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Abstract: Nonlinear ultrasonic guided waves have attracted increasing attention in the field of
structural health monitoring due to their high sensitivity and long detection distance. In practical
applications, the temperature of the tested structure will inevitably change, so it is essential to eval-
uate the effects of temperature on nonlinear ultrasonic guided waves. In this paper, an analytical
approach is proposed to obtain the response law of nonlinear guided waves to temperature based on
the semi-analytical finite element (SAFE) method. The plate structure is investigated as a demonstra-
tion example, and the corresponding simulation analysis and experimental verification are carried
out. The results show that the variation trends of different cumulative second harmonic modes
with temperature are distinct, and their amplitudes monotonically increase or decrease with the
continuously rising temperature. Therefore, in the applications with nonlinear ultrasonic guided
waves, it is necessary to predict the changing trend of selected cumulative second harmonics under
the action of temperature and compensate the result for the influence of temperature. The methods
and conclusions presented in this paper are also applicable to other types of structures and have
general practicality.

Keywords: nonlinear ultrasonic guided waves; temperature; cumulative second harmonics; response
law; semi-analytical finite element

1. Introduction

In recent decades, nonlinear ultrasonic techniques have developed rapidly and have
demonstrated great application prospects in the nondestructive testing (NDT) field by some
researchers [1–5]. The nonlinear ultrasonic phenomenon indicates that, if there is a change
in material properties or damage in a waveguide, in addition to the original fundamental
frequency signal, ultrasonic waves will also be accompanied by the production of higher-
order harmonics. High-order harmonics are much more sensitive to small changes in the
structural state than conventional linear ultrasonic waves. The use of nonlinear ultrasonic
characteristics can effectively measure material properties and identify damage levels.

Compared with nonlinear ultrasonic bulk waves, nonlinear ultrasonic guided waves
have obvious benefits in nondestructive assessment and structural health monitoring
because it combines the high sensitivity with the advantages of traditional ultrasonic
guided waves [6–8]. Due to the above reason, nonlinear ultrasonic guided waves have
received great attention in recent years, and relevant research has been carried out and
made considerable strides. Liu [9] presented a non-elliptical probability imaging method
based on nonlinear ultrasonic guided waves, which can be used to accurately detect the
delamination damage in an anisotropic composite plate and display the damage location.
Zhao [10] adopted the third harmonics of nonlinear Lamb waves to attain early fatigue
damage detection in aluminum alloys. Niu [11,12] proposed a method to detect the
neutral temperature in continuous welded rails by applying nonlinear ultrasonic guided
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waves. Hoda [13] investigated the application of nonlinear ultrasonic guided waves as
a nondestructive evaluation method in detecting local corrosion of steel plates. Lee [14]
studied the fatigue crack detection of steel joints subjected to tensile fatigue loading based
on nonlinear ultrasonic guided waves. Yu [15] developed a new type of transducer based
on nonlinear ultrasonic guided waves for detecting the damage in welded joints.

In existing studies, the influence of temperature on ultrasonic nonlinearity is not
always considered in the setting of detection conditions. Since the amplitudes of high-
order harmonics are very small relative to the fundamental frequency waves, the effects of
temperature may cover up the change in material characteristics, which may cause a great
deviation in experimental conclusions, especially in some application scenarios, such as the
thermal stress detection in continuous welded rail. At present, there are few studies on the
response law of ultrasonic nonlinearity with temperature.

Nucera [16] studied ultrasonic nonlinearity in constrained steel blocks under thermal
stress and concluded that temperature has no effect on nonlinear ultrasonic bulk waves.
Later, through theoretical derivation and experimental verification, Niu [17] demonstrated
that temperature has a significant impact on nonlinear ultrasonic bulk waves. Zhao [18]
studied the effects of temperature on ultrasonic nonlinear parameters in carbonated concrete
and reached the same conclusion. Chillara [19] detected the change of the relative ultrasonic
nonlinear parameter in a heated steel plate and found that the relative ultrasonic nonlinear
parameter gradually increased with the increase of temperature. However, the research
objects of articles [16–18] are nonlinear ultrasonic bulk waves, and article [19] lacks detailed
theoretical derivation. At present, there is still a lack of exhaustive analysis about the
influence of temperature on nonlinear ultrasonic guided waves.

