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A Statistical and Optimization Study

on the Influence of Different Abrasive

Types on Kerf Quality and

Productivity during Abrasive Waterjet

(AWJ) Milling of Ti-4Al-6V. Materials

2024, 17, 11. https://doi.org/

10.3390/ma17010011

Academic Editor: Silvio Genna

Received: 17 November 2023

Revised: 10 December 2023

Accepted: 14 December 2023

Published: 19 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

A Statistical and Optimization Study on the Influence of
Different Abrasive Types on Kerf Quality and Productivity
during Abrasive Waterjet (AWJ) Milling of Ti-4Al-6V
Nikolaos E. Karkalos 1, Lisa Dekster 2 , Rafał Kudelski 2 and Panagiotis Karmiris-Obratański 1,2,*
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Abstract: Non-conventional machining processes offer significant advantages over conventional
ones, especially in terms of the productivity, cost, and surface integrity of the produced parts due
to their higher flexibility. Abrasive waterjet machining, in particular, constitutes an ecologically
friendly process with a negligible thermal impact on a workpiece, and it has considerable capabilities
for obtaining the desired outcome by regulating some of its numerous parameters. Among these
parameters, the abrasive type is particularly important due to its hardness, mesh size, and shape,
which lead to considerable deviations on the obtained depth, kerf characteristics, and productivity.
Thus, in this work, a comprehensive comparison is conducted on the use of garnet and silicon carbide
particles for the slot milling of the Ti-6Al-4V alloy under different conditions. The capabilities of
both abrasive materials are evaluated by statistical analysis regarding the depth of penetration,
kerf width, kerf taper angle, and material removal rate (MRR), which are obtained under the same
process conditions. Finally, a multi-objective optimization based on grey relational analysis (GRA)
is performed for several different practical cases. It was found that, although silicon carbide is
more efficient in optimizing individual process outputs, the use of a garnet abrasive can lead to
considerably better trade-offs between two or more objectives of the machining process.

Keywords: abrasive waterjet milling; slot milling; garnet; silicon carbide; grey relational analysis

1. Introduction

Titanium alloys exhibit outstanding corrosion resistance, high specific strength, and
low weight, making them highly advantageous in various industries, including aerospace,
defense, automotive, and bio-medical [1–3]. However, these alloys are categorized as
hard-to-cut materials due to specific inherent characteristics, including unfavorable ther-
mal properties such as low thermal conductivity, as well as high strength and chemical
reactivity [4]. In fact, previous investigations have directly underlined that machining
titanium alloys presents a considerable challenge, primarily due to their poor thermal
conductivity and pronounced chemical reactivity at elevated cutting temperatures [5,6].
These factors severely restrict the machinability of titanium alloys when using conventional
machining techniques, thus necessitating the exploration of alternative approaches such as
laser machining, electro discharge machining (EDM), and abrasive waterjet (AWJ) cutting,
which have gained increasing popularity [7,8]. However, achieving high efficiency and
productivity while minimizing costs and power consumption requires the careful selection
of process conditions [9] that are based on both empirical knowledge and a comprehensive
understanding of the underlying physics [10].

The implementation of AWJ technology has gained significant traction in the manufac-
turing industries for the machining of a diverse spectrum of materials encompassing both
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metallic and non-metallic substrates [11]. The selection of AWJ as a preferred machining
process is justified by several key factors. Firstly, AWJ operates in the absence of a heat-
affected zone [12], thereby ensuring minimal thermal effects on the workpiece. It is higher
than other methods in terms of the material removable rate (MRR) [13], and it has better
surface quality [14]. In abrasive waterjet (AWJ) machining, the process of material removal
is primarily attributed to two predominant modes: cutting and the deformation/ploughing
deformation erosive wear mechanism [15]. The cutting mode involves the micro-cutting of
the material by the high-velocity abrasive particles present in the waterjet. These particles
effectively sever the material, resulting in its removal [16]. Sharp-edged, angular particles
primarily contribute to cutting deformation, while spherical abrasive particles play a signif-
icant role in ploughing deformation. Ductile erosion, on the other hand, occurs as a result
of a combination of cutting wear and deformation wear mechanisms [17]. Brittle erosion
occurs due to the impact of abrasive particles, which results in contact stresses and leads to
crack propagation and MRR [18].

Due to the significance of accurately managing process parameters, several pertinent
studies have been carried out. Alberdi and colleagues [19] made predictions about kerf
geometry by examining the process parameters during the AWJM of an AA 7075-T651,
and they found the stand-off distance to be the most influential factor affecting kerf width.
Rabani et al. [20] applied partial non-linear differential equations for managing AWJM
parameters and forecasting slots while processing a Ti6Al4V titanium alloy. The research
evidenced a significant reduction in errors and a 50% enhancement in precision. This
algorithmic approach allowed for the experiment setup time to be decreased by at least
200%. Using an artificial neural network, Panchal and Hafiz Shaikhb [21] performed an
optimization study of AWJ parameters on specific cutting energies. The results of the AMFR
revealed that the specific cutting energy was mostly affected by the jet pressure (P) and the
abrasive mass flow rate. Uhlmann et al. [22] scrutinized the AWJ milling of near-net-shape
fabrications of TNM-B1 titanium aluminide. The research was centered on amplifying the
producible geometries by modulating the kerf width and depth, thereby augmenting the
efficacy of control depth cutting operations. In a similar vein, Yuan et al. [23] utilized AWJ
milling techniques to manufacture circular pockets in a titanium grade 5 alloy. Employing
a Box–Behnken statistical design, they endeavored to ascertain the optimal amalgamation
of machining parameters (h, ma, vt, and p). The experimental outcomes were successfully
corroborated by a predictive model, registering a maximal deviation of 3.5% in the average
milling depth. Moreover, in the case of pocket milling by creating overlapped slots, it
was proven essential to include a lateral feed as an additional parameter when desiring to
choose the most appropriate milling strategy [24].

Beyond the operational parameters, the physical properties of the abrasive parti-
cles crucially determine the outcomes in AWJM. Empirical studies indicate that abrasive
particles with reduced velocities often lead to the embedment of grit within the subject
material [25,26]. Concurrent research has posited that these embedded entities are, in fact,
fragments of the original abrasive particulate [27–30]. The seminal work by Stachowiak and
Stachowiak [31] unveiled that the morphology of the abrasive material, in superseding its
hardness, largely influences grit embedment. They deduced that particles with an angular
form can induce a particle embedment that is quadruple the rate of spherical-shaped glass
bead particles. Subsequent investigations by Fowler et al. [32,33] delved into the AWJM
treatment of titanium grade 5 with an emphasis on the implications of particle hardness
and the degree of grit embedment. Their research underscored a strong correlation between
the material removal rate (MRR) and the hardness and size of the particles. Furthermore,
the traversal speed (vt) emerged as a pivotal process parameter. Enhancements in both
vt and MRR contribute to diminished surface wave characteristics and particle embed-
ment. In a separate study, Perec [34] employed three disparate abrasives (crushed glass,
garnet, and olivine) to scrutinize the AWJ milling of a Titanium Ti6Al4V workpiece. This
analytical examination encompassed the evaluation of the cutting depth capabilities of
each abrasive material and the wear dynamics of the focusing tube. The results revealed
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that the maximum cutting depth was best attainable with garnet, followed by olivine.
Contrarily, the olivine abrasive invoked the most substantial wear on the focusing tube.
In subsequent studies, Perec et al. [35] and Perec [36] also compared the performance of
different types of materials—with the former study being relevant to the comparison of
three different abrasive materials, namely monocrystalline corundum, fused aluminum
oxide (alumina-zirconia), and white fused aluminum oxide with garnet—regarding their
impact on focusing tube wear, whereby the latter was relevant to the investigation of the
disintegration intensity of alluvial and recycled garnet, as well as corundum and olivine.
In the first study, it was shown that—although the higher hardness of corundum-based
abrasives leads to an easier cutting of very hard materials—it also has a detrimental effect
on focusing tube wear, resulting in an 8–16 times larger wear [35]. Moreover, in the second
study, it was revealed that garnet abrasives had a greater recycling potential of up to 61%
when compared to 46% for olivine and 40% for corundum [36].

