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Abstract: Recycled aggregate concrete (RAC) exhibits inferior mechanical and durability properties
owing to the deterioration of the recycled coarse aggregate (RCA) surface quality. To improve the
surface properties of RCA, the reinforcement efficiency of RAC, and the maneuverability of the
surface treatment method, this study used magnesium phosphate cement (MPC), a clinker-free low-
carbon cement with excellent bonding properties, to precoat RCA under three-day pre-conditioning.
Moreover, variable amounts of fly ash (FA) or granulated blast furnace slag (GBFS) were utilized to
partly substitute MPC to enhance the compressive strength and chloride ion penetration resistance.
Subsequently, FA–MPC and GBFS–MPC hybrid slurries with the best comprehensive performance
were selected to coat the RCA for optimal reinforcement. The crushing value and water absorp-
tion of RCA, as well as the mechanical strengths and durability of RAC, were investigated, and
microstructures around interfaces were studied via BSE-EDS and microhardness analysis to reveal the
strengthening mechanism. The results indicated that the comprehensive property of strengthening
paste was enhanced significantly through substituting MPC with 10% FA or GBFS. Surface coating
resulted in a maximum reduction of 8.15% in the crushing value, while the water absorption barely
changed. In addition, modified RAC outperformed untreated RAC regarding compressive strength,
splitting tensile strength, and chloride ion penetration resistance with maximum optimization ef-
ficiencies of 31.58%, 49.75%, and 43.11%, respectively. It was also evidenced that the improved
MPC paste properties enhanced the performance of modified RAC. Microanalysis revealed that
MPC pastes exhibited an excellent bond with RCA or new mortar, and the newly formed interfacial
transition zone between MPC and the fresh mortar exhibited a dense microstructure and outstanding
micro-mechanical properties supported with an increase in the average microhardness value of
30.2–33.4%. Therefore, MPC pastes incorporating an appropriate mineral admixture have enormous
potential to be utilized as effective RCA surface treatment materials and improve the operability of
RCA application in practice.

Keywords: recycled aggregate concrete; magnesium phosphate cement; mechanical properties;
durability; microstructure

1. Introduction

Making recycled aggregate concrete (RAC) [1–3] is a very efficient approach to using
construction and demolition waste [4,5] for resource-saving and environmental protection
disposal, in which the natural coarse aggregate (NCA) is partially or wholly replaced with
recycled coarse aggregate (RCA) [6–8]. Researchers have shown that RAC’s mechanical
properties and durability decreased with increased replacement by RCA [9–11], which
hinders RAC’s sustainable development and application [12–14]. The primary reason for
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this phenomenon is the high porosity and water absorption of the old mortar attached to
the RCA surface [15], causing the new interfacial transition zone (ITZ) to be more porous
and the interfacial bond strength between the RCA and new mortar to be weaker.

Accordingly, to expand the application of RAC, many RCA surface treatments have
been proposed to enhance the performance of RAC through improving the new ITZ [16].
These include soaking or surface precoating with polyvinyl alcohol (PVA) [17], silane
polymers [18,19], sodium sulfate solutions [20], sodium silicate solutions [21], volcanic ash
materials [22–24], cement, and other cementitious materials [25–28], as well as accelerated
carbonation [29–31] and biological carbonate deposition [29,32,33]. However, these tech-
niques might be hampered by a lack of durability from polymer compounds, a weak bond
between the surface-coating paste and the RCA, and uncertainty about the efficacy of the
carbonation treatment. To this end, Chen et al. [34] suggested a novel surface treatment
technique in which magnesium phosphate cement (MPC) was used as a “bridge” between
fresh concrete mortar and RCA. As a low-carbon green cementing material, MPC was
generally acknowledged to have a high bonding strength with existing concrete, rang-
ing from 77% to 120% higher than that of ordinary Portland cement [35], as well as high
volume stability [36], and excellent durability for application in a diversity of complex
environments [37,38]. Therefore, MPC can overcome the poor bonding strength of surface-
coating pastes to RCA and effectively improve the mechanical properties of RAC [39–41].
Nevertheless, the modified RCA needed a long curing period for use and thus may delay
the duration of construction of RAC application in practice [34]. Moreover, the effect of
MPC on the long-term performance [42] of RAC lacks proof, which is likewise a primary
concern in engineering applications. Thus, to enhance the operability of this treatment
for engineering applications, the physical properties of MPC-modified RCA under short
curing ages and the corresponding RAC’s mechanical performance and durability need to
be further investigated. In addition, interfacial adhesion enhancement between MPC paste
and RCA or new mortar, as well as improvement of the new ITZ, have not been thoroughly
studied, which is crucial to reveal the enhancement mechanism of surface reinforcement by
MPC paste.

Meanwhile, the performance of both RCA and RAC has been confirmed to exhibit a
strong correlation with the fundamental property of strengthening pastes. For instance, the
water absorption and crushing value of RCA were affected by the strengthening paste’s
hardened strength and anti-permeability., The strength of RAC was likewise related to the
mechanical strength and compactness of the strengthening paste [43–45]. According to
studies, mineral admixtures have been frequently employed in MPC systems in appropriate
dosages as cost-effective, ecologically friendly components that enhance MPC qualities. For
example, utilizing the “ball effect”, micro-aggregation effect [46,47], and hydration-induced
effect, fly ash (FA) can improve the later mechanical characteristics of FA–MPC [48–50].
Moreover, granulated blast furnace slag (GBFS) could improve the mechanical properties
and durability of MPC due to the physical filling and the chemical reactions contributed by
the presence of calcium components [51,52]. Accordingly, to acquire the optimum efficacy
of surface coating, the mineral admixtures FA or GBFS could be incorporated into MPC
materials, and the appropriate dosing amounts need to be investigated.

In this study, a series of experiments were carried out with the aim of revealing the
reinforcement efficiency of RCA and RAC via surface treatment with MPC paste under
a short pre-conditioning time, as well as the influence of MPC slurry properties on the
reinforcement efficiency for RCA and RAC. Firstly, different surface-strengthening pastes
were prepared with MPC supplemented by 0%, 5%, 10%, and 15% of FA or GBFS. Subse-
quently, the properties of surface-strengthening pastes, including compressive strength,
chloride ion penetration resistance, and the synergistic mechanism of MPC with FA or
GBFS, were examined. Based on the results obtained, the optimal FA or GBFS dosage
can be selected, and the corresponding MPC blend pastes were utilized for the surface
enhancement of RCA. Afterward, the enhancement effects of the surface coating on RCA
and RAC were verified through testing the water absorption and crush value of RCA, as
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well as the mechanical strength and chlorine ion penetration resistance of RAC. Finally,
the microstructural properties and elemental distributions of the bond interface and new
ITZ were characterized through conducting backscattered electron and energy dispersive
spectroscopy (BSE-EDS) measurements as well as microhardness tests to reveal the micro-
scopic strengthening mechanism of various MPC pastes on RAC macroscopic properties.
This study assists in improving the operability of RCA application in practice, promot-
ing the production of high-quality RAC, and thus contributing to fostering sustainable
development of the construction industry and yielding environmental benefits.

