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Abstract: In this study, low-temperature synthesis of a Nb2SnC non-MAX phase was carried out via
solid-state reaction, and a novel approach was introduced to synthesize 2D Nb2CTx MXenes through
selective etching of Sn from Nb2SnC using mild phosphoric acid. Our work provides valuable insights
into the field of 2D MXenes and their potential for energy storage applications. Various techniques,
including XRD, SEM, TEM, EDS, and XPS, were used to characterize the samples and determine
their crystal structures and chemical compositions. SEM images revealed a two-dimensional layered
structure of Nb2CTx, which is consistent with the expected morphology of MXenes. The synthesized
Nb2CTx showed a high specific capacitance of 502.97 Fg−1 at 1 Ag−1, demonstrating its potential
for high-performance energy storage applications. The approach used in this study is low-cost and
could lead to the development of new energy storage materials. Our study contributes to the field
by introducing a unique method to synthesize 2D Nb2CTx MXenes and highlights its potential for
practical applications.

Keywords: niobium carbide; two-dimensional nanostructures; XRD; supercapacitors; electrochemical

1. Introduction

Renewable energy resources are significant because they help us to diminish our
dependence on fossil fuels. They are leading us to a sustainable future where we can
live without the threat of climate change and pollution. Energy storage systems are
combinations of procedures and techniques used to store energy that help to incorporate
renewable energy sources into smart energy grids. There are many technologies used
for energy storage, which can be classified based on the purpose for which energy is
stored. Primarily, they are classified into two main methods: electrical energy storage
and thermal energy storage, which is further divided into mechanical, chemical, and
electrochemical energy. Among all energy storage technologies, electrochemical energy
storage supercapacitors are better able to handle high power conversion rates than batteries.
Another advantage of supercapacitors is that their charging times are nearly thousands of
times faster than those of batteries with similar capacities [1]. In order to raise both the
performance capability of batteries and the overall effectiveness of an energy storage system,
supercapacitors have been used in conjunction with batteries [2]. In general, supercapacitors
have been used in two major domains: high-power applications, where short-time power
peaks are utilized by supercapacitors, to boost energy in hybrid vehicles, for instance, or
to start heavy diesel engines; and low-power applications, where batteries can be more
reliable, the most common examples of which are UPS and security installations [3].
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Depending on the storage technique or cell structure, supercapacitors can be classified
into three major categories: electric double-layer capacitors (EDLCs), hybrid supercapaci-
tors, and pseudo-supercapacitors, the imaginary capacitors [4]. The EDLC supercapacitors
use van der Waals interactions to store power in Helmholtz double layers on the phase
terminal among the electrode’s layer and the electrolyte. In EDLC supercapacitors, energy
is stored in a non-Faradic manner without any electron exchange or redox reaction. In
general, activated carbon is utilized as an electrode material for EDLC supercapacitors,
due to their large surface areas, such that they are utilizable for numerous applications [5].
Pseudo-capacitors are also known as Faradic supercapacitors, where the electrode materials
undergo redox processes and act as intermediaries in the electron transfer process. Redox
processes and the transport of electrons cause the pseudo-capacitance to form at the elec-
trode surface [6]. The third type of supercapacitor combines EDLCs and pseudo-capacitors
and is referred to as a hybrid supercapacitor. It performs better than the other two types
of capacitors due to its high volumetric and gravimetric energy. It has a higher energy
density because of the Faradic reaction that occurs on the negative electrode, although
hybrid supercapacitors are currently just being investigated in laboratory conditions.