Palaniyappan et al. [37] conducted a study comparing two different abrasive materials
and concluded that the recycled electric waste, when used as abrasive material, exhibited
similar friability and performance with commercially available garnet abrasive, but the
cost was nearly half of the cost for the garnet abrasive. Khan and Haque [38] conducted a
comprehensive comparison of various abrasive materials such as garnet, aluminum oxide,
and silicon carbide. It was found that garnet abrasives lead to a wider taper than aluminum
oxide and silicon carbide, whereas the use of silicon carbide particles leads to higher depth
than aluminum oxide and garnet. Subarinthan et al. [39] compared the efficiency of recycled
alumina grains to that of common garnet. Recycled alumina exhibited a higher material
removal rate but also higher kerf width and surface roughness. Srinivas and Ramesh
Babu [40] conducted experiments on the machining of various metal matrix composites
with garnet and silicon carbide abrasives. They observed similar trends with both abrasive
materials, but it was determined that silicon carbide had superior penetration ability due
to its higher hardness and different geometry. Thamizhvalavan et al. [41] performed exper-
iments on hybrid metal matrix composites by using abrasive aluminum oxide particles of
three different mesh sizes (60–100) and garnet abrasive. The results showed that the use of
80-mesh aluminum oxide abrasive resulted in a higher material removal rate (MRR),as well
as improved surface quality, compared to other aluminum oxide abrasives that were stud-
ied in another empirical case study. Regarding the mixing of different abrasive materials,
Yu et al. [42] considered the machining parameters previously discussed alongside certain
abrasive materials (garnet, alumina, and silicon carbide) and their respective mixtures.
Their findings indicated that an amalgamation of 75% alumina and 25% garnet yields pro-
found cuttings with minimal surface roughness during the AWJ machining of an aluminum
alloy block. Balaji et al. [43] performed abrasive waterjet drilling on stainless steel by using
mixtures of different abrasive materials, including silicon carbide, garnet, and aluminum
oxide. The better-performing mixtures, regarding various output quantities and target
materials, were found to be 40% garnet with 60% alumina and 60% garnet with 40% SiC.
Cosansu and Cogun [44] compared to the performance of colemanite powder when used
with garnet abrasive. Their findings revealed the capabilities of colemanite powder to act
as an alternative to garnet, especially in terms of cost, despite its inferior hardness and
overall performance (even when in a mixture with garnet). Zhu et al. [45] proposed the
use of polymer abrasives for polishing purposes, and they showed that they could obtain
more uniform surfaces with higher quality without the embedment phenomenon, whereas
when polymer particles were mixed with particles from a moderately hard material such
as silica, the embedment of particles became obvious. Thus, in that case, subsequent tech-
niques for improving surface integrity, such as burnishing [46], would not be necessary to
be employed.

As evidenced by the literature survey, although several authors have performed com-
parisons between different types of abrasives regarding various objectives, there appears
to be a lack of extensive research on thorough analyses and comparisons of the effect of
garnet and silicon carbide abrasives on various indicators, such as depth of penetration,
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kerf top width, kerf taper angle, as well as material removal rate and an optimization
study of various process parameters in a variety of practical cases. Thus, the present study
investigates the influence of abrasives on depth penetration, as well as on the kerf width,
kerf taper angle, and the material removal rate during the AWJ slot milling of a titanium Ti
6Al4V alloy. Apart from an analysis on the experimental findings when using appropriate
statistical methods, an optimization study based on the grey relational analysis method was
also conducted to determine the optimum parameter values in different multi-objective
practical cases.

2. Materials and Methods

In the current study, AWJ machining experiments were conducted on a Ti-6Al-4V
titanium alloy workpiece. The goal was to create non-through, straight grooves using
various process conditions with two different abrasives and to analyze their effect on
various process outputs. More specifically, in this study, 36 experiments were conducted
using three different levels of traverse speed rate (vf), abrasive mass flow rate (ma), and
stand-off distance (h), as well as two levels of jet pressure (P). The experiments were
separated into two groups. The first group utilized garnet as an abrasive, while the
remaining group used silicon carbide. In order to design an experiment, the Taguchi
orthogonal array was utilized to establish the values of the process conditions regarding
vf, ma, and h, whereas the same experiments were repeated for two different jet pressure
values and two different abrasive materials. The values for the selected parameters, as
shown in Table 1, had a relatively wide range. This means that there can be notable
variations in the results of each case while still staying within the equipment limits.

Table 1. Process parameters values (for both abrasive materials).

No. Jet Pressure
(MPa)

Traverse Feed
Rate (mm/min)

Abrasive Mass
Flow Rate (g/s)

Stand-Off
Distance (mm)

1 150 500 2 1
2 150 500 5 3
3 150 500 8 5
4 150 700 2 3
5 150 700 5 5
6 150 700 8 1
7 150 900 2 5
8 150 900 5 1
9 150 900 8 3
10 250 500 2 1
11 250 500 5 3
12 250 500 8 5
13 250 700 2 3
14 250 700 5 5
15 250 700 8 1
16 250 900 2 5
17 250 900 5 1
18 250 900 8 3

All experiments were conducted on an H.G. RIDDER–Automatisierungs GmbH model
HWE-1520 machine (H.G. RIDDER–Automatisierungs GmbH, Hamm, Germany). As for
the experiments, the main focus of the study was to examine the influence of the abrasive
type on machining characteristics in order to eliminate the influence of the size of the
particles for both silicon carbide and garnet of a 60-mesh size, as shown in Figure 1. Both
abrasives had an irregular geometry with sharp angles, but the silicon carbide particles
seemed to be considerably rougher, a fact that was expected to be reflected in the results.
The jet impingement angle was 90 deg. in every case, the diameter of the focusing tube
was 1 mm, and the waterjet nozzle diameter was 0.3 mm. The workpiece dimensions were
200 mm × 35 mm × 22 mm, and the slots on the titanium workpiece were 35 mm in length.
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(wt), and kerf taper angle (α) after conducting experiments. The measurements were con-
ducted by processing the obtained images through ImageJ software, version 1.54d. For the 
measurements, multiple images were acquired with a magnification of 100×, and they 
were processed by image stitching algorithms in order to obtain the full geometry of the 
grooves. In order to minimize the likelihood of measurement errors, we took three meas-
urements of the groove depth and six measurements of the width. The statistical analysis 
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scheme for the experiments performed. 
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Figure 1. SEM micrographs of the abrasive particles: (a) garnet particles and (b) silicon carbide
particles of a 60-mesh size.