2. Materials and Methods
2.1. Major Raw Materials

In this study, dead-burned magnesia (MgO), ammonium dihydrogen phosphate
(NH4H2PO4, abbreviated as ADP), borax (Na2B4O7·10H2O, abbreviated as B) as a re-
tardant, and water were combined in precise ratios to create a pure MPC paste, referred
to as S-0. MgO and ADP were purchased from Liaoning Yangyang High Tech Materials
Co., Ltd. in Yingkou City, and B was purchased from Zhiyuan Chemical Reagent Co., Ltd.
in Tianjin. Additionally, 5%, 10%, and 15% of the mass of MgO were replaced with FA
or GBFS to create mineral admixture–MPC pastes. FA and GBFS were purchased from
Ningdong Thermal Power Co., Ltd. in Yinchuan City and Rongchangsheng Environmental
Protection Materials Co., Ltd. in Zhengzhou City, respectively. The chemical compositions
of FA, GBFS, and MgO used in this study were determined via X-ray fluorescence (XRF)
oxide analysis, and the results are presented in Table 1. Purities of the industrial-grade ADP
and B were above 98% and 99.5%, respectively. The particle size distributions of FA, GBFS,
and MgO were examined using a laser particle size analyzer, and the average particle sizes
were approximately 9 µm, 7 µm, and 12 µm for FA, GBFS, and MgO, respectively.

Table 1. Chemical composition of raw materials (by wt/%).

Raw
Materials

Mass Fraction of the Sample (%)

SiO2 Al2O3 CaO Fe2O3 K2O TiO2 Na2O SO3 MgO P2O5

FA 49.80 30.69 5.30 5.08 2.23 2.02 1.54 1.25 1.11 0.47
GBFS 35.51 13.11 39.82 0.37 0.29 2.63 0.37 2.26 4.88 0.02
MgO 2.35 1.30 1.31 1.27 0.02 0.03 0.04 - 92.12 0.12

Using an experimental jaw crusher, the untreated RCA used in this study was pro-
duced from original concrete with a compressive strength of approximately 35 MPa and
labeled as RCA0. Figure 1 displays the gradation information of RCA0 obtained from the
sieving method. According to Chinese Standard GB/T 14685-2022 [53], the accuracy of
the sieving method could be guaranteed based on the sampling process. The sampling
process was specified as follows: first, the sample was formed through randomly selecting
aggregates of approximately equal mass from different portions of the aggregate heap;
then, the sample was placed on a flat plate, mixed well under natural conditions, and
piled up into a heap; afterward, the heap was divided into four equal portions along two
diameters perpendicular to each other, and the two diagonal portions of the heap were
re-mixed and piled up into a heap; the process was repeated until the amount of sample
was reduced to that required for the test. The experiment also utilized natural river sand
with a fineness modulus of 2.63 and water absorption of roughly 1.9%, as well as Portland
cement (P.O. 42.5), with mechanical and physical parameters shown in Table 2. A water
reducer was also included to improve the workability of the concrete.
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Figure 1. Particle size distribution of RCA0. 
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Table 2. Properties of Portland cement.

Cement
Type

Density
(kg/m3)

Specific Surface
Area (m2/kg)

Setting Time (min) Compressive Strength
(MPa)

Flexural Strength
(MPa)

Initial Setting Final Setting 3 d 28 d 3 d 28 d

OPC 3090 398 220 310 25.1 47.3 4.5 7.9

2.2. Preparation Methods
2.2.1. Surface-Strengthening Pastes

Different amounts of FA and GBFS were used to replace MgO to prepare blended
MPC pastes. Table 3 shows the mixing ratio of each MPC paste required to modify 1000 kg
RCA0. Precast MPC paste was prepared through blending the non-water components of
the mixture materials based on the prescribed ratio first, then adding the corresponding
amount of water and mixing for 60 s. After that, each type of precast MPC paste was cast
in six 40 mm3 cubic molds and six cylindrical molds with a size of Φ100 × 50 mm3. Then,
all specimens were demolded after 3 days and maintained at 20 ± 2 ◦C and 64 ± 2% RH
for 28 days. The cylindrical specimens were used for the rapid chloride permeability test
(RCPT). In addition, the cubic specimens were used for the compressive strength test, and
approximately 10 mm3 pieces were cut from the fractured hardened blocks for BSE-EDS
analysis. In detail, for microscopic test sample preparation, the slices were first soaked in
ethanol for 24 h to halt cement hydration, then dried and embedded in epoxy resin with a
cylindrical rubber mold measuring 20 mm in height and 25 mm in diameter, and finally, the
samples were polished to create a smooth surface, dried, and stored in a vacuum chamber
before testing.

Table 3. Materials ratios of MPC pastes for modifying 1000 kg RCA0.

Paste Type ADP (kg) MgO (kg) FA (kg) GBFS (kg) Water (kg) B (kg)

S-0 93.2 186.4 0 0 50.9 8.4
S-FA5 93.2 177.08 9.32 0 50.9 8.4

S-FA10 93.2 167.76 18.64 0 50.9 8.4
S-FA15 93.2 158.44 27.96 0 50.9 8.4

S-GBFS5 93.2 177.08 0 9.32 50.9 8.4
S-GBFS10 93.2 167.76 0 18.64 50.9 8.4
S-GBFS15 93.2 158.44 0 27.96 50.9 8.4

Note: S-0 denotes strengthening slurry without mineral admixture; “S-FA” and “S-GBFS” denote strengthening
slurries with FA and GBFS, respectively; the numbers “5”, “10”, and “15” denote the percentage of MgO replaced
with mineral admixture.
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2.2.2. Surface-Reinforced RCA

The basic properties of strengthening pastes containing different amounts of FA or
GBFS were tested regarding compressive strength and chloride ion penetration resistance.
Based on the results, the most optimal FA or GBFS dosages leading to higher strength
and lower chloride penetration were determined, and the corresponding blended MPC
pastes were selected to prepare surface-reinforced RCA. Furthermore, S-0 was chosen
as a comparison. It was expected that the physical properties of RCA, including water
absorption and crushing value, could be improved through surface strengthening [44,45,54].