There are numerous materials that are appropriate for providing charge storage mech-
anisms. In general, carbon contains materials and various types of transition metal oxides.
It has been known for pseudo-capacitive materials in aqueous electrolytes. Recent studies
have shown that incorporating nanocellulose and its derived composites in supercapacitor
electrodes can significantly enhance their performance [7]. The electrode materials for
supercapacitors are categorized as carbon-based materials (e.g., activated carbon materials
(ACs), graphene and carbon nanotubes (CNTs), transition metal oxides, and conduct-
ing polymers (e.g., PANI, polythiophene (PTh), and polypyrrole). Two-dimensional (2D)
materials have shown promising potential for applications in various fields, such as elec-
trochemical sensing [8], energy storage [9], and water purification [10], because they hold
some exceptional properties, such as physical [11], mechanical [12], chemical, optical,
and electrical properties [13]. Two-dimensional materials have drawn the attention of
researchers working in the domains of nanotechnology, electrochemistry, and materials
science. A variety of two-dimensional nanomaterials have been discovered over the past 20
years in addition to graphene [14], layered double hydroxides (LHDs) [15], transition metal
dichalcogenides (TMDs) [16], transition metal oxides (TMOs) [17], black phosphorous
(BP) [18], graphite carbon nitride (g-C3N4) [19], and hexagonal boron nitride (h-BN) [20].
Due to homogeneous layer formation, tremendous surface-to-volume ratios, strong affinity
to water molecules, and high surface charges, two-dimensional nanomaterials possess
outstanding properties, such as ample Young’s moduli, thermal conductivity, and electrical
conductivity, along with adaptable band gaps. A breakthrough in 2D materials research was
made in 2011; in addition to these stacked nanomaterials, a family of 2D transition metal
carbides, carbo-nitrides, and nitrides called “MXene” were first reported by Gogotsi et al. [21].

MXenes are generally obtained by the selective etching of the layer ”A” metal from
the precursor MAX phase compound with the general formula Mn+1AXn, where M belongs
to the family of transition metals, where A represents the element from the main group
and X stands for carbon (C) or nitrogen (N), with n = 1, 2, 3 [22]. So far, there are about
70 MAX phases reported in the literature, but the number of MXenes that have been
well established and studied is very limited. So far, different types of MXenes have been
reported [23], including Ti3C2, Ti2C, (Ti0.5, Nb0.5) C, (V0.5, Cr0.5)3 C2, Ti3CN, Ta4C3, Nb2C,
V2C [24], W1.33C [25], Nb4C3 [26], etc.

MXenes possess remarkable electrochemical performance and other desirable proper-
ties, such as hydrophilicity, malleability, and two-dimensional structures with atomic-layer
thicknesses and micrometer-scale lateral dimensions. These characteristics make them an
excellent choice for electrode materials, which are crucial in enhancing the electrochemical
performance of SCs. The design of MXene electrode materials, including their architecture,
surface terminations, interlayer spacing, and composites, is a critical factor in determining
the electrochemical performance of supercapacitors [27]. Previous studies have demon-
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strated the potential of various MXenes, including Ti3C2Tx, V2CTx, and Nb2CTx, for use
in supercapacitors, with excellent electrochemical performance reported in several cases.
For instance, Dall’Agnese et al. [28] reported the use of a Ti3C2Tx MXene as an electrode
material for a symmetric supercapacitor, which exhibited high capacitance and excellent
cycling stability. Similarly, Sandhya et al. [29] synthesized a V2CTx MXene via a facile
wet-chemical method and demonstrated its use as an electrode material for an asymmetric
supercapacitor, which showed high specific capacitance and energy density. Furthermore,
by using in situ electrochemical Raman spectroscopy investigation, Hu et al. [30] studied
the capacitance behavior of Ti3C2Tx using aqueous electrolytes and three different types of
sulfate ions (H2SO4, (NH4)2 SO4, and MgSO4) and came to the conclusion that the Ti3C2Tx
electrode outperformed the other two electrolytes in terms of supercapacitor performance
in an acidic medium. Ghidiu et al. [31] reported for the first time the clay-like Ti3C2Tx
materials as supercapacitor electrodes in acidic electrolyte, and the performance of these
materials was found to be very promising, with volumetric capacitance up to 900 F cm−3