For the measurement of the dimensions of the slots, the VHX-7000 ultra-deep-field mi-
croscope (KEYENCE, Mechelen, Belgium) was used, which is a focus variation microscope
(FVM) with lenses of 20 to 2000× magnification. Thus, this microscope equipped with
a high-resolution camera was used to measure the depth of cut (d), top kerf width (wt),
and kerf taper angle (α) after conducting experiments. The measurements were conducted
by processing the obtained images through ImageJ software, version 1.54d. For the mea-
surements, multiple images were acquired with a magnification of 100×, and they were
processed by image stitching algorithms in order to obtain the full geometry of the grooves.
In order to minimize the likelihood of measurement errors, we took three measurements
of the groove depth and six measurements of the width. The statistical analysis used the
arithmetic mean of the measured values. Figure 2 shows the measurement scheme for the
experiments performed. v
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Using the Taguchi method provides a simple and effective approach for developing
the optimal design of experiments to assess performance and quality. In the first stage of
the analysis of the results, the Q-Dixon test was used to verify that none of the results were
subject to coarse error, and none of the measured values were rejected from the dataset.
To analyze the relationships between variables and to determine if there were significant
differences among the groups or treatments, the ANOVA (analysis of variance) method was
used. Via calculating an F-test, ANOVA assesses the significance of observed differences,
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thereby providing a quantitative measure of the variability between groups and enabling
one to draw conclusions about relationships.

Grey Relational Analysis (GRA) Method

To perform multi-objective optimization based on the various output quantities of
the experiments, the GRA method was employed due to its robustness and relevantly
simple application for various types of problems. It is important to mention that the use of
optimization methods is essential in many cases, not only regarding the improvement of
processes, but also in the field of inverse analysis for the identification of parameters that
cannot be directly measured, e.g., material model parameters [47–49].

This method is relevant to grey system theory, which can handle incomplete infor-
mation in order to determine the correlation between two sequences, even in situations
where the amount of available data is relatively low(such as in machining experiments).
This method was implemented in several steps, beginning from the initial treatment of
the data up to the determination of the total relational grade for each different combina-
tion of input data, after which these relational grades were ranked to find the optimum
combination [50,51].

More specifically, the first step of the implementation of GRA involves the normaliza-
tion of the responses in the range between 0 and 1 in order to avoid the magnitude of the
response having a considerable impact on the results (which would undermine the relative
importance of other responses). Normalization was performed based on the type of each
objective, e.g., whether it should be minimized, maximized, or whether it should be equal
to a specific, nominal value [50,51]. In the case of minimization, the “smaller-is-better”
expression can be used as follows:

zij =
max yij − yij

max yij − min yij
(1)

where yij represents the response for the i-th experimental case and the j-th process indicator
(e.g., depth of penetration), and zij is the normalized value. In the case of maximization,
the following expression, termed as “larger-is-better”, can be employed:

zij =
yij − min yij

max yij − min yij
(2)

Finally, when a specific, nominal value should be obtained, the “nominal-the-best”
expression is used:

zij = 1 −
∣∣yij − yoj

∣∣
max(max yij − yoj, yoj − min yij)

(3)

where yoj represents the specific value that should be obtained regarding the j-th indicator.
Then, the second step of the GRA method was related to the calculation of the grey relational
coefficient (GRC)for each case and indicator. The GRC represents a relation between the
ideal value of each response and the experimentally obtained ones. The calculation of the
GRC is performed based on the following formula [50,51]:

γ(Z0, Zij) =
∆min + ξ∆max
∆oj(k) + ξ∆max

(4)

where Z0(k) represents the reference sequence(with k = 1, . . ., m and m being equal to the
number of process indicators), ∆oj(k) represents the deviation sequence for the respective
Z0(k), and Zij(k) represents the comparability sequence (with ∆oj(k) being equal to |Z0(k) −
Zij(k)|, and ∆max and ∆min being the highest and lowest values of ∆oj(k), respectively).
The distinguishing coefficient ξ can have values in the range between 0 and 1, but, in this
work, it was assumed to be 0.5 as in various other studies.
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After the values of the GRC were calculated, the final step of the GRA involved the
calculation of the grey relational grade (GRG), which was based on the GRC values and
weight factor ωk. The GRG indicates the degree of correlation between two sequences,
where a higher value indicates a greater degree of correlation. The expression for calculating
the GRG was the following [50,51]:

GRG(Z0, Zij) =
n

∑
k=1

ωkγ(Z0, Zij) (5)

Usually, the values of ωk are considered equal for every GRC value that is related to
different process indicators, but, in some cases, special methods that are related to decision
making are employed in order to accurately determine the appropriate ωk values.

3. Results and Discussion
3.1. Experimental Results and Microscope Observation of the Produced Slots

After the experiments were conducted, the depth of penetration, top kerf width, and
kerf taper angle were measured, whereas the MRR was determined based on the geometric
quantities of the produced grooves and kinematic parameters, such as the respective
traverse rate values. The experimental results are presented in Table 2.

Table 2. Experiment results for the AWJ milling. The results for the slots machined with garnet are
presented on the left and those machined with SiC on the right.

No. d
(µm)

wt
(µm) α (deg.) MRR

(mm3/min) No. d
(µm)

wt
(µm) α (deg.) MRR

(mm3/min)

1 790.810 1101.767 27.770 270.990 1 877.480 1146.492 10.220 433.603
2 1616.703 1172.378 12.240 664.185 2 1726.720 1277.933 11.810 791.605
3 1754.653 1261.408 13.430 739.078 3 1994.743 1472.832 10.770 1090.523
4 712.147 1141.668 25.300 401.314 4 558.177 1269.773 27.720 381.532
5 1262.743 1252.365 20.230 695.659 5 1278.603 1429.195 14.730 978.298
6 1245.450 1104.878 15.240 667.430 6 1639.627 1199.443 8.030 1111.164
7 572.290 1170.277 24.940 465.689 7 478.093 1468.102 38.000 470.978
8 531.897 1094.028 34.020 351.845 8 909.307 1199.140 10.620 841.814
9 1293.500 1175.890 12.870 1024.86 9 1331.270 1363.540 15.960 1177.547