Moreover, unlike nonlinear ultrasonic bulk waves, the main application difficulty of
nonlinear ultrasonic guided waves is the excitation of desired cumulative second harmonics.
The cumulative second harmonics represent the second harmonics whose amplitudes rise as
the propagation distance grows. The available articles [20,21] have defined the generation
conditions of cumulative second harmonics, that is, phase velocity matching and non-
zero power flow. In addition to the above conditions, group velocity matching was also
proposed by Bermes [22] as a necessary factor for exciting cumulative second harmonics.
Deng [23] later proved that group velocity matching is not an essential condition. However,
because of the multi-modal characteristics of nonlinear ultrasonic guided waves, the mode
combinations that meet the preceding requirements are not single, which leads to multiple
cumulative second harmonic modes in the actual experiment process. If the influence of
temperature on different cumulative second harmonic modes is not identical, and several
cumulative second harmonic modes are excited and overlap in the received signal, the
calculation of the relative nonlinear coefficient will be jointly affected by the amplitude
changes of different second harmonic modes. The above problem was also not considered
in article [19]. Therefore, it is necessary to proceed with an intensive study on the variation
patterns of different second harmonic modes under temperature effects.

This paper presents the systematic and comprehensive analysis of the response law
of different second harmonic modes in plates with the change of temperature. Firstly, the
amplitude parameter is described and introduced to characterize the amplitude of the
cumulative second harmonic mode, and all possible mode combinations that may generate
cumulative second harmonics are obtained. Then the response law of different second
harmonic modal amplitudes under temperature is studied. Finally, relevant simulation
and physical verification experiments are designed, and the simulation and experimental
results are consistent with the theoretical result.
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2. Nonlinear Ultrasonic Waves Equation and Amplitude Parameter

When ultrasonic waves propagate in the waveguide medium, it is supposed that the
displacement of microscopic particles u in the medium is [24]:

u = u(1) + u(2), (1)

where u(1) and u(2) represent particle displacement induced by the linear and nonlinear
material characteristics of the waveguide, and

∣∣∣u(1)
∣∣∣ >>

∣∣∣u(2)
∣∣∣. After theoretical derivation

and simplification, the wave equation and boundary condition of nonlinear ultrasonic
waves can be expressed as follows [25]:

(λ + µ)uj,ji
(2) + µui,jj

(2) + F(1) = ρ
..
u(2), (2)

SL(2)n⊥ = −SNL(1)n⊥ on S, (3)

where λ, µ are the Lame’s elastic coefficients, ρ is the material density, F indicates the body
force tensor, S indicates the first Piola-Kirchhoff stress tensor, SL and SNL indicate the
linear and nonlinear parts of S respectively, F(1) = F

(
u(1)

)
, SL(2) = SL

(
u(2)

)
, SNL(1) =

SNL
(

u(1)
)

,
..
u = ∂2u

∂t2 , ui,jj =
∂ui

∂xj∂xk
, i, j, k = x, y, z, n⊥ is the unit vector of the coordinate

axis, and S represents the surface of the waveguide.
Auld applied the mode expansion method to solve Equations (2) and (3) [26] and

obtained the expression of the second harmonic displacement u(2). The formula of u(2) is
as follows:

u(2) =
N

∑
n=1

An(x)une−i2ωt + c.c., (4)

where un is the mode shape of the nth second harmonic mode, N represents the number of
second harmonic modes, c.c. represents the complex conjugates, x is the propagation dis-
tance, ω is the angular frequency, t is the propagation time, and An(x) is the corresponding
second harmonic amplitude equation.

The calculation formula of An(x) is:

An(x) =


fn

sur f + fn
vol

2Pnn(kn∗−2k) sin
(

1
2 (kn

∗ − 2k)x
)

ei(k+ 1
2 kn
∗)x, kn

∗ 6= 2k1

fn
sur f + fn

vol

4Pnn
xe2ikx, kn

∗ = 2k1

, (5)

where Pnn is the mean energy flux density in the propagation direction, f sur f
n and f vol

n
represent the complex energy caused by surface stress and volume stress respectively,
k is the wave number, kn

∗ is the complex conjugate of wavenumber about the nth second
harmonic mode, and k1 is the wave number of the fundamental frequency mode.