or 245 F g−1. Lukatskaya et al. [32] concluded that the electrochemical behavior of Ti3C2Tx
in H2SO4 is predominantly pseudo-capacitive, with specific capacitance near to 230 F g−1.
Apart from Ti3C2Tx, other MXenes, such as V2CTx [33], Mo2CTx [34], Mo1.33TiC2Tx [35],
and Nb2CTx [36,37], have shown promising performance in supercapacitor and energy
storage applications. Nb2CTx is not more studied as compared to the Ti3C2Tx MXene,
despite its having significant potential for many applications, such as biosensors [38] and
energy storage [39]; most of the possible applications are still to be explored. Niobium-
based MXenes are theoretically proved to be more stable than titanium-based MXenes [15].
So far, various methods have been reported for the synthesis of Nb-based MXenes (Nb2CTx
and Nb4C3Tx), in which different acids and reaction conditions have been used. HF (hy-
drofluoric acid) is the most common acid used for synthesis of Nb2CTx MXenes [40] under
different etching times, such as 24 h, 48 h, and 96 h [41]. Apart from HF, a mixture of
HCL (hydrochloric acid) and LiF (lithium fluoride) is also used to avoid the toxicity due to
HF [42]. The Nb-based MXenes Nb2CTx and Nb4C3Tx have proved potential in most appli-
cations, such as cancer nanomedicine [43], HER [16], EMI shielding [44], electrochemical
sensors [40], and photocatalytic activities [45].

In this study, we investigated Nb2CTx, a supercapacitor electrode material, based
on a two-dimensional nanostructure. While H3PO4 etching was used for the synthesis
of Nb2CTx MXenes, the solid-state reaction used to obtain the non-MAX phase Nb-Sn-C
occurs at 1000 ◦C under the flow of nitrogen. XRD, SEM, FTIR, XPS, and TEM are some
of the techniques that were used to describe the produced materials to examine their
structural and morphological characteristics. By performing tests, such as galvanostatic
charge–discharge (GCD) and cyclic voltammetry (CV) analyses, the electrochemical perfor-
mance of the Nb2CTx-modified electrodes was examined. The Nb2CTx-modified electrodes
displayed good capacitance performance, with a specific capacitance of 502.97 Fg−1 and a
capacitance retention of 32.64% at a current density of 4.4 Ag−1. The findings of this study
show that Nb2CTx has promise as an electrode material for supercapacitors.

2. Materials and Methods
2.1. Materials

Nb (niobium powder, <45 µm, 99.7% metal basis), Sn (<125 µm, 99.8% metal), graphite
powder (<30 µm), isopropyl alcohol (C3H8O), potassium hydroxide (KOH), acetylene black,
and Nafion solution (binder) were purchased from Sigma Aldrich. The electrochemical
characterizations were performed with three-electrode assembly, in which an Ag/AgCl
electrode was used as the reference electrode, a platinum-wire electrode (purchased from
Top Sky Technology China, Shenzhen, China) was used as an auxiliary electrode, and nickel
foam on which the prepared sample was deposited was used as the working electrode. A
mixture of distilled water (DI) and ethanol was used for the preparation of the solution
and the cleaning of electrode materials throughout the experiment.
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2.2. Synthesis of Nb2SnC and Nb2CTx MXenes

The Nb, Sn, and graphite powders were mixed at a molar ratio of 2:1.1:1 with a mortar
and pestle and then ball-milled for 8 h using a Retsch PM 100 planetary ball mill with a
500 mL stainless steel jar and 10 mm-diameter stainless steel balls. The ball-to-powder
weight ratio was 10:1, and the milling speed was set to 300 rpm. The resulting powder
mixture was pressed into pellets with a size of 10 mm diameter and 1 mm thickness. The
pressure exerted by the hydraulic press during compaction was 50 MPa, and each pellet
weighed 1 g. The pellets were then heated in an atmospheric controlled tube furnace at
1000 ◦C for 8 h with nitrogen gas flowing through it. After cooling to ambient temperature,
the pellets were manually ground into Nb2SnC powders and stored in a dry area.

As we know, the synthesis of graphene and black phosphorous [46] is performed by
mechanical exfoliation, but this method is unfeasible for layers in the Mn+1AXn phase, due
to the substantial metallic bonds among “M” and “A” elements. Among M-A and M-X
bonds, the M-A bonds are chemically more active in comparison to the M-X bonds [47],
and MXene can be synthesized by etching out the “A” element from the MAX phase with
very strong acids, such as hydrofluoric acid (HF), lithium fluoride (LiF), or a mixture of
both [48,49], though more commonly, fluoride-containing etchant [31,32] or heating is
used [50,51].