10 1266.950 1109.718 14.100 501.384 10 1460.880 1232.620 7.560 758.734
11 2483.850 1184.500 7.800 1048.501 11 3003.560 1414.145 7.430 1535.497
12 3072.490 1362.112 6.540 1551.412 12 3457.523 1548.220 7.980 1838.586
13 1144.907 1177.772 11.070 764.386 13 1077.297 1349.282 16.480 777.169
14 2017.420 1303.998 10.010 1338.632 14 2208.857 1512.865 11.890 1620.090
15 2537.590 1144.638 5.570 1593.649 15 2568.543 1258.582 6.780 1713.854
16 861.990 1317.603 22.220 749.011 16 732.133 1538.195 26.020 778.048
17 1484.097 1116.005 6.320 1271.086 17 1721.937 1301.010 7.250 1676.748
18 2144.347 1224.380 6.970 1857.013 18 2382.173 1422.975 8.650 2273.834

In Figures 3 and 4, photos from two indicative slots that were machined by AWJM
with both abrasive materials are depicted. From these figures and the results of Table 2, it
became evident that the two different abrasives could clearly produce slots with different
kerf characteristics. This is because the slots machined by silicon carbide seemed to have a
larger width and a more irregular bottom surface due to the higher hardness and different
geometry of silicon carbide abrasive particles, as indicated in Figure 1. These differences
will be presented with more details based on the quantitative data that are shown in the
following subsections.
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Materials 2024, 17, 11 9 of 27

3.2. Statistical Analysis of the Experimental Results

To determine the relations between the process parameters and geometric character-
istics of the grooves, an analysis of the variance was performed. The graphs below were
generated by the authors using the expected mean squares results. A variation analysis
was carried out for the qualitative variables, such as the type of abrasive, and quantitative
parameters, such as operating pressure, traverse feed rate, abrasive mass flow rate, and
standoff distance. The dependent variables were the groove’s depth, width, kerf angle, and
material removal rate. Setting up the diagrams in pairs allowed for comparing changes in
the geometry or the influence of other parameters for garnet and silicon carbide.

The significance level for the analysis was set at 5%. The results were statistically
significant and allowed for the rejection of the null hypothesis when the p-value was smaller
than the significance level. A smaller p-value means that the probability of repeating the
experiment with results confirming the alternative hypothesis is increased. This potentially
can be useful when attempting to manufacture components with a target-specified geometry.
For the part of the experiment that was conducted with silicon carbide as an abrasive, the
p-values were generally lower. Having said that, a detailed analysis will be presented
directly in this subsection.

The expected mean squares diagrams showed a relationship between the jet pressure
and the groove’s width and depth for both abrasive types, as represented in Figure 5. For
both the garnet and silicon carbide particles, the increasing character of the depth–pressure
relationship function was clear. The depth of penetration of the AWJ in the material was
reflected by an increase in the vertical cutting force. On the other hand, the relationship
between the waterjet’s pressure and the width of the groove was related to a slight increase
in the chosen range of values, and the difference between the values of 150 and 250 MPa
was minor. Both of these conclusions were confirmed by findings from other scientific
sources [52,53]. The use of harder SiC abrasive particles allowed for machining wider and
deeper grooves while setting the same operating pressure. This indicated that it is possible
to reduce the energy required to produce a geometry of a specified depth or width using
SiC abrasive [54].The depth of the grooves after changing the abrasive material increased
by 10% for the selected jet pressure range, whereas the width of the grooves increased by
almost 13%.

Materials 2024, 17, 11 10 of 29 
 

 

scientific sources [52,53]. The use of harder SiC abrasive particles allowed for machining 
wider and deeper grooves while setting the same operating pressure. This indicated that 
it is possible to reduce the energy required to produce a geometry of a specified depth or 
width using SiC abrasive [54].The depth of the grooves after changing the abrasive mate-
rial increased by 10% for the selected jet pressure range, whereas the width of the grooves 
increased by almost 13%. 

 
Figure 5. Relations between the pressure and the grooves� depth and width. Machining with garnet 
(left) and silicon carbide (right). 

Figure 6 shows the function of the effect of the jet pressure on the kerf taper angle. 
Based on the analysis results, it can be deduced that increasing pressure will lead to a 
decrease in the inclination angle of the groove wall [55]. When using garnet as an 
abrasive, the expected mean squared range for angle change is larger and varies 
between 10 to 20 deg., whereas when using silicon carbide the kerf taper angle ranges 
from 11 to 16.5 deg. The results suggest that the use of silicon carbide leads to a 
reduction in the angle for low-pressure values. Meanwhile, a better solution to achieve 
the smallest possible angle for high pressures would be the use of garnet abrasive 
(although there was no significant difference in the extreme angle values obtained from 
the experiment). Pressure was not the variable that was the most significant parameter 
influencing the taper angle, so to decide which abrasive would be superior for a 
particular result, the other process parameters must also be taken into consideration. 

 
Figure 6. Relations between the pressure and the grooves� kerf taper angle. Machining with garnet 
(left) and silicon carbide (right). 
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Figure 6 shows the function of the effect of the jet pressure on the kerf taper angle.
Based on the analysis results, it can be deduced that increasing pressure will lead to a
decrease in the inclination angle of the groove wall [55]. When using garnet as an abrasive,
the expected mean squared range for angle change is larger and varies between 10 to
20 deg., whereas when using silicon carbide the kerf taper angle ranges from 11 to 16.5 deg.
The results suggest that the use of silicon carbide leads to a reduction in the angle for
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low-pressure values. Meanwhile, a better solution to achieve the smallest possible angle
for high pressures would be the use of garnet abrasive (although there was no significant
difference in the extreme angle values obtained from the experiment). Pressure was not the
variable that was the most significant parameter influencing the taper angle, so to decide
which abrasive would be superior for a particular result, the other process parameters must
also be taken into consideration.
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As the experimental results in Figure 7 indicate, the lower the feed rate, the greater the
depth of penetration in the workpiece, which was confirmed by the results in the literature [56].
This phenomenon was directly attributed to the difference, depending on the traverse feed
rate, in the exposure time of the jet, as a lower traverse rate enables higher exposure time and
thus a larger depth of penetration. The results of the analysis of variance showed that the feed
rate in the studied range of the setting of this parameter, especially when silicon carbide is
used, can lead to considerable variance in depth of penetration. The biggest increase in depth
can be obtained using a 500 mm/min feed rate. Furthermore, the differences between the
obtained depth of penetration with the two different abrasives increased for higher feed rate
values. The width of the slots did not change significantly under the influence of the traverse
feed rate as the width value for garnet was almost constant. Meanwhile, for silicon carbide,
it gently increased for higher values of traverse feed. The width of the slots for the range of
feed values from 500–900 mm/min was greater by more than 150 µm than when machining
with silicon carbide. This result can be correlated with the abrasive grain disintegration
phenomenon, as described in the research of Perec [57], and it might influence the abrasives
differently based on their mechanical properties.

Featured Figure 8 compares the results of the analysis of variance on the effect of
the feed rate and type of abrasive on the kerf taper angle. For improving the quality of
manufacturing parts made with AWJ, the most preferable case was to obtain perpendicular
surfaces, so an angle closer to 0 deg. would be ideal. As is shown, the increase in feed rate
increased the kerf angle in both study cases [55]. In the experiment, the smaller kerf angle
values were obtained by using silicon carbide as an abrasive, and the larger variation in
the kerf taper angle was obtained for this abrasive material. However, as can be seen in
Figure 8, the differences between the expected mean squares for the presented feed rate
values were not substantial, especially in the case of garnet abrasive, which indicated that
the traverse feed rate was not so important for the regulation of the kerf taper angle when
its values varied in a specific range. In the experiment, the most favorable outcome was
achieved by creating a groove with a feed rate of 500 mm/min and using silicon carbide as
the abrasive (based on angle reduction as the criterion).
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Figure 8. Relations between the feed rate and the grooves’ kerf taper angle. Machining with
garnet (left) and silicon carbide (right).