After preparation, the strengthening paste was immediately mixed and stirred with
RCA0 for 5 min to precoat RCA0. Subsequently, the RCA was removed from the tank, and
any excess MPC paste stuck to it was sieved away. Afterward, these treated RCA were
exposed to the air with 64 ± 2% RH and 20 ± 2 ◦C for 3 days. A portion of the RCA was
used for characterization tests, including water absorption and crushing value; another
portion of the RCA was used to prepare RAC.

2.2.3. Concrete

The original RCA0 and treated RCA obtained from Section 2.2.2 were utilized as coarse
aggregate to produce concrete to obtain the best modification effect for high-quality RAC
and the influence of the strengthening paste properties on the modification efficiency. Since
the coated paste amount was negligible compared to the weight of RCA (approximately 2%
to 3%) [43], based on a concrete strength grade of C30, the mix proportion for each concrete
type was cement:water:sand:coarse aggregate:superplasticizer = 431:247:767:989:2. In order
to get superior modification outcomes, this work adopted the double mixing method [55,56]
to prepare modified RAC utilizing surface-treated RCA, and it has been demonstrated to
reduce the water–to–cement ratio of the new ITZ thereby improving the interface zone,
compressive strength, and chloride ion penetration resistance of concrete [55,57,58]. The
specific mixing procedure, as shown in Figure 2, is as follows: first, a portion of the water
(Water(1)) was added to the aggregates of each group and stirred for 60 s to obtain moist
aggregates; then, cement was added and stirred for 120 s to coat the aggregate surfaces
with a layer of low water–to–cement ratio cement slurry; finally, the remaining water
(Water(2)) was added along with the superplasticizer used, and the fresh concrete was
obtained through mixing for 120 s.
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The mechanical strength and chloride ion penetration resistance of concrete were
compared to understand the difference in the enhancement of RCA with various strength-
ening pastes. Each type of target concrete specimen consisted of six cubic specimens with
dimensions of 100 mm3 and six cylindrical specimens with diameters of 100 ± 1 mm and
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heights of 50 ± 2 mm. All specimens were cured in a laboratory environment (25 ± 2 ◦C,
95 ± 2% RH) for 28 days. In order to prepare samples for microstructure analysis, slices
were cut from the fractured hardened blocks obtained after the mechanical strength test-
ing, whose surface included the desired testing areas containing the interface. Detailed
procedures for sample preparation can be obtained from Section 2.2.1.

2.3. Test Methods
2.3.1. Performance Testing of Strengthening Pastes

Compressive strength testing was conducted on the 2000 kN servo-hydraulic com-
pressional testing machine according to GB/T 17671-2021 [59]. Moreover, RCPT was used
to determine the resistance to chloride penetration of each group of strengthening paste.
The procedure from specimen preparation to testing is detailed in the ASTM C1202-19
standard [60]. Furthermore, each group’s chloride ion permeability of the strengthening
paste was qualitatively graded via the mean electrical flux.

Microscopic examination of different types of hardened paste was conducted using
scanning electron microscopy (SEM, TESCAN MIRA LMS, Czech Republic) equipped with
EDS (Oxford Xplore). BSE-EDS pictures were captured and utilized to investigate the
strengthening mechanisms of FA and GBFS on the microstructure of hardened MPC pastes,
thus providing more information on the effect of the paste’s properties on RAC performance.
The imaging machine operated at a 15 mm working distance with a 15 kV voltage.

2.3.2. Characterization Testing of RCA

(1) Water absorption

The water absorption of RCA was derived via the following equation:

Water absorption ratio =
wet weight − dry weight

dry weight
∗ 100% (1)

The wet weight and dry weight of aggregates could be measured based on Chinese
Standard GB/T 14685-2022 [53].

(2) Crushing value

The crushing value tests of RCAs were carried out based on Chinese Standard
GB/T 14685-2022 [53], and the crushing value could be calculated following the formula below:

Curshing value =
G2

G1
∗ 100% (2)

G1 and G2 were the total weight of aggregates and the weight of crushed aggregates
finer than 2.36 mm, respectively.

2.3.3. Macroscopic Properties Testing of Concrete

Each concrete group’s compressive and splitting tensile strengths were tested using
three cubes, following the guidelines specified in GB/T 50081-2019 [61]. The RCPT was
conducted to determine each concrete group’s chloride ion penetration resistance after
28 days of curing, and the evaluation was conducted following ASTM C1202-19 [60].

2.3.4. Microscopic Characterization Testing of Interfaces

(1) BSE-EDS testing

To examine the microstructure and precise elemental distribution, BSE-EDS imaging
was carried out on the bond interfaces between strengthening pastes and RCA0, as well
as the new ITZ regions. This made it possible to disclose the bonding and strengthening
mechanisms of the strengthening paste on RCA0 and the new ITZ. The preparation method
of the BSE-EDS testing samples has been described in Section 2.2.1.
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(2) New ITZ microhardness testing

In addition to the microstructural composition, the microscopic mechanical proper-
ties of materials are also critical microstructural characteristics. Microhardness (Vickers
hardness) has been used to understand the microscopic mechanical characteristics of
RAC [62–64]. Therefore, to further validate the new ITZ performance improvement due
to MPC modification, microhardness tests were performed on the regions containing the
new ITZ in all RAC specimens, using a digital Vickers microhardness tester equipped with
40 measurement objectives and 10 magnification objectives (HV-1000BZ, Shanghai, China).
As shown in Figure 3, the test region size was 240 µm × 250 µm, and a 9 × 6 indent points
matrix was applied within the region. The samples employed for the microhardness test
are detailed in Section 2.2.3. At least three areas were chosen randomly from two sam-
ples of each target concrete for testing. The two-dimensional microhardness distribution
maps for each indent region were generated using the Surfer 13’s Contour map feature.
The new ITZ’s boundaries were identified based on the color variations observed in the
microhardness distribution maps. The average microhardness values of the new ITZ were
determined using statistical analysis according to the microhardness values of each indent
point within the boundaries.
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3. Results and Discussion
3.1. Performance Characteristics of Strengthening Pastes
3.1.1. Macroscopic Performance of Strengthening Pastes

Based on previous research, the modified RCA and RAC’s properties correlate firmly
with the surface-strengthening paste’s performance, which can be strengthened through
adding appropriate amounts of mineral admixtures. Therefore, this section compared the
compressive strength and chloride ion penetration resistance of hardened MPC. On this
basis, it was expected to select the best-performing FA-doped or GBFS-doped MPC paste
for coating RCA.