The use of hydrofluoric acid (HF) in the synthesis of MXenes has been considered
challenging, time-consuming, and hazardous due to its toxic nature. In this work, we focused
on developing a new approach for acquiring MXenes without using HF. To achieve this, 500
mg of Nb2SnC non-MAX phase powder was combined with 50 mL of phosphoric acid, and
the mixture was magnetically swirled for 24 h at 60 ◦C. Following the 24-h period, the solution
was washed using the same procedure as before and then dried for an additional 24 h at
70 ◦C in an oven. Overall, this method provides a safer and more feasible way to synthesize
MXenes and can be a promising alternative to the traditional pathway involving HF as
shown in schematic diagram Figure 1.
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2.3. Structural and Morphological Characterizations

The arrangement of crystalline structures and phases present in the synthesized mate-
rials was identified using XRD with the Phillips Pan-Analytical X’-pert XRD system. The
structural morphology of the synthesized sample was determined using SEM (scanning
electron microscopy) with the Hitachi S-4800 at an applied potential of 2 kV. The elemen-
tal and atomic composition of the sample was calculated using EDS (energy-dispersive
spectroscopy) with the Nova Nano 200 FEI Mark. XPS (X-ray photoelectron spectroscopy)
was performed with the XPS Esca-lab 250Xi (Thermo Fisher Scientific, Waltham, MA, USA)
instrument, which was used employing an 800 µm monochromatic Al-Kα-X-ray to analyze
the sample’s surface chemistry as well as the electronic and chemical state of the element
present in the prepared sample. The layered morphology and interlayer spacing were
visible via HR-TEM using a JEM-2200FS microscope.

2.4. Preparation of Electrodes for Electrochemical Characterizations

A working electrode for three-electrode assembly was prepared by the drop-cast
method. Homogeneous slurry was made by mixing 5 mg of etched Nb2CTx MXenes with
25 µL of Nafion and 25 µL of ethyl alcohol. The solution was ultrasonicated for 3 h to
make it homogeneous. After the sonication, the homogeneous solution was dropped on
the nickel foam, which was washed with 2 M HCL prior to deposition several times until
a uniform layer of material was obtained as an electrode. After the deposition, the nickel
foam was dried at 70 ◦C overnight in the oven.

The electrochemical characterizations were performed in a three-electrode assembly,
and KOH was used as the electrolyte. The Ag/AgCl electrode and the platinum (Pt)-wire
electrode were used as the reference and auxiliary electrode, respectively. Nickel foam
surface modified with Nb2CTx nanomaterial was used as the working electrode. The VMP3
multi-channel potentiostat electrochemical workstation was used for all electrochemical
characterizations. The integral area of CV was used to determine the value of specific
capacitance (F g−1):

Cs =

∫
Idv

δVm
(1)

where I is the current discharge, δ is the scan rate (mV s−1), V is the applied potential
window, and m is the loading mass of the working electrode.

On the other hand, specific capacitance from the galvanostatic charge–discharge (GCD)
curve was also calculated by finding out the integral area under the discharging curve
using the following equation [52]:

Cs =
js
∫ t2

t1
Vdt

V2
f

2 − V2
i
2

(2)

where js is the current density,
∫ t2

t1
Vdt is the area under the discharge curve, Vf is the final

potential, and Vi is the initial potential during the GCD measurement.

3. Results and Discussion
3.1. Structural and Morphological Analysis

EDS analysis was used to identify the elemental composition of the Nb2SnC non-
MAX phase and Nb2CTx MXenes, as shown in Figure 2a. The reduction in the elemental
composition of Sn (from 18.32% to 0.02%) and elevation in the elemental composition of
C (from 7.72% to 54.37%) are evidence that Nb2CTx MXenes were successfully formed.
Additionally, compared to Nb2SnC, the elemental composition of Nb and C in the Nb2C
MXenes was elevated. The oxygen present in the EDS spectra of the Nb2CTx MXenes was
associated with the intercalated water molecules and the surface terminations of OH ions.
There were no impurities detected in the prepared sample.
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Figure 2. (a) EDS spectra of Nb2SnC and Nb2CTx MXenes. (b) XRD patterns of Nb2SnC and
Nb2CTx MXenes.