The formulas of Pnn, f sur f
n , and f vol

n are as follows:

Pnn = −1
2

∫
Ω

(vn
T∗ · T(n)

L) · nxdΩ, (6)

f sur f
n =

∫
S

(vn
T∗ · S(1)

NL) ·→ndS, (7)

f vol
n =

∫
Ω

vn
T∗ · F(1)dΩ, (8)

where T(n)
L = TL(un), S(1)

NL = SNL(un
(1)), F(1) = F(un

(1)), vn is the velocity vector of
the nth second harmonic mode, un

(1) is the mode shape of the fundamental frequency
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mode, nx is the unit vector in the x direction,
→
n is the unit vector perpendicular to the

surface, and Ω is the cross-sectional. In the light of Equation (5), the cumulative behavior
of the generated second harmonic mode occurs only when the following requirements are
met [20,21]: {

Phase velocity matching : cpn = cp1
Non− zero power f low : fn

sur f + fn
vol 6= 0

, (9)

where cpn represents the phase velocity of the nth second harmonic mode, and cp1 rep-
resents the phase velocity of the fundamental frequency mode. Phase velocity matching
condition requires that the phase velocities of the fundamental frequency mode and the
second harmonic mode be equal. A non-zero power flow condition means that the power
flow transmitted from the fundamental frequency mode to the second harmonic mode
is not zero. Since it is still controversial whether the group velocity matching condition
needs to be satisfied to produce cumulative second harmonics, the group velocity matching
condition is not studied in detail in this paper.

The second harmonic amplitude equation An(x) decides the amplitude of the second
harmonic mode signal, and the larger the amplitude equation, the higher the amplitude
of the corresponding second harmonic mode [26]. For a certain mode combination of the
fundamental frequency mode and the second harmonic mode that can generate cumulative
second harmonics, when the propagation distance is fixed, the amplitude parameter of the
cumulative second harmonic mode can be defined as:

An =

∣∣∣∣∣ fn
sur f + fn

vol

4Pnn

∣∣∣∣∣. (10)

The amplitude parameter An can be employed to characterize the corresponding amplitude
of the second harmonic mode. Under the same propagation distance, the magnitude of An

depends on the values of Pnn, f sur f
n and f vol

n . In order to get the values of Pnn, f sur f
n and f vol

n ,
S(1)

NL, F(1) and T(n)
L need to be calculated. After theoretical derivation, the calculation

formula of T(n)
L, S(1)

NL and F(1) are documented in Appendix A. From Appendix A, it can
be seen that the values of T(n)

L, S(1)
NL and F(1) are directly related to un

(1) and un. When
the fundamental frequency mode shape un

(1) and the second harmonic mode shape un are
introduced into Equation (10), the amplitude parameter An corresponding to the mode
combination can be calculated.

In existing articles about nonlinear ultrasonic waves, the relative nonlinear coefficient
β is usually used to measure the change in material properties. The equation for β is:

β =
A2

A1
2 , (11)

where A1 and A2 represent the amplitudes of the fundamental frequency and the sec-
ond harmonic signal. Since the amplitude of the fundamental frequency mode will not
change during theoretical derivation, the value of β is mainly determined by the ampli-
tude of the second harmonic mode. Therefore, there is a positive correlation between An
and β. The variation law of An in theoretical derivation can reflect the change of β in
physical experiments.

3. Response Law of Nonlinear Guided Waves to Temperature

According to the above analysis, the value of An is directly decided by the mode shapes
of un

(1) and un. When the mode combination of the fundamental frequency mode and
the second harmonic mode is determined, the amplitude coefficient An is also confirmed.
Compare An under different temperatures, the response law of the second harmonic modes
with temperature can be theoretically derived.
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3.1. Selection of Mode Combination

In this paper, the semi-analytical finite element (SAFE) method is adopted to deal with
mode shapes, and the plate structure is taken as the research object. The reason for choosing
the plate structure as the verification object is that there are few ultrasonic guided wave
modes propagating in the plate, there are clear analytical solutions of ultrasonic guided
waves in the plate, and it is convenient to carry out physical experiments.

Assuming there is an infinite-width steel plate model, the plate width along the y
direction is infinite, and the plate thickness along the z direction is 15 mm. The propagation
direction of guided waves is the x direction. One-dimensional three-node elements are used
to discretize the cross-section of the model, and each node has three degrees of freedom.
The material parameters of the plate are shown in Table 1.

Table 1. The material parameters of the steel plate model.

Density Elastic
Modulus Lame Coefficients Poisson

Ratio
Third-Order Elastic

Coefficients

ρ(kg/m3) E (GPa) λ (GPa) µ (GPa) ν A (GPa) B (GPa) C (GPa)

7932 200 115.38 76.93 0.3 –340 –647 –17

Based on Hamilton’s theory, the general wave equation can be reduced to [27,28]:[
K1 + ikK2 + k2K3 −ω2M

]
u = 0, (12)

where M is the mass matrix, K1, K2, and K3 are the element stiffness matrices. Equation (12)
can be solved as a linear generalized eigenvalue problem with a given wavenumber. The
eigenvalue is ω2, and the eigenvector is mode shape u. After getting the relationship
between mode shape, wavenumber, and angular frequency, the dispersion curves of phase
velocity Cp and group velocity Cg can be drawn. The calculation formulas for phase velocity
Cp and group velocity Cg are as follows:

