specific research findings are detailed below. Qi et al. [56] investigated concrete
prepared by replacing cement with LS at ratios of 10%, 20%, and 30%. They found that
the drying shrinkage remained steady, with a slow increase observed after 60 days. As
the LS content increased, the drying shrinkage values decreased. For instance, compared
to specimens without LS, the specimen with 30% LS exhibited a 23% reduction in dry
shrinkage at 180 days. Furthermore, He et al. [36] explored the impact of LS on the drying
shrinkage of concrete with manufactured sand at different ages. The results indicated that
15% and 30% LS effectively reduced the drying shrinkage of manufactured sand concrete,
with a more pronounced effect at a higher LS content. The presence of smaller pores
correlated with increased water retention, thereby leading to decreased drying shrinkage
in manufactured sand concrete with an appropriate LS content. Similar conclusions were
drawn by Li et al. [49]. Additionally, Haigh et al. [41] utilized 25% LS as a pozzolanic
material in 25 MPa- and 40 MPa-grade concrete. Their study revealed that the 25 MPa LS
concrete had 26.5% higher shrinkage than the FA concrete but was 2.3% lower than the
control at 56 days. Moreover, the 40 MPa LS concrete exhibited the same shrinkage value
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as the FA concrete and was 12% lower than the control specimen. However, in the study
conducted by He et al. [50], a contrary trend was observed concerning drying shrinkage.
They presented data on the drying shrinkage strain of specimens with varying LS-to-binder
ratios at different testing times. The results indicated that there is a limited upward effect
of LS on the drying shrinkage strain, and among the three mixtures, the 20% LS appeared
to be the most effective in reducing the drying shrinkage strain.
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Figure 13. A compilation of shrinkage ratios in cementitious composites with varying LS contents
and different ages [36,41,49,50,56].

Through the literature review, it is evident that LS impacts concrete drying shrinkage
through two primary mechanisms. On the one hand, the pozzolanic effect of LS enhances
the formation of C–S–H secondary hydration products during the hydration process. These
products fill the pores in the cement slurry, thereby leading to improvements in both the
pore structure and interface structure within the concrete [25]. Additionally, being a porous
mineral material [70], LS stores free water within its pore structure, which increases the
water retention in the concrete and reduces water evaporation. This, in turn, effectively
minimizes drying shrinkage [13].

5.3. Sulfate Attack and Carbonation

The investigation of sulfate attack and carbonation in cementitious composites with LS
incorporation is vital for assessing their durability. Understanding how LS affects resistance
to sulfate attack and carbonation is crucial for ensuring the long-term performance and
sustainability of these materials when they are subjected to different exposure conditions.

Li et al. [48] conducted a study involving 20% LS mortar samples that were subjected
to wet curing and steam curing, which was then followed by partial immersion in a 99%
pure sodium sulfate solution for 720 days. Their findings indicate that, regardless of the
initial curing conditions, the presence of LS enhances mortar properties in the face of sulfate
attack. In addition to the role of leached LiAlSi2O6, the pozzolanic reaction of LS reduces
the calcium hydroxide content within the mortar. Moreover, steam-cured LS mortar exhib-
ited superior sulfate resistance compared to steam-cured PC mortar. Guangtai et al. [105]
conducted experiments to investigate the mechanical properties of a novel concrete sub-
jected to sulfate attack. They utilized a 5% mass-fraction sulfate solution for accelerated
erosion tests on 11 sets of polypropylene fiber-reinforced lithium slag concrete (PLiC)
specimens and eight large eccentrically loaded PLiC columns. The results revealed that
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the addition of LS improved the sulfate resistance of the polypropylene fiber-reinforced
concrete columns. Additionally, in damaged members, the fractal dimensions of the surface
cracks exhibited an increasing trend with sulfate erosion duration. Lastly, in a study by
Qin et al. [57], two groups with LS substitution rates of 20% and 25% (LS20 and LS25)
were analyzed for microstructural changes to explore the damage mechanism under sulfate
erosion combined with freeze–thaw cycles. The increased SO4

2− concentration in the LS25
indicated the presence of more expansive products, such as ettringite and flaky gypsum,
which accelerated corrosion and led to fundamental specimen deterioration. The internal
structural damage was more pronounced in the LS20 compared to the LS25, despite the
LS25 having a lower macroscopic damage index.

Research on the carbonation of cementitious composites with LS incorporation remains
limited at present. Qi et al. [56] conducted a study to investigate the influence of LS on
the carbonation resistance of concrete. They examined the carbonation depth at various
LS ratios and concrete ages. The results indicated that with a higher LS content and
longer concrete curing periods, the carbonation depth increased. This phenomenon can
be attributed to LS replacing cement and undergoing secondary hydration with cement
hydration products, thereby resulting in decreased alkalinity within the concrete. As
a consequence, the neutralization resistance decreases during CO2 infiltration, thereby
leading to a gradual reduction in the carbonation resistance of the concrete as the LS
content increases.