The results of the ANOVA analysis for the abrasive mass flow rate are presented in
Figure 9. Upon analyzing the data, it appeared that the alterations made to the width
of the grooves had no discernible impact on the function’s output value. This led us to
conclude that there was no significant correlation between this particular parameter and
the kerf width. However, the mechanical properties of the abrasive grains seemed to affect
the obtained value of the width, which, for garnet use, varied around 1200 µm, and, for
SiC particles, around 1350µm. The width values in the two cases were not significantly
different for the 2 g/s value; however, increasing the abrasive mass flow caused differences
in the results. The difference for the middle value was approximately 16%, and, for the
highest value of the abrasive mass flow rate, the width increased by approximately 10%.

On the other hand, the abrasive mass flow rate had a significant effect on the depth of
penetration, with depth values clearly increasing for higher mass flow rate values. Other
studies that have been carried out have also indicated that increasing the mass flow of
the abrasive will enable a deeper groove to be made due to the larger number of particles
impacting the workpiece surface at the same time [58]. The difference in the minimum
and maximum obtained depth with respect to abrasive mass flow rate was similar for both
abrasive materials; however, there was evidence to conclude that the major difference in
the material depth penetration between the two abrasive materials occurred for the middle
value of the processing parameter in question. The outcome might be connected with
the disintegration of the abrasive particles in a mixing chamber, as softer garnet particles
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can become more fractured at a larger mass flow rate, while this process is limited when
increasing the number of silicon carbide particles(which are extremely hard).
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Figure 9. Relations between the abrasive mass flow rate and the grooves’ depth and width. Machining
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The correlations between the abrasive mass flow rate and the grooves’ kerf taper angle
for the examined abrasives is featured in Figure 10. Within the change from a 2 to 5 g/s
abrasive mass flow rate, the value of the kerf taper angle declined. The reduction was more
rapid in the process that was performed with silicon carbide abrasive. The function shape
for the lowest abrasive mass flow rate in both cases did not differ significantly. However,
the kerf taper angle values obtained with a parameter value of 5 g/s were quite different,
namely for garnet 15.7 and silicon carbide 8.6 deg. The selected mass flow value and use
of silicon carbide enabled a substantial reduction in the kerf taper angle. Increasing the
abrasive mass flow rate for the SiC particles to 8 g/s indicated the deterioration of the
output parameter and the increase in the kerf angle. However, the use of garnet allowed
for a steady decrease in the value of the output parameter. The increase in the abrasive
mass flow rate caused an increase in the energy transfer from the waterjet to the abrasive
particles. Improvement in the energy transfer rate was possible due to the increase in the
mixed abrasive numbers caused by collision dissipation [42]. Within the energy transfer
of the hard particles of silicon carbide, the energy augmented and affected the increased
material removal and deterioration of results in the kerf taper angle. A greater number
of very hard silicon carbide particles are less likely to fragment compared to garnet; thus,
large particles of silicon carbide cause a decrease in the coherence of the jet and detachment
of the larger particles of titanium alloy, which leads to an increase in the angle of inclination
of the groove wall.

It can be seen, in Figure 11, that the effects of changing the stand-off distance for
both abrasive materials were similar, and this was evident by comparing the shapes of the
functions. By increasing the stand-off distance, we could obtain a higher value of depth
penetration in the groove, but it was evident from the data in Figure 9 that the differences
between the different levels of standoff distances were not statistically significant. Thus,
the stand-off distance was not a significant factor for controlling the depth of the cut. The
increase might be connected to other factors such as abrasive mass flow rate, traverse
feed, and high operating pressure. For the groove depth, a change of 6% in the highest
value between garnet and SiC was observed. Accordingly, for the width of the groove,
an increasing trend was also obtained, with more significant differences than the depth
of cut. Furthermore, the highest value was achieved at a 5 mm distance between the
cutting head and the workpiece, with the difference between the garnet and silicon carbide
reaching 17%.
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The experimental data plotted in Figure 12 show the effect of the stand-off distance on
the kerf taper angle. As can be seen, the use of different abrasive types influenced the trend
of the kerf taper angle differently. Changing the distance of the nozzle over the material
when the garnet abrasive was used had little effect on the result. The graph shows an
oscillation of the kerf angle by about 2 deg., and the difference between the different levels
was not statistically significant. Other scientific studies have confirmed that the stand-off
distance in experiments that used garnet as an abrasive did not significantly affect the taper
kerf angle [59]. The graph on the right clearly illustrates the considerably greater effect of
the stand-off distance on the taper angle if silicon carbide is used. The change between
the lowest and the highest values of the stand-off distance varied from approximately 8
to 18 deg. In the selected range of the input variable, an almost linear increase in the kerf
angle can be found when increasing the distance of the nozzle from the sample surface.
When the nozzle moved away from the material, the water jet expanded and altered the
angle at which the particles hit the sample. The hardness of the silicon carbide material,
among other factors, allows it to maintain its kinetic energy even if the distance or angle
at which the particles hit the workpiece changes. The SiC hardness was shown to have a
direct impact coherence of the jet and outcome [60]. The results of the analysis indicated,
according to the results of Aydin et al. [61], that the use of silicon carbide as the abrasive
particles can improve the quality of the cut in the material and reduce the kerf angle.
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Furthermore, ANOVA was also used to identify the parameters with the greatest im-
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machining process. A higher MRR means that more material is being removed in a time 
unit, thus leading to increased productivity. Moreover, the MRR is directly related to the 
machining speed, and higher MRR values imply faster machining rates, which can be cru-
cial in industries where production time is critical. Finally, the MRR can provide insights 
into the performance of a machining operation. 

Figure 13 displays the correlation between the pressure of the jet and the material 
removal rate. Based on the results, it is evident that increasing the value of the jet pressure 
leads to a significant rise in the MRR. The increase in the MRR is attributed to the erosion 
and abrasion occurring at higher jet pressures during continuous machining. Higher pres-
sure values lead to higher energy, which allows for removing more material in a time unit 
[62]. A subsequent conclusion can be made that the silicon carbide abrasive type allows 
for the removal of more material than garnet when using the same pressure value in a unit 
of time. The MRR values corresponding to the lower pressure for garnet and silicon car-
bide abrasives were 586.8 and 808.6 mm3/min, respectively, while those corresponding to 
250 MPa were 1186.1 and 1441.4 mm3/min, respectively. The impact of the abrasive type 
was stronger for the lower pressure value as the MRR increased by more than twofold. 
After an increase in jet pressure, the difference between the MRR values decreased but 
remained significant. These findings are in line with the work of Fowler et al., where it was 
found that the material removal rate increases significantly as the hardness of the abrasive 
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Furthermore, ANOVA was also used to identify the parameters with the greatest
impact on the material removal rate (MRR). The MRR is an indicator of the efficiency of a
machining process. A higher MRR means that more material is being removed in a time
unit, thus leading to increased productivity. Moreover, the MRR is directly related to the
machining speed, and higher MRR values imply faster machining rates, which can be
crucial in industries where production time is critical. Finally, the MRR can provide insights
into the performance of a machining operation.