Cp =
ω

k
, Cg =

dω

dk
. (13)

The phase velocity and group velocity dispersion curves of ultrasonic guided wave in
isotropic free steel plate are depicted by MATLAB R2021a software, as shown in Figure 1.
Every data point in Figure 1 indicates one mode, and fd is the frequency-thickness product.
From Figure 1, the phase velocity, group velocity, and mode shape of each ultrasonic guided
wave mode can be acquired.
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Figure 1. Phase velocity and group velocity dispersion curves: (a) Phase velocity dispersion curves;
(b) Group velocity dispersion curves.
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In order to investigate the influence of temperature on different cumulative second
harmonics, it is necessary to first clarify the mode combinations that can generate cumula-
tive second harmonics. In this paper, the ultrasonic excitation frequency is set as 2.5 MHz
and the received frequency is 5 MHz. In terms of the principle in Equation (9), all the
mode combinations that can produce cumulative second harmonics at 37.5 MHz-mm and
75 MHz-mm in Figure 1a are selected. Substitute the mode shapes of each mode com-
bination into Equation (10) to calculate the value of An, the relevant values of all mode
combinations are shown in Table 2 [12].

Table 2. The relevant values of mode combinations.

Number 1 2 3 4 5

f d (MHz-mm) 37.5 75 37.5 75 37.5 75 37.5 75 37.5 75

Cp (m/s) 3144 3141 3144 3144 3154 3160 3171 3180 3195 3206

Cg (m/s) 3013 2771 3013 3505 1372 2741 1294 2617 1361 2706

An (×107) 0 0 0 0 0

Number 6 7 8 9 10

f d (MHz-mm) 37.5 75 37.5 75 37.5 75 37.5 75 37.5 75

Cp (m/s) 5904 5908 3171 3169 3144 3147 3195 3192 3933 3920

Cg (m/s) 2132 4917 1294 2744 3013 2765 1361 3142 1088 2492

An (×107) 0 21.93 5.03 31.61 321.66

Number 11 12 13 14 15

f d (MHz-mm) 37.5 75 37.5 75 37.5 75 37.5 75 37.5 75

Cp (m/s) 3448 3458 3227 3223 3267 3263 3316 3315 3376 3382

Cg (m/s) 1271 2331 1343 2728 3013 2644 1303 2581 1275 2488

An (×107) 37.08 54.08 82.13 113.38 133.26

It can be found from the data in Table 2 that, mode combinations 1–15 all satisfy the
phase velocity matching condition, and the An of mode combinations 7–15 are not zero.
So only mode combinations 7–15 can produce cumulative second harmonics. At the same
propagation distance, the amplitudes of cumulative second harmonics modes produced
by different mode combinations are not the same. Since the amplitude parameter An of
mode combination 10 is the maximum, the cumulative second harmonic mode produced
by mode combination 10 has the highest amplitude.

After determining the mode combinations, by substituting the related mode shapes
under different temperature conditions into Equation (10), the variation of An with tem-
perature reflects the response law of the cumulative second harmonic modal amplitude
with temperature.

3.2. Theoretical Analysis Result

Presume the steel plate model is under normal situations and simply influenced by
temperature. The temperature change range of the steel plate is –20 ◦C to 60 ◦C and the
temperature rises by 5 ◦C each time. The normal atmospheric temperature is set at 20 ◦C.
As the steel plate temperature rises from –20 ◦C to 60 ◦C, the material parameters E, λ and
µ all change depending on the temperature state, and ν will not change during the entire
process. When the plate model is at different temperature statuses, the current material
parameters are listed in Table 3. Based on the data in Table 3, K1, K2, K3 and M at a certain
temperature can be calculated. Equation (12) is converted to the following expression when
the temperature of the plate model is T:[

K1 + ikK2 + k2K3 −ω2M
]

T
u = 0. (14)
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By solving Equation (14), the dispersion curves and mode shapes of ultrasonic guided
waves at certain temperature states are acquired. The phase velocity dispersion curves
at the temperature of T = 20 ◦C and T = 60 ◦C are shown in Figure 2a. The blue curve
in Figure 2a represents the dispersion curve when the temperature is not applied, that
is, the steel plate temperature is T = 20 ◦C. The red curve in Figure 2a represents the
dispersion curve when the steel plate temperature is T = 60 ◦C. Magnify the dispersion
curves in the circle in Figure 2a, as shown in Figure 2b. It can be seen from Figure 2b
that when the temperature of the plate increases, the phase velocity of the ultrasonic
guided waves mode decreases with the increase in temperature. On the contrary, when the
temperature decreases, the phase velocity increases. After the application of temperature,
the corresponding mode shapes of the ultrasonic guided waves undergo partial changes.