6. Chemical and Microstructural Investigations of Cementitious Composites with
LS Incorporation

This section delves into the microscopic analysis of LS-based cementitious composites,
thus focusing on critical aspects such as hydration heat, pore structure, XRD, SEM, FTIR,
and TG. Through these analytical tools, we aim to unravel the intricate details of the
composite’s microstructure and chemical composition. Hydration heat reveals the impact
of LS on the setting time and the ultimate strength development of cement blends. Pore
structure assessments unveil the impact of LS on porosity, while XRD elucidates the
crystalline phases present. SEM provides high-resolution images, thereby offering insights
into surface morphology. FTIR and TG shed light on chemical interactions and thermal
behavior. This comprehensive analysis serves as a foundational exploration of cementitious
composites with LS incorporation at the microscopic level.

6.1. Hydration Heat

The evolution of hydration heat plays a fundamental role in the initial setting, harden-
ing, and ultimate strength development of cement blends. The effective control of hydration
heat is imperative to ensure the overall quality and durability of concrete structures. Upon
contact with water, cementitious materials undergo a series of chemical reactions, thereby
resulting in a distinct hydration heat evolution curve that typically encompasses several
stages, including the initial period, induction period, acceleration period, deceleration
period, and retardation period [106–108].

He et al. [109] noted that that the incorporation of 20 wt% LS into a composite binder
led to a notable reduction in the evolution of hydration heat and a significant delay in
the induction period when compared to pure cement paste. This phenomenon can be
attributed to the reduced clinker content resulting from the substitution of Portland cement
with LS. In addition, during the early stages of hydration, LS was found to exhibit inert
behavior and exhibited limited participation in the initial hydration reactions. Moreover,
Zhai et al. [45] conducted a study revealing that the induction period of cement blends,
incorporating LS powder, fell within the range of 1.8 to 4.1 h. Notably, when the LS
powder content reached 50%, the induction period of the blended cement extended by
2.26 h compared to that of pure cement. Furthermore, the second exothermic peak value
was only 51.5% of that observed in pure cement paste. The extension of the induction
period underscores the retarding influence of LS powder on the initial hydration of the
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cement. In a study by Rahman et al. [70], the heat flow analysis of LS cement pastes ranging
from 0% to 60% in LS content provided crucial insights into the dormant, primary, and
secondary hydration peaks. Despite the higher concentration of LS diluting the clinker,
the induction period was slightly prolonged, which is the same as the conclusions of
References [45,109]. However, an intriguing observation was the substantial reduction in
the initial setting time for pastes containing 40% and 60% LS in comparison to the control.
This phenomenon was attributed to the significant aluminum oxide content within the LS,
which, at higher replacement levels, rendered the pastes susceptible to flash setting due
to the rapid hydration nature of the alumina, which is akin to the well-understood rapid
setting of the C3A phase in cement. Lastly, Tan et al. [88] noted that nano-LS accelerated
the hydration of SAC. Remarkably, a dosage of 4.0% even eliminated the induction period
entirely. The acceleration of hydration was attributed to the nanoparticles within the
nano-LS slurry, which acted as highly effective nucleation seeds, thereby expediting the
formation of hydration products. Additionally, the enhanced dissolution of lithium salt
during the wet milling process facilitated the precipitation of the aluminum phase, thus
further expediting SAC hydration.

6.2. Pore Structure

The construction of pores, specifically porosity and pore size distribution, significantly
influences concrete properties [110]. He et al. [50] examined the impact of LS on pore size
distribution at 7 days and 90 days, which was measured via MIP. As the age increased, the
pore size and volume decreased. The introduction of LS initially increased the porosity of
larger pores. However, including 10% and 20% LS in the binder refined the pore structure
in later stages. In addition, He et al. [94] observed that replacing 40% of their cement
sample with LS reduced the porosity in the later curing stages, thereby correlating with
improved mechanical properties. However, the use of 60% LS increased the total porosity,
particularly for pores exceeding 100 nm in diameter. This was attributed to the incomplete
stimulation of the LS pozzolanic reaction due to the limited calcium hydroxide amount
generated during Portland cement hydration. Wang et al. [61] found that introducing
C-A-S-H seeds with a Ca/Si ratio of 1.5 significantly reduced the volume proportion
of harmful large pores in LS-blended cement paste, thereby refining the pore structure.
Additionally, Zhang et al. [37] demonstrated that LS addition reduced UHPC porosity at
28 days due to pozzolanic reactions, the filler effect, and reactions between the LP and LS
aluminate phases. Lastly, Li et al. [48] replaced 20% of their cement sample with LS and
assessed changes in the pore structure under standard and steam curing. Under standard
curing, the LS reduced the porosity and capillary pore volume. Similarly, under steam
curing, LS incorporation promoted gel pore formation and reduced the capillary pores due
to the presence of gypsum and carbonate in the LS, which accelerated cement hydration.