Figure 13 displays the correlation between the pressure of the jet and the material
removal rate. Based on the results, it is evident that increasing the value of the jet pressure
leads to a significant rise in the MRR. The increase in the MRR is attributed to the erosion
and abrasion occurring at higher jet pressures during continuous machining. Higher
pressure values lead to higher energy, which allows for removing more material in a time
unit [62]. A subsequent conclusion can be made that the silicon carbide abrasive type
allows for the removal of more material than garnet when using the same pressure value in
a unit of time. The MRR values corresponding to the lower pressure for garnet and silicon
carbide abrasives were 586.8 and 808.6 mm3/min, respectively, while those corresponding
to 250 MPa were 1186.1 and 1441.4 mm3/min, respectively. The impact of the abrasive
type was stronger for the lower pressure value as the MRR increased by more than twofold.
After an increase in jet pressure, the difference between the MRR values decreased but
remained significant. These findings are in line with the work of Fowler et al., where it was
found that the material removal rate increases significantly as the hardness of the abrasive
particles increases [32].
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According to the findings depicted in Figure 14, there was a weak correlation between
the traverse feed rate and the material removal rate. The data suggested that, as the feed
rate increases, the MRR value also increases, which is a phenomenon that has already been
observed in the case of hard-to-cut materials [62]. Higher feed rates allow for a quicker cut
of a particular section of material. However, given that the differences between different
levels of traverse feed rate are not statistically significant, it can be concluded that the main
contribution to the increase in MRR is the enlargement of the incision profile of the groove
for higher jet pressure and abrasive mass flow rate, rather than the increase in traverse
feed. The differences in the results corresponding to a 500, 700, and 900 mm/min feed
rate did not exceed 115 mm3/min, but major differences could be observed between the
results obtained with different types of abrasives. The silicon carbide abrasive showed
better material removal rate values. By switching from garnet to silicon carbide as the
abrasive type, it was possible to remove an additional 250 mm3 per minute with a traverse
feed rate of 900 mm/min.
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As was already mentioned, the increase in abrasive mass flow rate as a process
parameter refers to more particles impacting the surface of the workpiece in a unit of time.
As more energy can be transferred, a larger amount of material can be removed from the
sample. These properties are reflected in the results, which can be found in Figure 15.
The correlation curve was upward, meaning that the higher the parameter ma, the greater
the MRR. The difference between the lowest and the highest value of the abrasive mass
flow rate for the garnet equaled 713.4, whereas, for the SiC, it was 934.2 mm3/min. This
indicated that the abrasive mass flow rate is a very significant parameter for the MRR.
Moreover, the MRR values increased by using silicon carbide relative to garnet by 74.5,
345.7, and 295.3 mm3/min for the respective three levels of the abrasive mass flow rate.

The results corresponding to the relationship between the MRR and stand-off distance
are presented in Figure 16. Regarding the stand-off distance, for values within the chosen
range, there was a slight variation in the MRR value, with the differences being correlated
with the phenomenon of waterjet expansion. This was especially the case for the silicon
carbide abrasive, wherein the differences between the different levels were not significant.
The slight differences can be directly explained given the flow field of the waterjet. From 1
to 3 mm, the MRR increased, then, in both cases, it started to decrease. This may be related
to the fact that, up to a certain stand-off distance, the area of effect of the jet on the surface
over which the material was removed increases; thus, the fluid jet was able to remove
more material per unit time. However, when exceeding some of the limiting values of the
stand-off distance, the expanded jet loses enough energy, and a greater angle of impact
of the waterjet and abrasive on the material is not beneficial for achieving better MRR
values. Functional shapes in both cases coincided with a mechanism that confirmed the
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tendency. As can be seen from previous considerations, silicon carbide achieves improved
MRR values, and this can also be read from the differences in the diagrams above.
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3.3. Single Objective Optimization of the Process Outputs

The Taguchi method is a statistical approach that is widely used in manufacturing for
process optimization and robust design. One key aspect is calculating the ETA (estimated
time average) value, which measures process quality. By optimizing the ETA, the manufac-
turers can achieve better process capability and product quality. This section explores the
Taguchi method’s application in calculating ETA and optimizing manufacturing results. It
offers advantages such as reducing variability, improving reliability, and minimizing costs.

In the Taguchi method, the signal-to-noise (S/N) ratio is expressed as a log transforma-
tion of the mean squared deviation, which is used as a measure to analyze the experimental
results [63]. Figure 17 shows the results of the Taguchi method for the optimization of
the depth of penetration. The ETA value was calculated based on the signal-to-noise ratio
equation, which was created for finding the maximized response. The ETA here is the
S/N ratio; n is the number of measurements for a particular quantity; and “y” is the corre-
sponding characteristic. Each level of the input parameters was assigned an ETA value,
which are represented as a circle on the graph. The higher the ETA value is, the better for
achieving the aim of creating the deepest groove. The deepest groove can be made by using
the following parameters: P = 250 MPa, vt = 500 mm/min, ma = 6 g/s, h = 3 mm, and the
choice of silicon carbide as an abrasive.
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In the case of the kerf taper angle, the signal-to-noise ratio was selected in order to
minimize the response. The ETA value was calculated using the formula presented in
Figure 18. A multiplier of −10 ensured that the coefficient measured the inverse of an
undesirable feature; in this case, this was a large inclination of the groove wall, which
indicates low cutting quality. Maximizing the ETA will result in improved quality.
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It is possible to reduce the kerf taper angle by adjusting the parameters appropriately.
In this study case, it was deduced that—by using the parameters’ values of P = 250 MPa,
vt = 500 mm/min, ma = 8 g/s, h = 1 mm, and SiC particles as an abrasive—we can achieve
the lowest value of the kerf taper angle.

By monitoring and optimizing the MRR, manufacturers can assess the effectiveness of
their machining processes and make adjustments to improve efficiency and productivity.
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Thus, we also utilized the Taguchi method to attain the optimal parameters that yield a
high MRR value.