The compressive strengths of prefabricated MPC pastes are shown in Figure 4a. It
can be indicated that the compressive strengths of the blended MPC pastes were higher
than that of S-0 without mineral admixture on the condition that the admixture of either
FA or GBFS was 5%, 10%, and 15%. Moreover, it can be further seen that the compressive
strengths of MPC pastes tended to increase and then decrease with increasing dosages of
both mineral admixtures. That is, the optimal dosing for both FA and GBFS is 10%, and in
that condition, the compressive strengths were 60.73 MPa and 64.82 MPa, and an increase
of 7.49 MPa and 11.58 MPa in comparison with S-0 was exhibited, respectively. S-GBFS10
had the most significant gain among them.
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Figure 4b displays the cumulative electrical fluxes that passed through all MPC pastes
in six hours. It can be seen that the cumulative electrical flux for each type of MPC paste
was relatively minimal, categorizing them as “low”. Their excellent resistance to chloride
ion penetration can be attributed to the low water–to–cementitious material ratio and
drying shrinkage of the MPC. Moreover, the graph demonstrates that the electrical fluxes
of the MPC pastes exhibited the most significant diminution through adding 10% mineral
admixtures. Compared to the S-0 paste at 1710C, S-FA10 and S-GBFS10 exhibited reductions
of 137C and 195C, respectively. This indicates that adding additive FA or GBFS in the proper
quantity dramatically improved the MPC paste’s density and impermeability. Combining
these findings with those from the compressive strength test, it was quickly found that a
better comprehensive performance could be obtained on the condition that FA or GBFS
doping was 10%. The chief reason for this could be inferred as the mineral admixture in the
right amount may play the role of physical filling and facilitate the secondary reaction, thus
enhancing the microstructure of MPC paste, yet the excessive substitution of MgO with
mineral admixture resulted in a decrease in the number of hydration products and thus led
to the poor densification of MPC microstructure [65]. Hence, S-FA10 and S-GBFS10 were
chosen to reinforce RCA for their excellent comprehensive performance. The strengthening
mechanism of FA or GBFS for the mineral admixture–MPC system’s microstructure will be
interpreted in detail in the following section.

3.1.2. Enhancement Mechanisms for MPC via FA or GBFS

To explore the strengthening mechanism of both mineral admixtures on the macro-
scopic properties of MPC pastes, Figure 5a,b displays the BSE-EDS images of hardened
S-FA10 and S-GBFS10 pastes at high magnification, respectively. It can be recognized that
both hardened pastes exhibited the creation of the struvite phase, and unreacted MgO
grains were detected throughout the matrix and appear to be the nucleation sites for stru-
vite formation. It was evident from the reaction equation between MgO and ADP that
there would be some solid volume expansion from MgO to struvite, resulting in a denser
microstructure of the MPC paste. Due to dehydration under vacuum for examination, the
embedded struvite particles in the polished parts seemed severely cracked. The spherical
particles of various sizes in Figure 5a were FA particles. It can be seen that several medium-
sized (10–20 µm) spherical particles were identified as surface depressions, indicating
that the particles underwent partial reactions [66], whereas smaller particles with similar
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erosion depths on their surfaces may have undergone complete reactions or dissolution. In
the EDS images of Figure 5a, the region where the elements P and Ca appeared to overlap
significantly, marked with yellow wireframes, as well as the region where the elements
Mg, P, Si, and Al seemed to coincide, marked with blue coils, also provided evidence of
chemical reactions between the aluminosilicate FA particles and the other constituents in
the MPC paste. The reaction products were speculated to be calcium phosphate, enstatite,
and berlinite [41] based on recent evaluations [51,67]. In Figure 5b, the angular particles
of various sizes rich in Ca, Al, and Si elements corresponded to the unreacted calcium
aluminosilicate glassy portion in GBFS particles. The regions highlighted with the yellow
coils in the elemental maps of Figure 5b indicated that the active calcium oxide in GBFS
reacted with phosphate in the matrix, leading to the formation of calcium phosphate gel,
which was consistent with the mechanism of GBFS being used as an adsorbent for phos-
phate removal in wastewater systems [68]. Therefore, it may be inferred that FA or GBFS
will form a strong link with the surrounding hydration products and act as aggregates
within the matrix due to their dissolution and subsequent reaction. Consequently, the
MPC matrix’s integrity was improved, and its strength and permeability resistance were
significantly boosted.
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Furthermore, based on the percentages of calcium oxide and aluminosilicate compo-
nents in the mineral admixtures, as well as the test results of compressive strength and
chloride ion penetration resistance, we prefer to believe that the calcium oxide-related
reaction dominated the synergistic effect between MPC and FA or GBFS. This finding
aligned with the conclusion drawn in the reference [52].

3.2. Performance Characteristics of RCA

The modified RCA obtained from S-0, S-FA10, and S-GBFS10 pastes were labeled
R-1, R-2, and R-3, respectively. Figure 6 displays photographs of the modified RCA and
untreated RCA0, with a coin diameter of approximately 25 mm. The water absorption
and crushing values of RCA before and after the surface reinforcement are shown in
Figure 7. The means of the surface-reinforced RCA were observed to be reduced compared
to RCA0 in terms of water adsorption ratios and crushing values. Moreover, Figure 7
shows that R-2 and R-3 exhibited a more significant reduction than R-1 in consistency
with the analysis result of strengthening paste properties. However, the improvement
in water absorption was not salient, with a maximum decrease of 1.8% in comparison to
RCA0. Moreover, the chief reasons for this involved the inability of coated pastes to prevent
water from infiltrating and suffusing RCA0 due to the almost negligible amount of the
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paste compared to the weight of RCA [43]. The result obtained was in agreement with the
previous study [28].
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Figure 6. The modified RCA and RCA0.
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Figure 7. The effects of surface reinforcement on water absorption and crushing value of RCA.

To verify the validity of surface reinforcement, the RAC was prepared from RCA0,
R-1, R-2, and R-3, and labeled as C-0, C-1, C-2, and C-3, respectively. As the properties of
the concrete exhibited a strong correlation with the moisture state of the aggregate, RCA0,
R-1, R-2, and R-3 were dried at above 40 ◦C for 3 days prior to preparing the concrete. The
moisture content of RCA0, R-1, R-2, and R-3 were tested to be 1.2%, 1.2%, 1.3%, and 1.1%,
respectively. Moreover, the macroscopic properties of RACs, as well as the microstructural
properties of ITZs between the MPC and RCA0 or fresh mortar, were investigated.