Following the literature review, three reasons can be identified to explain these phe-
nomena. Firstly, the filling effect is significant. The fine-grained nature of LS enhances
particle packing, while the fine LS particles serve as pore blockers, thereby reducing pore
interconnectivity and effectively lowering porosities. Secondly, the pozzolanic reaction
of LS plays a crucial role. LS reacts with CH to generate additional hydration products,
thus refining large pores and bridging the gap between pastes and aggregates. Lastly, LS
provides nucleation sites, thereby promoting the preferential production and development
of hydration products in these locations.

6.3. XRD Analysis

XRD analysis provides insights into the crystalline phases within samples. Zhou
et al. [63] generated XRD patterns for specimens containing LS and SS following standard
curing for 7 days, as are illustrated in Figure 14. The primary mineral composition of the
cementitious materials was identified as portlandite, calcite, C3S, Ca2Fe2O5, LiAlSi2O6,
and ettringite. Notably, the presence of LiAlSi2O6 was detected by a prominent peak
between 2θ = 25–30◦, which was observed in the samples with the 10% LS replacement due
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to the introduction of spodumene (LiAlSi2O6) from the LS. The diffraction peak intensity
of the lithium pyroxene was low, thereby indicating a predominance of amorphous Al2O3
and SiO2 within it [111]. Furthermore, because spodumene was an inert component in the
raw LS material and exhibited limited participation in the hydration process, traces of it
persisted in the LS-mixed samples.
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Figure 14. XRD patterns of cement pastes [63].

In the study conducted by Luo et al. [24], LS was employed in the preparation of one-
part geopolymers using three hybrid solid activators: NaOH + Na2SiO3, NaOH + Ca(OH)2,
and NaOH + CaCO3. Figure 15 illustrates the XRD patterns of LS-based geopolymers
cured for 28 days. The primary crystalline phases identified in the geopolymers included
analcite, calcite, and lithium bisulfate. It was observed that the proportion of the integral
diffraction peak area attributed to the N(C)-A–S–H gel in the N-CH and N–C samples was
greater than that in the N-Si sample. This finding suggests that the NaOH + Ca(OH)2 and
NaOH + CaCO3 hybrid activators exhibited a more effective activation effect on LS-based
geopolymers compared to NaOH + Na2SiO3 hybrid activators.
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Furthermore, Guo et al. [16] synthesized ternary AAMs by combining LS, MK, and
GGBS. The XRD patterns of the AAM pastes at 28 days revealed the presence of key
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phases, including quartz, hydrotalcite, calcite, hydrogen aluminum silicate, C-(A)-S-H, and
gypsum. LS and MK contributed aluminum and silicon sources in an alkaline environment,
thereby facilitating AAM polymerization due to the presence of the H(AlSi2)O6 phase and
glass phase. Additionally, variations in the contents of CaO, Al2O3, and SiO2 in the LS and
MK amounts, as the LS replaced the MK, led to corresponding changes in the proportions
of these three oxides in the precursor, thereby potentially impacting the formation of the
C-(A)-S-H phase.

6.4. SEM Analysis

Investigating the microstructure of cementitious materials aids in explaining the
mechanical strength of the matrix, as well as the extents and modes of reaction of different
raw materials, thus elucidating the reaction mechanism of LS within the matrix. In the
study conducted by Gu et al. [95], it was found that in the C-LS-SS cementitious system
that SS and LS replaced 10% and 20% of the cement, respectively (10SS-20LS), LiAlSi2O6
and RO phases were also observed, and the layered spodumene (LiAlSi2O6) in the LS
underwent partial leaching, as is depicted in Figure 16a. With an increase in the LS content,
there was a significant consumption of portlandite, thereby leading to a reduction in the
degree of LS reaction. In addition, the addition of SS had a detrimental impact on the
pore structure of the pure cement system, thereby increasing the number of pores and
fractures, which is consistent with previous findings [112]. However, in this study, the
addition of SS-LS improved the pore structure of the composite system, thereby resulting
in a denser surface. Notably, evident voids and large cracks were observed in the hydration
products of 5SS-25LS (SS and LS replacing 5% and 25% of the cement, respectively) shown
in Figure 16b. These results indicate the formation of delayed ettringite due to the high
SO3 content in the LS [113], which subsequently led to the development of microcracks.
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Figure 16. SEM images of (a) 10SS-20LS and (b) 5SS-25LS at 28 d [95].