Table 3. The material parameters at different temperature statuses.

T (◦C) E (GPa) λ (GPa) µ (GPa) ν

60 ◦C 198 114.23 76.15 0.3
55 ◦C 198.25 114.38 76.25 0.3
50 ◦C 198.5 114.52 76.35 0.3
45 ◦C 198.75 114.66 76.44 0.3
40 ◦C 199 114.81 76.54 0.3
35 ◦C 199.25 114.95 76.63 0.3
30 ◦C 199.5 115.1 76.73 0.3
25 ◦C 199.75 115.24 76.83 0.3
20 ◦C 200 115.38 76.93 0.3
15 ◦C 200.25 115.53 77.02 0.3
10 ◦C 200.5 115.67 77.12 0.3
5 ◦C 200.75 115.82 77.21 0.3
0 ◦C 201 115.96 77.31 0.3

–5 ◦C 201.25 116.11 77.4 0.3
–10 ◦C 201.5 116.25 77.5 0.3
–15 ◦C 201.75 116.39 77.6 0.3
–20 ◦C 202 116.54 77.69 0.3
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By obtaining different dispersion curves and mode shapes of the steel plate model
under temperature, the change curves of amplitude parameters An of different mode com-
binations can be approximately described. Due to the proven ability of mode combinations
7–15 to generate cumulative second harmonics, mode combinations 7–15 are selected as
the analysis objects in this section. The second-order curves are used to fit the change
curves about An of mode combinations 7–15, and the theoretical analysis result is shown in
Figure 3.
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In Figure 3, the red star data points represent the amplitude parameters An of mode
combinations, and the black curves show the change trends of An. As shown in Figure 3,
there are only two obvious tendencies in all the variation curves, monotonically increasing
or monotonically decreasing. In the vary course of steel plate temperature rises from
–20 ◦C to 60 ◦C, the amplitude parameters of mode combinations 8, 10, and 11 decrease
gradually, while the amplitude parameters of mode combinations 7, 9, 12, 13, 14, and 15
increase gradually. The variation curve of the amplitude parameter indicates the changing
trend of the corresponding cumulative second harmonic amplitude. Since there is only a
temperature variable in the theoretical derivation process, the result in Figure 3 shows the
response law of nonlinear ultrasonic guided waves under temperature action.

The theoretical results in Figure 3 present that, for different mode combinations, the
cumulative second harmonic amplitudes produced by them exhibit different change trends
in the same temperature change process, which are monotonically decreasing or increasing.
In Figure 3, some data points are inconsistent with the overall vary tendency. The above
phenomenon is caused by a fitting error when using the second-order functions to fit curves.
The research purpose of this paper is to distinguish the variation trends of cumulative
second harmonics with temperature, rather than obtaining an exact relationship equation.
The presence of these data points will not affect the overall change trend prediction.

It is worth emphasizing that the mode combination selection method proposed in
this paper is also applicable to other structures with arbitrary complex cross-sections and
has a wide range of structural applicability. Through establishing the corresponding finite
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element model, the mode combinations that can generate cumulative second harmonics in
the waveguide will be obtained, and further research about the influence of temperature or
stress can be developed.

4. Simulation Experiments

In order to verify the correctness of the theoretical result, three-dimensional (3D)
simulation experiments are conducted based on ABAQUS 2021 software. The finite ele-
ment method (FEM) is a widely employed method in the field of structural imperfection
detection [29], and it also exhibits obvious advantages in analyzing complex geometric
structures [30] and providing reliable opinions on the nonlinear characteristics caused by
defects. To further improve the reliability of numerical simulation results, 3D FEM has
been applied to nonlinear ultrasonic research. Guan [31] dissected the contact acoustic
nonlinearity in a cracked pipe model through a finite element analysis. Xu [32] established
a 3D fatigue crack growth model based on contact acoustic nonlinearity to predict the
continuous growth of the identified fatigue cracks along the length and depth. Lee [33]
undertook the 3D simulation of nonlinear ultrasonic waves for fatigue damage detection
using the precise fatigue crack trajectory. The 3D FEM simulation of nonlinear ultrasonic
guided waves is also explored in this section.