3.3. Macroscopic Properties of Concrete
3.3.1. Mechanical Properties

The 28-day compressive and splitting tensile strengths of all RAC are shown in
Figure 8a,b, respectively. It can be seen that the RAC samples obtained after the enhance-
ment treatment with different MPC pastes exhibited increased compressive and splitting
tensile strengths compared to C-0. The increase in strengths may be attributed to the
high bonding performance of the MPC paste to RCA0 or the new mortar, the filling of
micro-defects in RCA0, and the strengthening of the new ITZ. This inference will be sub-
stantiated in the following sections. On the condition that 10% FA or GBFS was added,
the compressive strength of RAC increased compared to C-1, with increments of 11.32%
and 24.13%, respectively. Moreover, C-3 exhibited the highest improvement degree. The
trend in splitting tensile strength aligned with compressive strength, and C-1, C-2, and
C-3 showed progressive increasing values, which rose by 14.43%, 37.31%, and 49.75%,
respectively, compared to C-0. The modified RAC’s mechanical strength variations aligned
with the performance of the MPC paste.
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3.3.2. Chloride Ion Penetration Resistance

Figure 9 displays the cumulative electrical flux for each target concrete. As observed
in the figure, the precoating for RCA0 with various MPC pastes improved RAC’s chloride
ion penetration resistance to varying degrees, possibly due to the enhanced bonding of
RCA0 to the new mortar as well as the better chloride ion penetration resistance of the
MPC pastes. Detailed evidence for this hypothesis will be elaborated in the following
sections. Additionally, double mixing had a favorable effect on the performance of the
new ITZ in the modified RAC, thereby improving its chloride ion penetration resistance to
some extent. The cumulative electric fluxes passed through C-1, C-2, and C-3 were 2015 C,
1804 C, and 1568 C, respectively, showing a decreasing trend. Compared to C-0, these
values represented a reduction of approximately 26.9%, 34.5%, and 43.1%, respectively. The
observed variation in RAC’s chloride ion penetration resistance likewise aligned with the
performance trend of MPC paste. According to ASTM C1202, untreated C-0 can be classified
as “moderate”, whereas the RAC enhanced with S-FA10 or S-GBFS10 was classified as
“low”. The reduced chloride ion permeability indicated that modifying RAC with MPC
enhanced its anticipated durability.

3.4. Interfacial Bond Behavior and Microscopic Characteristics

To investigate the bond efficiency of the strengthening paste as a “bridge” and the
mechanisms of filling in RCA0 and strengthening the new ITZ, BSE-EDS images were
captured at a magnification of 500 times to analyze the microstructure at the interface
between various MPC pastes and the new or old mortar. Figure 10a–c presents the typical
BSE-EDS images of the bond interfaces between hardened S-0, S-FA10, or S-GBFS10 pastes
and RCA0. The images show that all strengthening pastes exhibited excellent bonding with
RCA0, forming relatively dense, robust, and uniform interface regions. The regions high-
lighted with the yellow coils in Figure 10 demonstrated that the P element was prominently
incorporated into the old mortar zones, overlapping with the Ca element. This observation
indicated excellent mechanical and chemical interlocking ascribed to MPC pastes’ infiltra-
tion and filling in RCA0, as well as the reaction between soluble acidic phosphates from
the infiltrated MPC pastes and Ca(OH)2 in the old mortar, resulting in a favorable bond
between the MPC paste and the RCA0. The characteristics mentioned above likewise aided
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in improving the pore structure of the RCA0 surface, resulting in surface reinforcement.
Moreover, mineral admixtures in MPC pastes can operate as fillers through penetrating
the pores of the old mortar and interface, as shown in Figure 10b. They might also have a
pozzolanic effect that formed new hydrated products and improved the homogeneity and
density of the old mortar and interface [69,70].
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Figure 9. Chloride ion penetration resistances of various concrete. 
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For preventing interference from elements present in mineral admixtures, C-1 was
used as an example to clarify the bonding mechanism of the strengthening paste to the new
mortar, as well as its reinforcing mechanism on the new ITZ based on BSE-EDS analysis,
as displayed in Figure 11a. For comparison, a typical BSE image of the new ITZ between
RCA0 and the new mortar in the untreated C-0 sample is shown in Figure 11b. As seen
in Figure 11b, it was evident that there were sizeable cracks in C-0’s new ITZ, probably
due to interfacial debonding. Large pores can also be observed within the new ITZ due to
the wall effect and increased moisture content. Consequently, C-0’s final performance was
significantly weakened. Figure 11a shows a significant reduction of pores and microcracks
in the new ITZ of C-1 compared to C-0. The distributions of Ca, P, and Mg elements
within the area circled in yellow in Figure 11a indicated that Ca ions from the new mortar
permeated into the MPC matrix near the interface, reacting with struvite or unhydrated
phosphates to generate new cementitious materials, leading to a denser hardened MPC
matrix near the interface and promoting hydration reactions in the new ITZ. The same
phenomenon can also be observed in C-2 and C-3. These findings indicated that the MPC
pastes exhibited excellent chemical bonding with the new mortar, significantly lowering
the likelihood of shrinkage-induced debonding cracks and the appearance of large pores
in the modified RAC’s new ITZ. This contributed to the new ITZ’s more compact and
superior microstructure, further enhanced through the beneficial effects of the double
mixing procedure.
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Overall, the MPC paste precoating treatment yielded excellent interfacial bonding
properties and microstructure, which exposed the mechanism for obtaining improved
mechanical strengths and chloride ion permeability resistance of the modified RAC. Mean-
while, these findings also provided evidence to support the inferences in Section 3.3.