Luo et al. [102] introduced a highly efficient approach for the large-scale utilization
of LS in the synthesis of LS-based geopolymers using a one-part mixing method. SEM
images of LS-based geopolymers at 28 days are presented. As is illustrated in Figure 17a,
the surface of G0 (without GGBS) primarily consisted of numerous unhydrated LS particles,
with few hydrates forming on their surfaces. This suggests a low degree of LS hydration.
Consequently, there were insufficient hydration products to fill the pores within the LS
and the gaps between the LS particles. In contrast, as are depicted in Figure 17b, some
hydration products of the LS and GGBS were visible on the surface of the geopolymer
with the GGBS replacing 20% of the cement (G20) content. Nevertheless, the quantity of



Materials 2024, 17, 142 24 of 36

hydration products generated was inadequate to completely occupy the spaces between
the LS and GGBS particles and promote cementation. Upon reaching a GGBS content
of 40% (G40), substantial hydration products were observed on the surfaces of the G40
geopolymer particles shown in Figure 17c, thereby effectively filling the voids between the
LS and GGBS particles and enhancing the compactness of the geopolymer structure.
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Figure 17. SEM images of geopolymers at the age of 28 d: (a) G0, (b) G20, and (c) G40 [102].

Interestingly, Javed et al. [23] employed SEM images to calculate the internal porosity
of geopolymers. The electron micrographs in Figure 18 illustrate the percentage voids
in the LS geopolymer containing FA. Even at lower magnifications, cracks and voids
were evident in the 100% LS geopolymer paste, thereby indicating higher porosity. The
percentage void areas for the 100LS0FA, 50LS50FA, and 0LS100FA mixtures (the number
before the abbreviations represents the relative proportion of LS and FA) were 7.29%,
4.76%, and 1.20%, respectively. The incorporation of 50% FA in the LS geopolymer led to
a reduction in the crack formation, which was attributed to sulfate dilution in the pore
solution and decreased cracking. Therefore, porosity is closely associated with the sulfate
ions in geopolymer pastes.
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portion of LS and FA [23].

Based on the findings from these studies, it can be concluded that the moderate
addition of LS, especially when mixed with other SCMs, is beneficial for achieving a denser
microstructure in both cementitious and geopolymer systems. However, excessive LS
addition can increase the porosity of the binder materials, thereby reducing their mechanical
strength. Although LS exhibits lower early-stage hydration reactivity, it actively participates
in the hydration process in later stages, thereby contributing to a more compact matrix.