By analyzing the data in Table 2, it can be found that cumulative second harmonic
amplitudes excited by mode combinations 10 and 15 are the largest. More importantly,
the change tendencies of the amplitude parameters of the two combinations are opposite
with increasing temperature. The amplitude parameter of mode combination 10 increases
monotonously, while the amplitude parameter of mode combination 15 decreases
monotonously, which can form a good contrast. Therefore, mode combinations 10 and 15
are selected as the excitation and received second modes in verification tests. The mode
shapes of mode combinations 10 and 15 are obtained by solving Equation (12), as shown in
Figure 4.
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Figure 4. The mode shapes of ultrasonic guided waves in plate model: (a) The fundamental mode of
mode combination 10; (b) The second harmonic mode of mode combination 10; (c) The fundamental
mode of mode combination 15; (d) The second harmonic mode of mode combination 15.
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In order to excite the selected second harmonics, the critical angular refraction method
is used for ultrasonic excitation. The excitation and reception of the selected ultrasonic
guided wave modes can be achieved by changing the incidence and acceptance angles. The
incidence and acceptance angles θ of ultrasonic waves satisfy Snell’s theorem, which is the
following:

sin θ/Cglass = sin 90◦/Cp, (15)

where Cglass represents the propagation velocity of the ultrasonic guided wave in organic
glass and Cglass = 2740 m/s. The phase velocities Cp of mode combinations 10 and 15
are Cp1 = 3933 m/s and Cp2 = 3376 m/s. The incidence and acceptance angles of mode
combinations 10 and 15 can be obtained by solving Equation (15), θ1 = 44◦ and θ2 = 55◦.

4.1. Model Establishment

The size of the established plate model is 100 mm × 5 mm × 15 mm, and the material
parameters of the plate are consistent with the theoretical model. The plate model is
discretized by hexahedral elements through ABAQUS software, and the mesh size should
meet the following formula:

l ≤ λmin

10
=

1
10

Cp

fmax
, (16)

where l is the mesh size, fmax is the maximum excitation frequency, and λmin is the cor-
responding minimum wavelength. Based on the data in Table 2, it can be calculated that
l ≤ 0.135 mm, so the mesh size of the model is determined to be 0.13 mm. To avoid
interference from reflected signals, an absorption boundary with a width of 0.5 mm is set
around the periphery of the plate, which is achieved by setting infinite elements at the
model boundary. The model element type is set to C3D8R, and the absorption boundary
element type is set to CIN3D8.

A 20-cycle sine wave pulse signal modulated by a Hanning window is used as the
ultrasonic excitation signal, and the center frequency of the signal is 2.5 MHz, as shown in
Figure 5. The initial distance between the excitation position and the receiving position is
30 mm. According to the MOSER principle, the integration time step is set to 2× 10−8 s
and the analysis step time is set as 0.00012 s.
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Figure 5. Excitation signal diagram.

4.2. Simulation Analysis Result

Maintain the incidence angle θ1 = 44◦ at the excitation node, and the received signal
of mode combination 10 is shown in Figure 6a. Apply the Fast Fourier transform (FFT)
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on the received signal to abstract the fundamental frequency and the second harmonic
signals. The natural logarithm of the spectrum analysis result is shown in Figure 6b, and
there is a significant second harmonic at the frequency of 5 MHz. Gradually increase
the propagation distance between the excitation and receiving positions, and calculate
the corresponding relative nonlinear coefficient β. The change of the relative nonlinear
coefficient β is shown in Figure 6c. Change the incidence angle θ2 = 55◦, and repeat the
above simulation experiment. The simulation result of mode combination 15 is shown
in Figure 7. The star data points in Figures 6c and 7c represent the relative nonlinear
coefficient. The variation curves in Figures 6c and 7c show that the relative nonlinear
coefficients all increase with increasing propagation distance, indicating the generation of
cumulative second harmonics.
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Figure 6. Simulation result of mode combination 10: (a) Received signal diagram; (b) Spectrum
analysis result; (c) Relative nonlinear coefficient vs. propagation distance curve.

Materials 2023, 16, x FOR PEER REVIEW 12 of 18 
 

 

according to the data in Table 3. Calculate the relative nonlinear coefficients of mode com-
binations 10 and 15 at different temperature conditions, and the simulation result is shown 
in Figure 8. The star data points in Figure 8 represent the relative nonlinear coefficient. It 
can be seen from Figure 8 that the relative nonlinear coefficient of mode combination 10 
increases with increasing temperature, while the relative nonlinear coefficient of mode 
combination 15 decreases with increasing temperature. The above simulation result is 
consistent with the theoretical result in Figure 3d,i. The 3D FEM can provide clear simu-
lated ultrasonic signal waveforms and calculate relative nonlinear coefficients, which can 
be directly contrasted with physical verification experiments. 