3.5. ITZ Microhardness Analysis

Microhardness analysis was used to quantitatively evaluate the micro-mechanical
characteristics of the new ITZ in RAC to define the improving effectiveness of the surface
treatment method employing MPC paste. Figures 12 and 13 present the typical microhard-
ness distribution maps and the average microhardness values for the new ITZs of C-0, C-1,
C-2, and C-3. The boundaries of the new ITZ in the microhardness distribution maps were
depicted with red dashed lines. In all samples, the microhardness values were relatively
low when located within the ITZs (with a width of approximately 85 µm to 150 µm), but
they rose and stayed steady as one moved away from the ITZs, as shown in Figure 12.
Figure 12a–d shows that the new ITZs’ widths (approximately between 85 µm and 110 µm)
following enhancement with various MPC pastes dramatically decreased in comparison to
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the width (approximately between 110 µm and 150 µm) of the untreated C-0, accompanied
with higher microhardness values. The average microhardness values of the new ITZs
in C-1, C-2, and C-3 rose by 30.2%, 30.4%, and 33.4%, respectively, compared to C-0, as
shown in Figure 13. These findings indicated that the new ITZ of the modified RAC has
been effectively strengthened, aligning with the BSE observations and providing further
evidence for the effectiveness of the proposed strengthening method in this study.
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4. Conclusions

In this work, seven surface-strengthening pastes were prepared; then, compressive
strength and chloride ion penetration resistance were comparatively studied; afterward,
the most suitable FA–MPC and GBFS–MPC hybrid slurries with the best comprehensive
performance were used to coat RCA0, followed by 3 days of maintenance, and MPC
slurries without mineral admixtures were also selected for comparison purposes; lastly,
the physical properties of RCA before and after the surface reinforcement were compared,
and the macroscopic and microscopic properties of target concrete were evaluated. The
conclusions are summarized as follows:

(1) S-FA10 and S-GBFS10 were most suitable to coat RCA0 due to the higher strength and
chloride ion penetration resistance, and the reason was that the mineral admixtures
facilitated secondary reactions and enhanced the integrity of the hardened pastes.

(2) After the surface reinforcement with S-0, S-FA10, and S-GBFS10, the crushing value of
RCA decreased from 19.52% to 19.14%, 18.86%, and 17.93%, respectively. Nevertheless,
surface-strengthening pastes had little effect on the water absorption of RCA. Further-
more, the RAC prepared from R-1, R-2, and R-3 performed better than that from RCA0
regarding mechanical properties and durability. The enhancement efficiencies on the
performance of RCA and RAC improved with strengthening paste performance.

(3) The BSE-EDS observations of the modified RAC showed the presence of mechanical
and chemical interlocking between the strengthening paste and RCA0 or new mortar,
which led to the effective filling of micro-defects near the RCA0 surface and the
well-bonded interfaces between MPC pastes and RCA0 or new mortar. Furthermore,
a denser microstructure within the new ITZ was observed to further improve the
strengths and durability of the RAC under the combined effect of the precoating
treatment and the double mixing method.

(4) Based on the microhardness test results of the ITZs, it can be seen that the breadths of
the new ITZs were reduced, and the average microhardness values were improved
after modification with MPC pastes, showing an improvement in its micromechanical
properties, which further confirmed the effectiveness of the surface-strengthening
treatment using MPC pastes.

Overall, the surface treatment method proposed in this study was considered effective
and applicable. Furthermore, the construction duration was shortened compared to previ-
ous studies [34], thus improving the operability of RCA for applications in practice. In the
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future, the effects of MPC slurry precoating treatment on the morphology of RCA [71] as
well as on heat resistance [72] and the internal moisture content [73] of RAC need further
investigation, which has essential implications for the application of MPC in the surface
modification of RCA.

Author Contributions: S.W., Y.G., X.X. and X.Y. conceived and designed the experiments; S.W., J.H.,
Z.S. and X.X. performed the experiments; S.W., J.H., Z.S. and X.X. analyzed the data; S.W. and X.X.
wrote the paper; and all authors revised the paper. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was supported by the Natural Science Foundation of the Jiangsu Higher
Education Institutions of China (No. 22KJB560010) and the Nantong Basic Science Research Program
of China (No. JC12022098).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ryu, J.S. Improvement on Strength and Impermeability of Recycled Concrete Made from Crushed Concrete Coarse Aggregate. J.

Mater. Sci. Lett. 2002, 21, 1565–1567. [CrossRef]
2. Poon, C.S.; Shui, Z.H.; Lam, L. Effect of Microstructure of ITZ on Compressive Strength of Concrete Prepared with Recycled

Aggregates. Constr. Build. Mater. 2004, 18, 461–468. [CrossRef]
3. Kou, S.C.; Poon, C.S.; Chan, D. Influence of Fly Ash as Cement Replacement on the Properties of Recycled Aggregate Concrete. J.

Mater. Civ. Eng. 2007, 19, 709–717. [CrossRef]
4. Ferreira, R.L.S.; Anjos, M.A.S.; Maia, C.; Pinto, L.; de Azevedo, A.R.G.; de Brito, J. Long-Term Analysis of the Physical Properties

of the Mixed Recycled Aggregate and Their Effect on the Properties of Mortars. Constr. Build. Mater. 2021, 274, 121796. [CrossRef]
5. Makul, N.; Fediuk, R.; Amran, M.; Zeyad, A.M.; Klyuev, S.; Chulkova, I.; Ozbakkaloglu, T.; Vatin, N.; Karelina, M.; Azevedo, A.

Design Strategy for Recycled Aggregate Concrete: A Review of Status and Future Perspectives. Crystals 2021, 11, 695. [CrossRef]
6. González-Fonteboa, B.; Martínez-Abella, F. Concretes with Aggregates from Demolition Waste and Silica Fume. Materials and

Mechanical Properties. Build. Environ. 2008, 43, 429–437. [CrossRef]
7. Otsuki, N.; Miyazato, S.; Yodsudjai, W. Influence of Recycled Aggregate on Interfacial Transition Zone, Strength, Chloride

Penetration and Carbonation of Concrete. J. Mater. Civ. Eng. 2003, 15, 443–451. [CrossRef]
8. Ahmed, W.; Lim, C.W. Production of Sustainable and Structural Fiber Reinforced Recycled Aggregate Concrete with Improved

Fracture Properties: A Review. J. Clean. Prod. 2021, 279, 123832. [CrossRef]
9. Belén, G.-F.; Fernando, M.-A.; Diego, C.L.; Sindy, S.-P. Stress–strain Relationship in Axial Compression for Concrete Using

Recycled Saturated Coarse Aggregate. Constr. Build. Mater. 2011, 25, 2335–2342. [CrossRef]
10. Butler, L.; West, J.S.; Tighe, S.L. The Effect of Recycled Concrete Aggregate Properties on the Bond Strength between RCA

Concrete and Steel Reinforcement. Cem. Concr. Res. 2011, 41, 1037–1049. [CrossRef]
11. Domingo-Cabo, A.; Lázaro, C.; López-Gayarre, F.; Serrano-López, M.A.; Serna, P.; Castaño-Tabares, J.O. Creep and Shrinkage of