6.5. FTIR and TG Analysis

SCMs were produced by blending SS and LS, and their synergistic effect was inves-
tigated by Gu et al. [95]. The characterization of the hydration products was conducted
using FTIR, as is depicted in Figure 19. The faint peaks at 3644 cm−1 originated from the
bending vibration of the OH groups in portlandite [114]. These spectral peaks associated
with portlandite exhibited a reduction in intensity with an increasing LS content. Moreover,
the absorption peaks at approximately 978 cm−1 were linked to the asymmetric stretching
vibrations of Si–O–Si (Si–O–Al) related to C-S-H gels [115]. Among the composite systems,
the 10SS-20LS group exhibited the highest peak strength, thus slightly surpassing that of
the PC and signifying that the SS-LS demonstrated more pronounced pozzolanic activity at
suitable proportions. In experiments conducted by Zhou et al. [63] to assess the reactivity
of LS and SS as SCMs, variations in the peak depth were observed in each sample, as are
shown in Figure 20. Notably, changes in the depths of the peaks corresponding to the
hydroxyl groups in the Ca(OH)2 and the Si–O bonds in the Si–O tetrahedra were noted
with the introduction of LS and SS. The peak depths in the reference group (OPC1) were
lower than those in the L10 and S10 groups but higher than those in the L10S10 group. This
observation suggests that the addition of LS or SS increased the degree of cement hydration.
The combination of LS and SS (L10S10) reduced the extent of cement hydration, thereby
aligning with the compressive strength results at 7 days.
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Tan et al. [30] compared the TG profiles of 4% micro-LRR with control specimens,
thereby revealing that the LS samples had lower levels of initial hydration products and
portlandite consumption than the control samples. Zhang et al. [34] conducted a TG
comparison between 30% LS (control) and 30% LS plus 0.06% TIPA-containing mortar
specimens, and their results were consistent with those of Tan et al. [30]. Li et al. [48]
conducted a comparative TG analysis of mortar samples containing 20% LS, which were
subjected to both normal and heat curing conditions, as is shown in Figure 21. The results
revealed that the mortar cured under 80 ◦C steam for 7 h exhibited lower mass loss than
the normally cured sample. This suggests that the formation of the AFt and C-S-H phases
in the steam-cured sample was less extensive than in the normally cured sample. The
elevated steam curing temperature led to the decomposition of the AFt and C-S-H products.
Additionally, the mass loss of the steam-cured samples between 400–500 ◦C was higher than
that of the normal samples. While portlandite consumption was higher, the increased loss
of initial hydration products resulted in inconsistent strength development. Li et al. [49]
conducted TG tests, thereby yielding results similar to those of Li et al. [48]. Mortar samples
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containing 11% LS exhibited higher portlandite consumption but reduced levels of the
initial hydration products. Finally, He et al. [26] assessed the mass loss of control specimens
and specimens containing 24% LS plus 6% NaOH. The LS-containing sample exhibited
lower levels of initial hydration products and portlandite consumption than the control
sample, thereby resulting in a 3.3% reduction in the unconfined compressive strength of
the LS-containing backfill specimen at 28 days compared to the control specimen. In the
study conducted by Zhang et al. [37], a UHPC was prepared by substituting 30% of the
cement content with varying proportions of LS and LP, and a quantitative investigation of
the pozzolanic activity of the LS was conducted using TG analysis. It was observed that
the UHPC sample containing 30% LS exhibited the highest bound water content (14.4%).
However, the bound water content decreased to 12.6% as the content of the LP increased to
30% of the cement. This phenomenon can be attributed to the enhanced pozzolanic reaction
of LS at the later stages of hydration, thereby resulting in the generation of more hydration
products within the LS-UHPC and increasing the bound water content. Additionally, LS
exhibits pozzolanic activity and reacts with Ca(OH)2, thereby leading to a reduction in
the Ca(OH)2 content in the UHPC. Quantitative analysis from TG curves indicated that as
the LP progressively replaced the LS from 0% to 100%, the Ca(OH)2 content in the UHPC
increased from 6.1% to 7.6%, respectively.
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Based on the current state of the research, the microscale testing methods employed in
this section, such as XRD, SEM, and TG, primarily serve the purpose of providing qualita-
tive investigations into the pozzolanic reactivity of LS. However, it is noteworthy that there
is little research on the quantitative studies of pozzolanic activity using these microscopic
methods. A quantitative assessment of the pozzolanic reactivity of LS in cementitious
materials has been reported solely by Zhang et al. [37], who utilized TG to calculate the
bound water content and calcium hydroxide content in LS-based concrete as a means of
assessing its pozzolanic reactivity. Furthermore, through a comprehensive literature review,
it was revealed that quantitative investigations into the pozzolanic reactivity of LS have
been conducted by Rahman et al. [19] using nonmicroscale testing methods such as the
Frattini test, strength activity index (SAI), and R3 test. The findings indicated that when
40% LS was employed as an SCM, it reacted with 79% of the CaO content in the cement
mix, thereby resulting in a 93% SAI at 28 days and generating 53.1 J/g of SCM hydration
heat with portlandite at 7 days. However, it is noteworthy that the utilization of 20%
LS as an SCM yielded the maximum SAI, while higher percentages (50–60%) resulted in
diminished strength and hydration heat. It is well known that the pozzolanic reactivity
of LS is closely intertwined with its potential application as an SCM into cement blends.
Consequently, there is a need for further in-depth quantitative investigations into the
pozzolanic reactivity of LS.
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7. Cost, Energy, and Carbon Emission Comparisons

The ineffective disposal of LS can pose a serious environmental threat due to the
leaching of fluorine and sulfate ions, which can lead to pollution of both land and water.
Therefore, it is imperative to explore methods for the disposal and efficient utilization of LS
to support the sustainable development of the lithium carbonate and construction materials
industries. In order to facilitate the widespread application of LS in the construction
materials sector, it is equally important to assess its commercial viability. Hence, this study
presents a comparative analysis of LS with common cementitious composites in terms of
cost, embodied CO2, and embodied energy, as is summarized in Table 4.

It is evident that LS has the lowest cost (10 USD/t) compared to other construction ma-
terials. Not only does LS exhibit similar pozzolanic activity to FA, but it also comes at just
one-fifth of the price of FA. This makes LS an economically attractive option for concrete or
geopolymer production, thereby significantly reducing manufacturing costs. However, it is
worth noting that Ali et al. [5] reported the cost index values for a novel LS-based geopoly-
mer, and it is interesting to observe that the geopolymer with a higher LS content resulted
in higher cost index values. This is attributed to the very low strength of the binders pre-
pared from higher LS contents. Furthermore, it is important to mention that the cost index
values for all geopolymer mixes are higher than the 1.75 USD/m3·MPa cost index value
reported for a previously studied OPC mix [116]. The higher cost of geopolymer binders
can be attributed to the expensive sodium silicate and recent price increases in industrial
waste materials (FA and slag) due to government-imposed limitations on coal and steel
production. Additionally, in the study conducted by Guo et al. [16], the cost index of alkali-
activated material pastes containing LS showed varying degrees of reduction compared to
the control sample. The cost index of the paste without LS was 4.68 USD/(m3·MPa). As
the ratio of LS replacing metakaolin increased from 25% to 75%, the cost indexes decreased
to 2.94 USD/(m3·MPa), 2.40 USD/(m3·MPa), and 2.23 USD/(m3·MPa), respectively. This
reduction can be attributed to the fact that the cost of LS (10 USD/t) is significantly lower
than that of MK (220 USD/t).