   
(a) (b) (c) 

Figure 6. Simulation result of mode combination 10: (a) Received signal diagram; (b) Spectrum anal-
ysis result; (c) Relative nonlinear coefficient vs. propagation distance curve. 

   
(a) (b) (c) 

Figure 7. Simulation result of mode combination 15: (a) Received signal diagram; (b) Spectrum anal-
ysis result; (c) Relative nonlinear coefficient vs. propagation distance curve. 

  
(a) (b) 

Figure 8. Simulation result of relative nonlinear coefficient vs. temperature: (a) Mode combination 
10; (b) Mode combination 15. 

  

-20 0 20 40 60
Temperature (℃)

0

1

2

3

4

5

6

R
el

at
iv

e 
no

nl
in

ea
r c

oe
ffi

ci
en

t

Figure 7. Simulation result of mode combination 15: (a) Received signal diagram; (b) Spectrum
analysis result; (c) Relative nonlinear coefficient vs. propagation distance curve.

Apply temperature field influence to the model through ABAQUS software. The
temperature field gradually increases from –20 ◦C to 60 ◦C with a change interval of
5 ◦C, and when the model is in different temperature states, modify the model material
parameters according to the data in Table 3. Calculate the relative nonlinear coefficients
of mode combinations 10 and 15 at different temperature conditions, and the simulation
result is shown in Figure 8. The star data points in Figure 8 represent the relative nonlinear
coefficient. It can be seen from Figure 8 that the relative nonlinear coefficient of mode com-
bination 10 increases with increasing temperature, while the relative nonlinear coefficient
of mode combination 15 decreases with increasing temperature. The above simulation
result is consistent with the theoretical result in Figure 3d,i. The 3D FEM can provide clear
simulated ultrasonic signal waveforms and calculate relative nonlinear coefficients, which
can be directly contrasted with physical verification experiments.
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Figure 8. Simulation result of relative nonlinear coefficient vs. temperature: (a) Mode combination
10; (b) Mode combination 15.

5. Physical Demonstration Experiments

The relevant physical demonstration experiments are projected on a steel plate. The
size of the steel plate is 2 m× 20 cm× 15 mm. The material parameters of the steel plate are
the same as those in Table 1. The incidence and acceptance angles of ultrasonic excitation
and receiving transducers can be adjusted. The center frequencies of the excitation and the
receiving ultrasonic transducers are 2.5 MHz and 5 MHz. In the experiments, the excitation
and reception of ultrasonic guided waves signal are realized by adopting RITEC RAM-5000
SNAP nonlinear high-energy ultrasonic testing system, the testing system is shown in
Figure 9a. The longitudinal wave transducers are placed on the steel plate, as shown in
Figure 9b. The excitation signal still adopts the 20-cycle sine wave pulse signal modulated
by the Hanning window.
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With the same excitation amplitude, adjust the inclination angle of transducers, and
the selection of mode combination is changed. Set the incidence and the acceptance angles
θ1 = 44◦, the received signal about mode combination 10 is shown in Figure 10a, and the
natural logarithm of the spectrum analysis result is shown in Figure 10b. It should be
noted that, owing to multi-modal characteristics, the generated second harmonics may
not be unique, but only cumulative second harmonics play a dominant role. In the test
to check whether the second harmonic signal generated by mode combination 10 is the
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cumulative second harmonic, the propagation distance gradually increases from the initial
95 mm to 155 mm. When the propagation distance increases by 10 mm, 200 samples are
collected through the testing system, and the average value and standard deviation of the
relative nonlinear coefficient β are calculated. The change curve of β with the increasing
propagation distance is shown in Figure 10c. Change the angles of excitation and receiving
transducers θ2 = 55◦, and repeat the above experiment. The experimental result of mode
combination 15 is shown in Figure 11.
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Figure 11. Experimental result of mode combination 15: (a) Received signal diagram; (b) Spectrum
analysis result; (c) Relative nonlinear coefficient vs. propagation distance curve.

The experimental result in Figures 10c and 11c shows that the detected relative nonlin-
ear coefficients both rise with the increasing distance, which illustrates that mode combi-
nations 10 and 15 all can produce cumulative second harmonics. The relative nonlinear
coefficient measured by mode combination 10 is larger than that of mode combination 15, in-
dicating that mode combination 10 can excite the cumulative second harmonic with higher
amplitude. The above experimental result is consistent with theoretical and simulation
conclusions, which proves the accuracy of the mode combination selection method.