In Figure 19, it can be seen that the Taguchi method was used to calculate the ETA
value, for which the signal-to-noise ratio equation was created to find the maximized
response. To achieve the highest material removal rate, it is important to maximize the
response by identifying the most appropriate process parameter values. The expected ratio
of S/N under optimal conditions was a value of 64.66. The highest value of the MRR can
be expected when the pressure is set to 250 MPa, the traverse feed rate to 900 mm/min, the
abrasive mass flow rate to 8 g/s, the stand-off distance to 5 mm, and silicon carbide is the
type of abrasive.
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3.4. Multi-Objective Optimization of Process Outputs

After the experimental results were analyzed and the correlations of the input param-
eters with the various outputs of the AWJM process were determined, it was important
to determine the optimum parameters that not only regarded the separate outputs of
the process, but also regarded multiple objectives with a more practical meaning (which
involve a combination of process outputs). For that reason, three different multi-objective
optimization cases were examined, and these were relevant to some of the most impor-
tant objectives for the AWJM process, such as the achievement of a specific depth of cut
(controlled depth milling), the minimization of kerf defects, and the maximization of pro-
ductivity (as expressed through the MRR). It is worth noting that, in every case, different
objectives may be contradictory so that the trade-off between them will not be a trivial
problem. Optimization was based on Grey Relational Analysis, which is a rapid and robust
method used to achieve the desired outcome directly based on the experimental results
and Grey theory.

3.4.1. First Optimization Case

The first optimization case was relevant to the achievement of controlled depth milling
for the slots and, at the same time, the lowest possible kerf width. This test case can be
related to a certain specification made by the customers, who desire the production of
grooves with a specific depth and minimum possible deviations in the kerf width. In order
to obtain more comprehensive results, this case will be further divided into two cases, one
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for a lower depth, namely 0.5 mm, and the second for a higher depth, namely 3 mm. As
the objectives were specific depths and the minimum kerf top width, the nominal-the-best
and smaller-is-better functions were employed.

In Figure 20, the values of the GRC for the case with objectives d = 0.5 mm and min wt
are presented. From these results, it can be seen that the GRC values for the two objectives
were high and close for the experimental cases with relatively less intense conditions, which
led to both lower depths and smaller kerf widths. However, when the conditions were
more intensive, e.g., under higher abrasive mass flow rates or pressure, the GRC values
were smaller. After calculating the GRG and ranking the alternatives, the optimum solution
was a P = 150 MPa, vt = 900 mm/min, ma = 5 g/s, h = 1 mm, and garnet as abrasive
material (with which a depth of 0.532 mm and width of 1.094 mm was achieved). This
result was quite good as the depth was close to the desired one and the width was the
minimum width obtained experimentally. Moreover, in Table 3, the three highest ranking
alternatives are presented along with their respective outputs, thereby showing that the
next alternatives were clearly inferior as they resulted in higher depth and width values,
whereby the depth in the third one was over 0.2 mm larger. Although the values of some of
the process parameters were very different for these solutions, the pressure and abrasive
material were the same as these parameters were crucial for obtaining lower depths and
kerf widths.
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wt are presented. In that case, the results seemed different from the previous cases due to 
the different objectives for the depth. Based on the previously conducted analysis of the 
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not appropriate for obtaining the minimum kerf width; thus, it is more difficult to reach a 
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Table 3. The three best ranking alternatives for the objectives d = 0.5 mm and min wt.

No. P (MPa) vt (mm/min) ma (g/s) h (mm) Abrasive Material d (mm) wt (mm)

1 150 900 5 1 Garnet 0.532 1.094
2 150 900 2 5 Garnet 0.572 1.170
3 150 500 2 1 Garnet 0.791 1.102

Although the GRA, contrary to stochastic optimization methods, cannot determine the
optimum solutions from a large number of random combinations within the search space, it
can rapidly determine favorable solutions given that several alternatives are possible, as in
the present case. The reason that it cannot reach the exact desired results for each objective
is that it actually provides the best trade-off between them, given that it is not always
possible in practice due to technological limitations to achieve the best value for every
objective. However, this result is rather important as it can provide valuable suggestions to
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the machine tool operator in order to appropriately adjust the process parameters so as to
achieve the best possible solution.

In Figure 21, the values of the GRC for the case with objectives d = 3.0 mm and min
wt are presented. In that case, the results seemed different from the previous cases due to
the different objectives for the depth. Based on the previously conducted analysis of the
experimental results, it was obvious that the conditions that can lead to higher depths are
not appropriate for obtaining the minimum kerf width; thus, it is more difficult to reach
a favorable compromise for these targets. After calculating the GRC and performing the
ranking of different alternatives, it was determined that the optimum parameter values
were P = 250 MPa, vt = 700 mm/min, ma = 8 g/s, h = 1 mm, and garnet as abrasive
material, with which a depth value of 2.538 mm and a kerf top width value of 1.145 mm
were obtained. The depth value was almost 0.5 mm lower than the ideal depth, and the
value of the width was almost 5% higher than the ideal one. Moreover, in Table 4, the
three highest ranking alternatives are presented, as well as the respective outputs, thereby
indicating that it was not possible to obtain a better solution as increased values of depth
led to a large increase in the top kerf width and to unfavorable trade-offs. Compared to the
previous case, the pressure value was again the same for the three best solutions. However,
it was increased to 250 MPa and the abrasive mass flow rate was increased from 5 to 8 g/s
in order to achieve a higher depth of penetration, whereas for one of the non-optimal
solutions, the abrasive material was silicon carbide. This was a notable difference from the
single objective optimization cases of Section 3.3, where the best option for the optimization
of the individual outputs was to choose silicon carbide as the abrasive as it can lead to
extreme solutions, but it was not effective for the simultaneous achievement of two or more
objectives (especially when they are contradictory).
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3.4.2. Second Optimization Case

The second optimization case was relevant for obtaining the lowest kerf width, while,
at the same time, achieving MRR values (productivity) that were the highest possible. This
combination of objectives also had practical importance, as the two main goals of every
manufacturing process are high quality and low machining time (or high productivity). As
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the objectives are the minimum kerf top width and maximum MRR, the smaller-is-better
and larger-is-better functions were employed for the normalization of the results.

Table 4. The three best ranking alternatives for the objectives d = 3.0 mm and min wt.

No. P (MPa) vt (mm/min) ma (g/s) h (mm) Abrasive Material d (mm) wt (mm)

1 250 700 8 1 Garnet 2.538 1.145
2 250 500 5 3 Garnet 2.484 1.185
3 250 500 5 3 Silicon carbide 3.004 1.414

In Figure 22, the values of the GRC for the case with objectives min wt and max MRR
are presented. From these results, it can be seen that, in most cases, the values of the
GRC for the wt and MRR were considerably different as the achievement of a low kerf
width occurs when process conditions are less intense, which is a process that leads to a
low MRR as well. After calculating the GRG and ranking the alternatives, the optimum
solution was determined as a P = 250 MPa, vt = 700 mm/min, ma = 8 g/s, h = 1 mm, and
garnet as the abrasive material, with which a top kerf width of 1.145 mm and a MRR of
1593.649 mm3/min can be achieved. Under these conditions, the top kerf width is almost
5% higher than the minimum one, and the MRR value is 30% less than the maximum MRR.
In Table 5, the three highest ranking alternatives are presented along with their respective
outputs, thus showing that the less optimal solutions lead either to a lower MRR or higher
kerf width, which means a less favorable trade-off. Although the recommended pressure
was the same in every case, in one solution, the preferred abrasive material was silicon
carbide, which indeed increased the MRR considerably to its maximum value, but it also
led to a much wider slot. It has been demonstrated that, while machining with silicon
carbide can increase depth and the MRR, as well as decrease the kerf taper angle, it cannot
achieve a satisfactory compromise between the two conflicting objectives.
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The optimization results indicate that, in order to obtain a low kerf width and high
MRR, the maximum pressure, moderate traverse speed, maximum abrasive mass flow rate,
minimum standoff distance, and garnet material (less hard) should be selected. Thus, the
compromise between the two objectives is mainly regulated by using the relatively intense
parameters regarding pressure and abrasive mass flow rate to increase the MRR, but also a
less hard abrasive in order to avoid large widths.
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Table 5. The three best ranking alternatives for the objectives min wt and max MRR.