Table 4 also reveals that the embodied CO2 and embodied energy of LS are comparable
to GGBS, slightly higher than those of FA and SF, and significantly lower than those of
MK, LP, and cement. Therefore, LS exhibits the potential for solid waste recycling and
sustainable development. Das et al. [117] reported an embodied CO2 index of approxi-
mately 18 kg/m3·MPa for OPC. Ali et al. [5] found that the embodied CO2 index values of
geopolymers with 70% and 60% LS are 17% and 39% lower, respectively, than that of OPC,
thereby showcasing its superior environmental performance and strength characteristics
over OPC. The lower index values for geopolymers with 80%, 90%, and 100% LS are due
to the lower compressive strength values of these mixes, not the actual embodied CO2
values, which are significantly lower than OPC for all the compositions of geopolymer
binders. Furthermore, the embodied CO2 index was used to assess the sustainability of
the developed UHPC [37]. LP, by replacing with either 5% or 10% LS, reduced the carbon
index of LS-UHPC. However, further increases in the LP content significantly compromised
the compressive strength of the UHPC. LP20 and LP30, in particular, increased the carbon
emissions of LS-UHPC, even when considering performance. On the other hand, LP5
and LP10 were able to recycle a substantial amount of LS while ensuring excellent UHPC
performance. Therefore, adding 5% or 10% LP not only enhanced the performance of
LS-UHPC but also offered environmental and sustainable development advantages.

Regarding the energy index, Guo et al. [16] demonstrated that the energy consumption
of LS (2230 MJ/t) is slightly lower than that of MK (2500 MJ/t), thereby implying that
replacing MK with LS can reduce energy consumption to some extent [16]. In AAM pastes
with LS replacing MK, the higher strength of LS-containing AAM compared to AAM
without LS does not provide a clear advantage in terms of the energy index. However, this
substitution strategy holds strong potential for improving the construction environment
and conserving natural resources. Ultimately, based on a comprehensive analysis of
workability, strength, reaction degree, microstructure, cost, and energy consumption,
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this work recommends replacing 25% to 50% of MK content with LS in the AAM GBFS-
MK-LS ternary system.

Table 4. A comparative analysis of LS with common cementitious composites in terms of cost,
embodied CO2, and embodied energy.

Materials Cost (USD/t) Embodied CO2 (kg/t) Embodied Energy (MJ/t)

LS 10 [5] 67 [118] 2230 [22]
GGBS 100 [119] 67 [118] 1590 [119]
MK 220 [120] 400 [121] 2500 [120]
FA 50 [122] 8 [123] 833 [121]
SF 200 [124] 14 [125] 100 [126]
C 467.5 [127] 900 [128] 5000 [129]

LP 150 [130] 75 [118] 350 [121]

8. Conclusions

This study provides a comprehensive overview encompassing the physiochemical and
microscopic properties of LS, fresh state properties, mechanical characteristics, durability,
and the microscopic analysis of cementitious composites incorporating LS. Additionally, it
includes cost, energy, and carbon emission comparisons between LS and other cementitious
materials. The following conclusions can be drawn from this extensive review:

(1) The PSD of LS closely resembles that of FA and GGBS. This similarity suggests that LS
can exhibit similar effects related to densification and nucleation when integrated into
concrete, thus resembling the behavior of FA and other SCMs. Mechanical treatment
of LS enhances the dissolution of aluminum, lithium, and silicon in LS, thereby
expediting early hydration in LS–cement systems.

(2) LS exhibits variations in SiO2 + Al2O3 and Ca/(Si + Al) within the ranges of 70.29–80.77%
and 0.02–0.14%, respectively. This composition aligns LS with FA, which is charac-
terized by high SiO2 and Al2O3 contents and a low CaO content. This similarity
categorizes LS as a low-calcium precursor with chemical reactivity akin to that of FA.

(3) In most of the literature examined, an increase in LS content was shown to lead to
a reduction in the initial and final setting times of LS–cement and LS–geopolymer
systems. Moreover, the studies determined that flowability decreased with an increase
in LS content due to its irregular shape, strong water absorption characteristics, and
elevated formation of AFt in the initial stages of hydration.