After completing the above experimental operation, place the steel plate in a tem-
perature control box. The temperature control box in this paper is originally used to heat
rail, but in this section, it is applied to change the temperature of the steel plate. The air
temperature in the temperature control box can be adjusted through the control panel. The
temperature of the steel plate can reach a maximum of 60 ◦C and a minimum of –20 ◦C
through the temperature control box. The temperature control box is shown in Figure 12a.
The contact temperature sensor is used to monitor the temperature of the steel plate with a
propagation distance of 145 mm. The block diagram of the physical experimental system is
shown in Figure 12b.
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Figure 12. Physical verification experimental system: (a) Experimental temperature control box;
(b) Block diagram of the physical experimental system.

Since the viscosity of common coupling gel will change greatly during the heating
process, which will affect the transmission of the ultrasonic signal, AB mucilage is adopted
as ultrasonic coupling gel in the experiments. The solidified AB mucilage has no viscosity,
and the effects of temperature on it can be ignored. The average time for the steel plate
temperature to increase by 1 ◦C is 30 min. When the temperature of the steel plate rises by
5 ◦C, 200 samples are collected through the testing system at high speed for less than 1 min,
so the measured relative nonlinear coefficient in this time stage can indicate the ultrasonic
nonlinear state at this temperature. Calculate the average value and standard deviation of
the relative nonlinear coefficient β at different temperatures and obtain the change curve of
β with temperature, as shown in Figure 13.
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Figure 13. Experimental result of relative nonlinear coefficient vs. temperature: (a) Mode combination
10; (b) Mode combination 15.

From the change curves in Figure 13, it can be observed that the relative nonlinear
coefficients of mode combinations 10 and 15 have the opposite change trends during the
same heating process. The relative nonlinear coefficient of mode combination 10 increases
monotonically, while that of mode combination 15 decreases monotonically. The physical
experimental result is consistent with the theoretical derivation and simulation analysis
result, which proves the accuracy of the variation law.

The experimental result indicates that temperature has a significant impact on nonlin-
ear ultrasonic guided waves propagating in metal waveguides, and even a temperature
variation of 5 ◦C can cause a clear change of relative nonlinear coefficient. Consequently,
when conducting research about nonlinear ultrasonic guided waves, it is necessary to
obtain the influence of temperature on the selected cumulative second harmonic in advance
and correct the test result accordingly.
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6. Conclusions

Nonlinear ultrasonic guided waves have demonstrated excellent application potential
in the current NDT research field, but the diversity and complexity of the modal response
to temperature restrict the related applications. In this paper, plate structure is selected as
the research model and the temperature effects on nonlinear ultrasonic guided waves are
methodically and comprehensively analyzed. The main contributions are as follows:

(1) An accurate and clear method for identifying the response law of different cumu-
lative second harmonics to temperature is described in detail. Through calculating
amplitude parameters based on the SAFE method, the mode combinations of the
fundamental frequency mode and the second harmonic mode in the waveguide that
can generate cumulative second harmonics can be confirmed, and the magnitudes
of different cumulative second harmonic modes are quantified. The variation law
of nonlinear guided waves to temperature is further determined by analyzing the
amplitude parameters at different temperature states.

(2) The theoretical derivation result indicates that temperature has significant effects on
nonlinear ultrasonic guided waves. When the temperature of the steel plate increases
monotonically, the variation trends of relative nonlinear coefficients about different
cumulative second harmonic modes are not the same, showing monotonically increas-
ing or decreasing. Therefore, in the research and experiments of nonlinear ultrasonic
guided waves, especially when the temperature range of the tested object is large,
such as the detection of thermal stress in rail, necessary temperature compensation
or identification must be carried out on the detection result; otherwise, the incorrect
result may be obtained.

(3) The methods and conclusions proposed in this paper are also appropriate for the
waveguide with complex cross-sections and have universal applicability. By combin-
ing the 3D FEM, the further study of nonlinear ultrasonic guided waves under the
influence of other types of defects, such as micro-cracks and corrosion creep, can be
developed. The main obstacle in practical application is the separation and extraction
of specific second harmonic modes in complex cross-sectional structures, and more
work is needed to achieve the above goals.
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Appendix A

The calculation formula of S(1)
NL, F(1) and T(n)

L are reduced as follows:
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Tij(n)
L = λ(

¯
E1 ·

¯
m) + µ(
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T
), (A3)

where A, B, C are the third-order elastic coefficients of solid material,

¯
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