The XRDs of the Nb2SnC non-MAX phase and Nb2CTx are displayed below in
Figure 2b. As can be seen, the XRD analysis of Nb2SnC is consistent with the ICSD file
(98-011-3800 hexagonal 63/mmc), with the planes (002), (013), and (016) found at the cor-
responding peaks 2θ = 38.76◦, 45.01◦, and 62.69◦, respectively, as in the literature [53–56].
Additionally, the other peaks of Sn, Nb, NbC, and Nb2C are consistent with the correspond-
ing ICSD files, 01-086-2264, 01-077-0566, 00-038-1364, and 98-011-6716, respectively. After
the selective etching with H3PO4, the obtained Nb2CTx MXene showed a similar pattern,
with vanishing of the peaks at 2θ = 30.5◦, 32.0◦, 43.8◦, 55.3◦, 64.7◦, and 72.25◦, which belong
to Sn. As can be seen in the XRD peaks, the Nb2SnC non-MAX phase has peaks with low
intensity as compared with the MXene etched with Nb2CTx. The lattice parameters were
calculated for the Nb2SnC NON-MAX phase and Nb2CTx. For hexagonal Nb2SnC, the
lattice parameter was calculated as a = b = 2.90 Å and c = 12.9 Å, while for cubic Nb2CTx,
the lattice parameter was calculated as a = 3.99 Å.

The SEM images of the Nb2C MXene and the NON-MAX phase were analyzed to
investigate surface morphology. The pure Nb2SnC bulk structure can be seen in Figure 3a,b.
The morphology of the Nb2SnC non-MAX phase was altered to a sheet-like structure after
being etched with phosphoric acid (H3PO4), as illustrated in Figure 3c,d. The morphology
of the Nb2CTx MXene is a structure that resembles two-dimensional sheets; the sizes of the
layers’ structures vary, but they are consistently arranged. The space between the internal
layers is expanded, which is more suitable for ion circulation and more convenient for
the junction between active ions and the active sites of the material [57]. In another study
in the literature [9], it was reported that nanoparticles with comparable elevated active
surface areas could exhibit prominent electrochemical performance, and we could observe
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good surface areas in the Nb2CTx materials, so these layered-structured nanomaterials are
suitable for supercapacitor applications.
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Figure 3. (a,b) SEM images of Nb2SnC NON-MAX phase. (c,d) SEM images of Nb2CTx MXene.

XPS (X-ray photoelectron spectroscopy) was used to investigate the surface chemistry
of the prepared sample along with the chemical state of the present elements with binding
energy levels. Figure 4a show the XPS survey spectra of the Nb2SnC non-MAX phase and
the Nb2CTx MXene. Figure 4b shows the high-resolution spectrum of the Nb2CTx MXene
in the Nb 3d region, which could be best fitted with the corresponding Nb2C MXene (Nb
3d 204.8eV and Nb 3d5/2 205.71 eV) and oxidized Nb (Nb 3d5/2 209.72 eV) [58,59]. In
Figure 4c, the peaks obtained at 496.3 eV and 487.65 eV are attributed to the binding energy
of Sn4+, while those at 493.5 eV and 487.65 eV belong to that of metallic Sn [55,60]. In
Figure 4d, the peaks of C 1s at 284.89 eV and 288.72 eV are ascribed to the binding energy
of C-C and C=O bonds.

To study the morphologies and structures of the prepared samples at atomic level,
TEM analysis was performed. Figure 5a,b displays the TEM images of the Nb2SnC non-
MAX phase at two different resolutions. The well layer structure of Nb2SnC NON-MAX can
be seen in Figure 5a, which can also be confirmed from the SEM image of the Nb2SnC NON-
MAX phase. For the same non-MAX phase, d-spacing calculated as shown in Figure 5b
was found to be 6.4 Å, which corresponds to the (002) plane as compared to the XRD of the
Nb2SnC non-MAX phase. Figure 5c,d display the TEM images of the Nb2CTx MXene at
two different resolutions. The two-dimensional layer of the Nb2CTx MXene can be seen
in Figure 5c at 50 nm resolution, which can also be confirmed from the SEM image of the
same sample. The same sample d-spacing calculated as shown in Figure 5d was found to
be 2.6 Å, which corresponds to the (010) plane as compared to the XRD of Nb2CTx.
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3.2. Electrochemcial Analysis