(4) A recurring trend in most of the reviewed literature indicates that as LS content
increases, the compressive strength, flexural strength, and splitting tensile strength ra-
tios initially increase, with diminishing returns beyond a 30% threshold. This suggests
an optimal LS content for achieving favorable mechanical properties. Additionally,
with longer curing periods, there is a noticeable upward trend in the compressive
strength, flexural strength, and splitting tensile strength ratios.

(5) LS plays a crucial role in enhancing chloride ion migration resistance and reducing
shrinkage in cementitious systems. Furthermore, as the composite ages, the resistance
of the cementitious system to chloride ions becomes more robust. However, the
behavior of drying shrinkage exhibits various trends.

(6) The mechanisms through which LS operates within cementitious composites can be
classified into three main categories. Firstly, there is the filling effect: the fine-grained
nature of LS improves particle packing, and its fine particles act as pore blockers,
thereby reducing interconnectivity between pores and effectively lowering porosity.
Secondly, there is the pozzolanic effect: LS reacts with calcium hydroxide to generate
additional hydration products, thereby refining large pores and bridging the gap
between the paste and aggregates. Thirdly, there is the nucleation effect: LS provides
nucleation sites, thereby promoting the preferential production and development of
hydration products in these specific locations.
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(7) LS not only exhibits similar pozzolanic activity to FA, but it also comes at just one-
fifth of the price of FA. This makes LS an economically attractive option for con-
crete or geopolymer production, thereby significantly reducing manufacturing costs.
Moreover, the embodied CO2 and embodied energy of LS are comparable to GGBS,
slightly higher than those of FA and SF, and significantly lower than those of MK,
LP, and cement. Therefore, LS exhibits the potential for solid waste recycling and
sustainable development.

9. Outlook

Despite extensive research on LS, there remain several performance aspects and
application areas warranting further in-depth investigation:

(1) Current research on the grinding and chemical treatment of LS is limited. Further
exploration is needed to enhance its utilization efficiency through physical and chemi-
cal modifications.

(2) More research is required to understand the tensile properties of cementitious com-
posites incorporating LS and their durability evolution in specific environments, such
as freeze–thaw cycles and exposure to coupled acid–base and salt conditions.

(3) Further exploration into the performance of LS in high-performance concrete, such as
UHPC and engineered cementitious composites, is warranted.

(4) The rheological properties of LS when incorporated into cement pastes and its subse-
quent performance in 3D printing applications deserve closer attention.

(5) Investigation into the hydration mechanisms of LS when used in specialized cements,
such as SAC and limestone calcined clay cement, requires further research.

(6) The current quantitative research on the pozzolanic reactivity of LS is limited. A thor-
ough assessment of the pozzolanic reactivity of LS is needed to confirm its suitability
as an SCM in cement blends.

Addressing these research gaps will contribute to a more comprehensive understand-
ing of LS and its potential applications in the field of cementitious materials. LS offers
varied prospects in construction, thereby serving as a supplementary element in concrete
to boost durability and sustainability. It spans across structural applications and innova-
tive material development, thereby enhancing performance, reducing waste, and possibly
cutting project expenses. Engineers can adjust the workability, mechanical properties, and
durability aligning with regulations, and they can seek ecofriendly solutions for resilient,
cost-effective construction methods.
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FA Fly ash SEM Scanning electron microscopy
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Route to Bassanite Nanocrystals from Gypsum. Adv. Funct. Mater. 2022, 32, 2111852. [CrossRef]

86. Bernal, S.A.; Juenger, M.C.; Ke, X.; Matthes, W.; Lothenbach, B.; De Belie, N.; Provis, J.L. Characterization of supplementary
cementitious materials by thermal analysis. Mater. Struct. 2017, 50, 1–13. [CrossRef]

87. Burris, L.E.; Juenger, M.C. Effect of calcination on the reactivity of natural clinoptilolite zeolites used as supplementary cementi-
tious materials. Constr. Build. Mater. 2020, 258, 119988. [CrossRef]

88. Tan, H.; Li, M.; He, X.; Su, Y.; Yang, J.; Zhao, H. Effect of wet grinded lithium slag on compressive strength and hydration of
sulphoaluminate cement system. Constr. Build. Mater. 2021, 267, 120465. [CrossRef]

89. Noor, L.; Tuinukuafe, A.; Ideker, J.H. A critical review of the role of ettringite in binders composed of CAC–PC–C and CSA–PC–C.
J. Am. Ceram. Soc. 2023, 106, 3303–3328. [CrossRef]

90. Matalkah, F.; Salem, T.; Shaafaey, M.; Soroushian, P. Drying shrinkage of alkali activated binders cured at room temperature.
Constr. Build. Mater. 2019, 201, 563–570. [CrossRef]

91. Witzleben, S.T. Acceleration of Portland cement with lithium, sodium and potassium silicates and hydroxides. Mater. Chem. Phys.
2020, 243, 122608. [CrossRef]