No. P (MPa) vt (mm/min) ma (g/s) h (mm) Abrasive Material wt (mm) MRR (mm3/min)

1 250 700 8 1 Garnet 1.145 1593.649
2 250 900 5 1 Garnet 1.116 1271.086
3 250 900 8 3 Silicon carbide 1.422 2273.834

3.4.3. The Third Optimization Case

The third optimization case was the most complex as it included three different
objectives, namely the specific depth of penetration along with the minimum kerf width
and maximum MRR. As in Section 3.4.1, this case was divided into two sub-cases, with
two different desired depth values, namely 0.5 and 3.0 mm. As the objectives were specific
depths, the minimum kerf top width, and maximum MRR, the nominal-the-best, smaller-
is-better, and larger-is-better functions were employed.

In Figure 23, the values of the GRC for the case with objectives d = 0.5 mm, min wt,
and max MRR are presented. From these results, it can be seen that the GRC values for the
MRR deviated considerably from the GRC values for depth and width in many cases, as
obtaining a high MRR is contrary to obtaining a low depth and width. After calculating the
GRG and ranking the alternatives, the optimum solution was determined as a P = 150 MPa,
vt = 900 mm/min, ma = 5 g/s, h = 1 mm, and garnet as the abrasive material, whereby a
depth value of 0.532 mm, a top kerf width of 1.094 mm, and a MRR of 351.845 mm3/min
can be achieved. This solution was the same as the one determined in Section 3.4.1 for a
low depth and kerf width, which reached acceptable values but were not favorable for
MRR, which was close to its lowest value. These results can be justified by the fact that
the achievement of the first two objectives contradicted the achievement of the third one
and, given that an equal weight was used for each objective, the final solution was more
beneficial for depth and width rather than the MRR.
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Moreover, in Table 6, the three highest ranking alternatives are presented along with
their respective outputs, thereby showing that—for different reasons—the other alternatives
have considerable deviations from the optimum solution, as the second one leads to over a
0.2 mm higher depth and an even lower MRR, whereas the third one leads to both a higher
depth and width (although it provides an improvement in the MRR). In every alternative
case, garnet was suggested as the abrasive material as it leads to lower depth and width
values. It can be generally noted that it is rather difficult to achieve a specific depth along
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with a better kerf quality and MRR, but at least the optimization process can provide the
operator with a useful suggestion in order to choose the machining strategy.

Table 6. The three best ranking alternatives for the objectives d = 0.5, min wt, and max MRR.

No. P (MPa) vt (mm/min) ma (g/s) h (mm) Abrasive Material d (mm) wt (mm) MRR (mm3/min)

1 150 900 5 1 Garnet 0.532 1.094 351.845
2 150 500 2 1 Garnet 0.791 1.101 270.990
3 150 900 2 5 Garnet 0.572 1.170 465.689

In Figure 24, the values ofthe GRC for the case with the objectives d = 3.0 mm, min
wt, and max MRR are presented. From these results, it can be seen that, contrary to the
previous case, it was also possible to observe high values of the GRC for depth and MRR
simultaneously. This is because the achievement of a higher depth is in line with achievinga
higher MRR and is opposite to the goal of achieving the lowest width.After calculating the
GRG and ranking the alternatives, the optimum solution was determined as a P = 250 MPa,
vt = 700 mm/min, ma = 8 g/s, h = 1 mm, and garnet as the abrasive material, with which a
depth value of 2.538 mm, a top kerf width of 1.145 mm, and a MRR of 1593.649 mm3/min
can be achieved. This result could be justified as the greater similarity between the first and
third objectives led to a considerably higher result for the MRR, although the width was
slightly higher than the optimum value, and the depth was almost 0.5 mm lower than the
desired one.
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Moreover, in Table 7, the three highest ranking alternatives are presented along with
their respective outputs, thus showing that the alternatives are inacceptable due to the fact
that they lead to either much higher width values or a lower MRR. Again, the recommended
pressure value was the same in every case, but it was worth noting that this was the only
case that the second and third best alternatives were related to the use of silicon carbide
particles. This result can be attributed to the fact that a higher depth, along with a higher
MRR, was desired.

Finally, it can be concluded that the use of the GRA method led to reasonable results
regarding the optimum parameter values for different practical cases. Although this
method has some shortcomings, the results that were still obtained through this simple,
rapid, and reliable procedure are important for providing suggestions for the operators or
engineers who design the required manufacturing processes for various products.
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Table 7. The three best-ranking alternatives for the objectives d = 3.0, min wt, and max MRR.

No. P (MPa) vt (mm/min) ma (g/s) h (mm) Abrasive Material d (mm) wt (mm) MRR (mm3/min)

1 250 700 8 1 Garnet 2.538 1.145 1593.649
2 250 900 8 3 Silicon carbide 2.382 1.423 2273.834
3 250 500 5 3 Silicon carbide 3.004 1.414 1535.497

4. Conclusions

In this study, AWJ milling experiments were conducted to investigate the interplay
between various process parameters and outcomes like the depth of penetration, kerf
width, kerf taper angle, and material removal rate. The abrasive materials—garnet and
silicon carbide—were employed in the machining process of Ti-4Al-6V titanium alloy.
Statistical analysis via ANOVA provided insights into the significance of the process
parameters. Additionally, single- and multi-objective optimization cases were explored,
thereby unveiling the process capabilities across diverse practical scenarios and identifying
the optimum parameters.

Based on this work, the following conclusions can be inferred:

• The use of silicon carbide abrasives enhances AWJ machining, thereby yielding greater
depths and a MRR, as well as reduced kerf taper angles under similar conditions.
While SiC usage reduces the machining time and energy consumption, it also leads to
increased kerf width and accelerated nozzle wear.

• Single-objective optimization identified the optimal input parameters within a speci-
fied range for achieving the maximum groove depth and minimum kerf taper angle.
Moreover, regarding the MRR, a significant increase can be obtained with the use of
silicon carbide compared with garnet use.

• Conversely, multi-objective optimization when using the GRA method in various
practical scenarios unveiled additional insights into the capabilities of the AWJM
process. In controlled depth milling, with a focus on minimizing kerf width, garnet
emerged as the optimal abrasive. Its usage allowed for an improved approximation of
the desired depth values, and it also simultaneously achieved low kerf width values
and a sufficient MRR.

In conclusion, although silicon carbide was shown to be more effective regarding
depth, kerf taper angle, and the MRR in single-objective optimization studies, garnet was
more efficient when multiple objectives were considered as it is related to a better capability
of reduced kerf width as well.
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