Three-electrode assemblies were used for electrochemical determination for the Nb2CTx
MXene. For the investigation of electrochemical characteristics, cyclic voltammetry (CV),
electrochemical impedance spectroscopy (EIS), and galvanostatic charge–discharge (GCD)
analyses were performed. In a three-electrode assembly, nickel foam was used as a working
electrode, modified by drop-casting of the sample on the nickel foam.

Cyclic voltammetry (CV) is a significant approach used to analyze the capacitive
behavior and electrochemical performance of modified electrodes for supercapacitors. CV
was run for the Nb2CTx MXene, and the corresponding curves are shown in Figure 6a,b.
All the CV curves were seen to have quasi-rectangular shapes, which suggest pseudo-
capacitive behaviors [61]. In addition, the Nb2CTx nanocomposite exhibits fragile and wide
characteristics peaks, which is the outcome of oxidation–reduction reactions taking place at
the surface of the electrode which demonstrate the pseudo-capacitive behavior of Nb2CTx.
To further explicate the electrochemical performance of the Nb2CTx nanocomposite, CV was
performed at various scan rates, starting from 10 mVs−1 up to 1000 mVs−1 in the applied
potential range from −1 V to −0.2 V, as shown in Figure 6a. Additionally, the CV curve
exhibited a similar rectangular pattern up to a high scanning rate of 1000 mVs−1, which
corresponds to adequate capacitance and rapid ion response. The specific capacitance at
each scan rate was calculated from Equation (1), and these results are plotted in Figure 6b.
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(f) Rate capability calculated from GCD.
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The capacitance at 10 mVs−1 was found to be 260.38 Fg−1 and to exhibit a diminishing
trend with stepwise increments in the scan rate, because, while increasing the scan rate,
the diffusion of electrolyte ions into the internal electrode structure becomes challenging
and there is no effective interaction between the electrode material and electrolyte, which
leads to a decrease in specific capacitance. As the scan rate changed from 10 mVs−1

to 1000 mVs−1, the Nb2CTx electrode retained the initial capacitance of 45.53% from its
maximum value. The good rate capability may be elucidated by the high conductivity of
the ions present in the electrolyte, which makes it appropriate for practical applications.
This magnificent charge storage kinetic exhibits good electrochemical specifications, such
as compact transfer resistance and smaller diffusion length [57].

The galvanostatic charge–discharge (GCD) technique is one of the electrochemical
characterizations requisites for understanding the charging–discharging capability of a cell.
For the Nb2CTx MXene, GCD was performed at current densities ranging from 1.0 Ag−1

to 4.4 Ag−1 in the applied potential range between −0.2 V and −1.2 V to analyze the
capacitance. The GCD curves at various current densities for the Nb2CTx electrodes showed
a symmetrical triangular pattern during the process of charging and discharging, which
demonstrated EDLC behavior. The Nb2CTx nanocomposite exhibited elongated charging
and discharging durations, which correspond to the typical pseudo-capacitive behaviors of
metal carbides and nitrides [61,62]. The specific capacitance value calculated from the GCD
curve was found to be 502.97 Fg−1 for Nb2CTx at the current density of 1.0 Ag−1, and it
exhibited a decreasing trend up to 165 Fg−1 at the current density of 4.4 Ag−1, as shown
in Figure 6d,e. Additionally, as the current density varied from 1.0 Ag−1 to 4.4 Ag−1, the
Nb2CTx nanocomposite electrode material retained 32.64% of its initial specific capacitance.