Recycled Aggregate Concrete. Constr. Build. Mater. 2009, 23, 2545–2553. [CrossRef]
12. Golafshani, E.M.; Behnood, A. Automatic Regression Methods for Formulation of Elastic Modulus of Recycled Aggregate

Concrete. Appl. Soft Comput. 2018, 64, 377–400. [CrossRef]
13. Liang, C.; Pan, B.; Ma, Z.; He, Z.; Duan, Z. Utilization of CO2 Curing to Enhance the Properties of Recycled Aggregate and

Prepared Concrete: A Review. Cem. Concr. Compos. 2020, 105, 103446. [CrossRef]
14. Golafshani, E.M.; Behnood, A. Application of Soft Computing Methods for Predicting the Elastic Modulus of Recycled Aggregate

Concrete. J. Clean. Prod. 2018, 176, 1163–1176. [CrossRef]
15. Djerbi, A. Effect of Recycled Coarse Aggregate on the New Interfacial Transition Zone Concrete. Constr. Build. Mater. 2018, 190,

1023–1033. [CrossRef]
16. Wang, R.; Yu, N.; Li, Y. Methods for Improving the Microstructure of Recycled Concrete Aggregate: A Review. Constr. Build.

Mater. 2020, 242, 118164. [CrossRef]
17. Kou, S.-C.; Poon, C.S. Properties of Concrete Prepared with PVA-Impregnated Recycled Concrete Aggregates. Cem. Concr. Compos.

2010, 32, 649–654. [CrossRef]
18. Tsujino, M.; Noguchi, T.; Tamura, M.; Kanematsu, M.; Maruyama, I. Application of Conventionally Recycled Coarse Aggregate to

Concrete Structure by Surface Modification Treatment. J. Adv. Concr. Technol. 2007, 5, 13–25. [CrossRef]

https://doi.org/10.1023/A:1020349011716
https://doi.org/10.1016/j.conbuildmat.2004.03.005
https://doi.org/10.1061/(ASCE)0899-1561(2007)19:9(709)
https://doi.org/10.1016/j.conbuildmat.2020.121796
https://doi.org/10.3390/cryst11060695
https://doi.org/10.1016/j.buildenv.2007.01.008
https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(443)
https://doi.org/10.1016/j.jclepro.2020.123832
https://doi.org/10.1016/j.conbuildmat.2010.11.031
https://doi.org/10.1016/j.cemconres.2011.06.004
https://doi.org/10.1016/j.conbuildmat.2009.02.018
https://doi.org/10.1016/j.asoc.2017.12.030
https://doi.org/10.1016/j.cemconcomp.2019.103446
https://doi.org/10.1016/j.jclepro.2017.11.186
https://doi.org/10.1016/j.conbuildmat.2018.09.180
https://doi.org/10.1016/j.conbuildmat.2020.118164
https://doi.org/10.1016/j.cemconcomp.2010.05.003
https://doi.org/10.3151/jact.5.13


Materials 2024, 17, 122 17 of 18

19. Spaeth, V.; Tegguer, A.D. Improvement of Recycled Concrete Aggregate Properties by Polymer Treatments. Int. J. Sustain. Built
Environ. 2013, 2, 143–152. [CrossRef]

20. Abbas, A.; Fathifazl, G.; Fournier, B.; Isgor, O.B.; Zavadil, R.; Razaqpur, A.G.; Foo, S. Quantification of the Residual Mortar
Content in Recycled Concrete Aggregates by Image Analysis. Mater. Charact. 2009, 60, 716–728. [CrossRef]

21. Shayan, A.X.A. Performance and Properties of Structural Concrete Made with Recycled Concrete Aggregate. ACI Mater. J. 2003,
100, 371–380. [CrossRef]

22. Shaban, W.M.; Yang, J.; Su, H.; Liu, Q.; Tsang, D.C.W.; Wang, L.; Xie, J.; Li, L. Properties of Recycled Concrete Aggregates
Strengthened by Different Types of Pozzolan Slurry. Constr. Build. Mater. 2019, 216, 632–647. [CrossRef]

23. Ouyang, K.; Shi, C.; Chu, H.; Guo, H.; Song, B.; Ding, Y.; Guan, X.; Zhu, J.; Zhang, H.; Wang, Y.; et al. An Overview on the
Efficiency of Different Pretreatment Techniques for Recycled Concrete Aggregate. J. Clean. Prod. 2020, 263, 121264. [CrossRef]

24. Zhang, H.; Zhao, Y.; Meng, T.; Shah, S.P. Surface Treatment on Recycled Coarse Aggregates with Nanomaterials. J. Mater. Civ.
Eng. 2016, 28, 04015094. [CrossRef]

25. Zhang, H.; Ji, T.; Liu, H.; Su, S. Modifying Recycled Aggregate Concrete by Aggregate Surface Treatment Using Sulphoaluminate
Cement and Basalt Powder. Constr. Build. Mater. 2018, 192, 526–537. [CrossRef]

26. Choi, H.; Choi, H.; Lim, M.; Inoue, M.; Kitagaki, R.; Noguchi, T. Evaluation on the Mechanical Performance of Low-Quality
Recycled Aggregate through Interface Enhancement between Cement Matrix and Coarse Aggregate by Surface Modification
Technology. Int. J. Concr. Struct. Mater. 2016, 10, 87–97. [CrossRef]

27. Yew, M.K.; Yew, M.C.; Beh, J.H.; Saw, L.H.; Lim, S.K. Effects of Pre-Treated on Dura Shell and Tenera Shell for High Strength
Lightweight Concrete. J. Build. Eng. 2021, 42, 102493. [CrossRef]

28. Mistri, A.; Dhami, N.; Bhattacharyya, S.K.; Barai, S.V.; Mukherjee, A.; Biswas, W.K. Environmental Implications of the Use of
Bio-Cement Treated Recycled Aggregate in Concrete. Resour. Conserv. Recycl. 2021, 167, 105436. [CrossRef]

29. Zeng, W.; Zhao, Y.; Poon, C.S.; Feng, Z.; Lu, Z.; Shah, S.P. Using Microbial Carbonate Precipitation to Improve the Properties of
Recycled Aggregate. Constr. Build. Mater. 2019, 228, 116743. [CrossRef]

30. Tam, V.W.Y.; Butera, A.; Le, K.N.; Li, W. Utilising CO2 Technologies for Recycled Aggregate Concrete: A Critical Review. Constr.
Build. Mater. 2020, 250, 118903. [CrossRef]