92. Wu, F.F.; Shi, K.B.; Dong, S.K. Properties and Microstructure of HPC with Lithium-Slag and Fly Ash. Key Eng. Mater. 2014, 599,
70–73. [CrossRef]

93. Dong, P.; Ahmad, M.R.; Chen, B.; Munir, M.J.; Kazmi, S.M.S. Preparation and study of magnesium ammonium phosphate cement
from waste lithium slag. J. Clean. Prod. 2021, 316, 128371. [CrossRef]

94. He, Z.; Chang, J.; Du, S.; Liang, C.; Liu, B. Hydration and microstructure of concrete containing high volume lithium slag. Mater.
Express 2020, 10, 430–436. [CrossRef]

95. Gu, X.; Wang, H.; Zhu, Z.; Liu, J.; Xu, X.; Wang, Q. Synergistic effect and mechanism of lithium slag on mechanical properties and
microstructure of steel slag-cement system. Constr. Build. Mater. 2023, 396, 131768. [CrossRef]

96. Al-Kheetan, M.J.; Rahman, M.M.; Balakrishna, M.N.; Chamberlain, D.A. Performance enhancement of self-compacting concrete
in saline environment by hydrophobic surface protection. Can. J. Civ. Eng. 2019, 46, 677–686. [CrossRef]

97. Biricik, Ö.; Mardani, A. Parameters affecting thixotropic behavior of self compacting concrete and 3D printable concrete;
A state-of-the-art review. Constr. Build. Mater. 2022, 339, 127688. [CrossRef]

98. Souza, M.T.; Ferreira, I.M.; de Moraes, E.G.; Senff, L.; de Oliveira, A.P.N. 3D printed concrete for large-scale buildings:
An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects.
J. Build. Eng. 2020, 32, 101833. [CrossRef]

99. He, Y.; You, C.; Jiang, M.; Liu, S.; Shen, J.; Hooton, R.D. Rheological performance and hydration kinetics of lithium slag-cement
binder in the function of sodium sulfate. J. Therm. Anal. Calorim. 2023, 148, 11653–11668. [CrossRef]

https://doi.org/10.1016/j.cemconres.2004.11.010
https://doi.org/10.1016/j.clay.2012.02.017
https://doi.org/10.1016/j.jclepro.2022.131361
https://doi.org/10.1016/j.conbuildmat.2018.01.065
https://doi.org/10.3390/ma12122032
https://www.ncbi.nlm.nih.gov/pubmed/31242565
https://doi.org/10.1016/j.sab.2019.105729
https://doi.org/10.1016/j.conbuildmat.2022.130143
https://doi.org/10.1016/j.conbuildmat.2016.08.025
https://doi.org/10.3389/fbuil.2021.670996
https://doi.org/10.1016/j.cscm.2021.e00671
https://doi.org/10.1016/j.mineng.2019.05.003
https://doi.org/10.1016/j.mineng.2015.04.012
https://doi.org/10.1002/adfm.202111852
https://doi.org/10.1617/s11527-016-0909-2
https://doi.org/10.1016/j.conbuildmat.2020.119988
https://doi.org/10.1016/j.conbuildmat.2020.120465
https://doi.org/10.1111/jace.19014
https://doi.org/10.1016/j.conbuildmat.2018.12.223
https://doi.org/10.1016/j.matchemphys.2019.122608
https://doi.org/10.4028/www.scientific.net/KEM.599.70
https://doi.org/10.1016/j.jclepro.2021.128371
https://doi.org/10.1166/mex.2020.1644
https://doi.org/10.1016/j.conbuildmat.2023.131768
https://doi.org/10.1139/cjce-2018-0546
https://doi.org/10.1016/j.conbuildmat.2022.127688
https://doi.org/10.1016/j.jobe.2020.101833
https://doi.org/10.1007/s10973-023-12531-4


Materials 2024, 17, 142 35 of 36

100. Prem, P.R.; Ravichandran, D.; Kaliyavaradhan, S.K.; Ambily, P. Comparative evaluation of rheological models for 3d printable
concrete. Mater. Today Proc. 2022, 65, 1594–1598. [CrossRef]

101. Tian, Y.; Xie, Z.; Yuan, Q.; Jamaa, G.M.; Yang, C.; Zhu, X. Improving the rheological behavior of alkali-activated slag pastes by
using low surface free energy mineral admixtures. Constr. Build. Mater. 2023, 392, 131879. [CrossRef]

102. Luo, Q.; Wang, Y.; Hong, S.; Xing, F.; Dong, B. Properties and microstructure of lithium-slag-based geopolymer by one-part
mixing method. Constr. Build. Mater. 2021, 273, 121723. [CrossRef]
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