To further investigate the intrinsic resistance of the electrode and electrolyte, electro-
chemical impedance spectroscopy (EIS) was carried out at a frequency range of 100 MHz–
100 KHz. Small electrode resistance was corroborated by EIS measurements, as shown
in Figure 7, and the electrochemical performance of Nb2CTx is attributed to favorable
electrochemical reaction kinetics. The equivalent circuit was plotted along with the graph,
and values of resistance and capacitance were calculated as mentioned in the graph. The
equivalent series resistance was found to be 1.37 Ω. In the EIS curve, the linear behavior
in the medium-frequency range can be attributed to the traditional capacitive behavior
leading to EDLC behavior [63]. The superior electronic conductivity and charge-transfer
kinetics of Nb2CTx result in lesser charge transfer resistance, which helps in speeding up
electrochemical reactions [64].
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3.3. Analysis of the Supercapacitive Behavior of the 2D Nb2CTx Nanomaterial

After analyzing all the electrochemical characterizations, the super capacitive behavior
of the 2D Nb2CTx nanomaterial was ascribed to the following aspects: (a) The sheet and
layered morphology of the Nb2CTx MXene, as shown in the SEM images, illustrates a
prominent surface area and adequate conductivity, which reinforce the electrolytic diffusion
and absorption of ions onto the electrode’s surface. (b) The presence of functional group
-O in Nb2CTx, which was confirmed by EDS analysis after etching with phosphoric acid
(H3PO4), helps in tuning the electrocatalytic properties, such as easy ion transfer, decreasing
the internal resistance, and upgrading the electrical conductivity, which improves the
electrochemical mechanism. The interlayer spacing in Nb2CTx eases the way for fast
hydrated ion diffusion, which affords kinetics similar to the EDLC behavior and accessible
active sites to an extent which ensures high capacity and rate performance. A comparison
table (Table 1) is provided below, after the literature review of some MXenes prepared
under different reaction conditions and via different etching methods which have been
reported for supercapacitors, which shows that the prepared Nb2CTx MXene is a suitable
candidate for supercapacitors.

Table 1. Comparison of specific capacitances under various synthesis conditions.

MXene Specific Capacitance Etching Method Scan Rate Reference

Ti3C2Tx 246 Fg−1 HCl + LiF 45 h 2 mVs−1 [31]
V4C3Tx 209 Fg−1 50% HF 96 h 2 mVs−1 [65]

Nb2CTx/CNT 200 Fg−1 HCl + LiF 48 h 5 mVs−1 [42]
Nb2CTx 178 Fg−1 HCl + LiF 48 h 5 mVs−1 [42]
Nb2CTx 128 Fg−1 HF 48 h 2 mVs−1 [66]

Ti3C2/BCN 245 Fg−1 Etching/prolysis 2 mVs−1 [67]
Ti3C2Tx film 345 Fg−1 In situ etching 2 mVs−1 [68]

V2C 164 Fg−1 HF-free etching 5 mVs−1 [69]
Ti3C2Tx/PPy 415 Fg−1 HCL + LiF 24 h 5 mVs−1 [70]

Nb2CTx 502.97 Fg−1 H3PO4 24 h 10 mVs−1 This work

4. Conclusions

• A novel synthesis method was developed for preparing Nb2SnC non-MAX phase
powder at a lower temperature of 1000 ◦C, and two-dimensional nanostructures of
Nb2CTx MXenes were synthesized by selective etching of Sn-layered Nb2SnC using
mild phosphoric acid (H3PO4).

• The hexagonal crystal structure of Nb2SnC and the cubic structure of Nb2CTx were
confirmed by analyzing the XRD patterns of the samples.

• During the formation of Nb2CTx MXenes, the selective etching of Sn layers from
Nb2SnC was evident in compositional analysis using EDX and XPS.

• Two-dimensional layered nanostructures of Nb2CTx MXenes were observed in
SEM images.

• The specific capacitance of the synthesized materials was evaluated using CV and
GCD techniques. The CV plot of Nb2CTx showed a specific capacitance of 260.38 Fg−1,
while the GCD curve exhibited a specific capacitance of 502.97 Fg−1 for Nb2CTx.

• This study provides an eco-friendly and less hazardous method for synthesizing
Nb2SnC and Nb2CTx. Nb2CTx has superior electrochemical performance, making it a
potential candidate for high-performance supercapacitor applications. The presented
synthesis and characterization techniques could be useful for developing other MXenes
and two-dimensional materials for energy storage applications.
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