31. Hosseini Zadeh, A.; Mamirov, M.; Kim, S.; Hu, J. CO2-Treatment of Recycled Concrete Aggregates to Improve Mechanical and
Environmental Properties for Unbound Applications. Constr. Build. Mater. 2021, 275, 122180. [CrossRef]

32. Qiu, J.; Tng, D.Q.S.; Yang, E.-H. Surface Treatment of Recycled Concrete Aggregates through Microbial Carbonate Precipitation.
Constr. Build. Mater. 2014, 57, 144–150. [CrossRef]

33. De Muynck, W.; De Belie, N.; Verstraete, W. Microbial Carbonate Precipitation in Construction Materials: A Review. Ecol. Eng.
2010, 36, 118–136. [CrossRef]

34. Chen, X.; Xiao, X.; Wu, Q.; Cheng, Z.; Xu, X.; Cheng, S.; Zhao, R. Effect of Magnesium Phosphate Cement on the Mechanical
Properties and Microstructure of Recycled Aggregate and Recycled Aggregate Concrete. J. Build. Eng. 2022, 46, 103611. [CrossRef]

35. Qiao, F.; Chau, C.K.; Li, Z. Property Evaluation of Magnesium Phosphate Cement Mortar as Patch Repair Material. Constr. Build.
Mater. 2010, 24, 695–700. [CrossRef]

36. Opara, E.U.; Karthäuser, J.; Köhler, R.; Kowald, T.; Koddenberg, T.; Mai, C. Low-Carbon Magnesium Potassium Phosphate
Cement (MKPC) Binder Comprising Caustic Calcined Magnesia and Potassium Hydroxide Activated Biochar from Softwood
Technical Lignin. Constr. Build. Mater. 2023, 398, 132475. [CrossRef]

37. Du, Y.; Gao, P.; Yang, J.; Shi, F. Research on the Chloride Ion Penetration Resistance of Magnesium Phosphate Cement (MPC)
Material as Coating for Reinforced Concrete Structures. Coatings 2020, 10, 1145. [CrossRef]

38. Lahalle, H.; Patapy, C.; Glid, M.; Renaudin, G.; Cyr, M. Microstructural Evolution/Durability of Magnesium Phosphate Cement
Paste over Time in Neutral and Basic Environments. Cem. Concr. Res. 2019, 122, 42–58. [CrossRef]

39. Xing, S.; Wu, C. Preparation of Magnesium Phosphate Cement and Application in Concrete Repair. MATEC Web Conf. 2018,
142, 02007. [CrossRef]

40. Wagh, A.S. Chemically Bonded Phosphate Ceramics: Twenty-First Century Materials with Diverse Applications; Elsevier: Amsterdam,
The Netherlands, 2004.

41. Haque, M.A.; Chen, B.; Li, S. Water-Resisting Performances and Mechanisms of Magnesium Phosphate Cement Mortars
Comprising with Fly-Ash and Silica Fume. J. Clean. Prod. 2022, 369, 133347. [CrossRef]

42. He, H.; Shuang, E.; Wen, T.; Yao, J.; Wang, X.; He, C.; Yu, Y. Employing Novel N-Doped Graphene Quantum Dots to Improve
Chloride Binding of Cement. Constr. Build. Mater. 2023, 401, 132944. [CrossRef]

43. Tan, H.; Yang, Z.; Deng, X.; Guo, H.; Zhang, J.; Zheng, Z.; Li, M.; Chen, P.; He, X.; Yang, J.; et al. Surface Reinforcement of Recycled
Aggregates by Multi-Diameter Recycled Powder Blended Cement Paste. J. Build. Eng. 2023, 64, 105609. [CrossRef]

44. Liu, T.; Wang, Z.; Zou, D.; Zhou, A.; Du, J. Strength Enhancement of Recycled Aggregate Pervious Concrete Using a Cement
Paste Redistribution Method. Cem. Concr. Res. 2019, 122, 72–82. [CrossRef]

45. Le, T.; Le Saout, G.; Garcia-Diaz, E.; Betrancourt, D.; Rémond, S. Hardened Behavior of Mortar Based on Recycled Aggregate:
Influence of Saturation State at Macro- and Microscopic Scales. Constr. Build. Mater. 2017, 141, 479–490. [CrossRef]

46. Covill, A.; Hyatt, N.C.; Hill, J.; Collier, N.C. Development of Magnesium Phosphate Cements for Encapsulation of Radioactive
Waste. Adv. Appl. Ceram. 2011, 110, 151–156. [CrossRef]

https://doi.org/10.1016/j.ijsbe.2014.03.003
https://doi.org/10.1016/j.matchar.2009.01.010
https://doi.org/10.14359/12812
https://doi.org/10.1016/j.conbuildmat.2019.04.231
https://doi.org/10.1016/j.jclepro.2020.121264
https://doi.org/10.1061/(ASCE)MT.1943-5533.0001368
https://doi.org/10.1016/j.conbuildmat.2018.10.160
https://doi.org/10.1007/s40069-015-0124-5
https://doi.org/10.1016/j.jobe.2021.102493
https://doi.org/10.1016/j.resconrec.2021.105436
https://doi.org/10.1016/j.conbuildmat.2019.116743
https://doi.org/10.1016/j.conbuildmat.2020.118903
https://doi.org/10.1016/j.conbuildmat.2020.122180
https://doi.org/10.1016/j.conbuildmat.2014.01.085
https://doi.org/10.1016/j.ecoleng.2009.02.006
https://doi.org/10.1016/j.jobe.2021.103611
https://doi.org/10.1016/j.conbuildmat.2009.10.039
https://doi.org/10.1016/j.conbuildmat.2023.132475
https://doi.org/10.3390/coatings10121145
https://doi.org/10.1016/j.cemconres.2019.04.011
https://doi.org/10.1051/matecconf/201814202007
https://doi.org/10.1016/j.jclepro.2022.133347
https://doi.org/10.1016/j.conbuildmat.2023.132944
https://doi.org/10.1016/j.jobe.2022.105609
https://doi.org/10.1016/j.cemconres.2019.05.004
https://doi.org/10.1016/j.conbuildmat.2017.02.035
https://doi.org/10.1179/1743676110Y.0000000008


Materials 2024, 17, 122 18 of 18

47. Bernasconi, D.; Viani, A.; Zárybnická, L.; Mácová, P.; Bordignon, S.; Das, G.; Borfecchia, E.; Štefančič, M.; Caviglia, C.; Destefanis,
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