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Abstract: Research on auxetic metamaterials is important due to their high performance against
impact loadings and their usefulness in actuators, among other applications. These metamaterials
offer a negative Poisson’s ratio at the macro level. However, usual auxetic metamaterials face
challenges in (1) grading the effect, (2) coupling and combining auxetic metamaterials with non-
auxetic materials due to boundary compatibility, (3) obtaining the same auxetic behavior in all
directions in the transverse plane, and (4) adapting the regular geometry to the component design
boundary and shape. The goal of this paper is to present a novel, recently patented tunable 3D
metamaterial created to reproduce a wide spectrum of 3D auxetic and non-auxetic Poisson’s ratios and
Young’s moduli. This wide range is obtained using the same basic unit cell geometry and boundary
connections with neighboring cells, facilitating designs using functionally graded metamaterials as
only the connectivity and position of the cell’s internal nodes are modified. Based on simple spatial
triangularization, the metamaterial is easily scalable and better accommodates spatial curvatures or
boundaries by changing the locations of nodes and lengths of bars.

Keywords: metamaterial; auxetic; variable properties; mimetic

1. Introduction

The use of metamaterials dates back to World War 1II [1,2], but has recently gained
renewed interest with the increased use of 3D printing techniques, which eliminate most of
the shape constraints due to manufacturing procedures [3]. This is particularly important
when addressing structures at different scales, creating true multiscale architected patterns
with salient mechanical properties typical of metamaterials, which is the main difference
from classical manufacturing processes [4,5]. Currently, this technique is mainly used for
small batches and value-added components due to speed and cost, but with continuous
improvements in 3D printing technology, the approach is highly promising even for mass
production industries [6,7]. According to Fortune Business Insights [8], the 3D printing
market is expected to grow at a rate of 24.3% in the next few years or about nine times in
the next decade. The main potential of 3D printing lies in the tailored design and detailed
multiscale manufacturing allowed by the technique, which enables the metamaterial struc-
ture to span the material design space. At a larger scale, metamaterials can be considered
as continuum material [9,10], since in essence, all materials have microstructures.
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There is no unique definition of what a (mechanical) metamaterial is; some authors
tie the meaning to an architected structure that brings unique (i.e., not found in nature)
physical properties. Other authors think of metamaterials as architected structures at
the micro level, which bring a unique combination of properties (e.g., mechanical) at
the continuum level [11,12] (p. 3), among many others. For a more detailed review on
metamaterials, the reader is referred to Bertoldi et al. [13] and Barchiesi et al. [14].

There is a large family of metamaterials; however, the present work focuses on auxetic
mechanical metamaterials. The term auxetic was coined in 1991 by Evans [15], and the
possibility of materials presenting a negative Poisson’s Ratio (NPR) was considered by Love
a century ago [16]. Relevant works about NPR materials were published by Almgren [17]
and Wojciechowski [18] more than three decades ago. Recent studies about this effect in
other materials, e.g., graphene, can be found in [19]. A general classification of auxetic
materials can be found in [20,21], and for a deeper review of auxetic materials, the reader is
referred to [22-25].

Regarding auxetic metamaterials, these are functional microstructures that, at the
continuum level, result in a negative Poisson’s ratio, at least in one direction. These
metamaterials have potential applications in structures under impact loadings, among
many other applications [26-30]. Of course, auxetic materials are not necessarily metama-
terials. Auxetic foams are also typical [31-33].

Usual auxetic metamaterials present some practical inconveniences when designing
components using such materials. The first is that the auxetic properties may only be
desirable in some parts of the component. The second is that typical metamaterials struggle
to accommodate different sizes and shapes, including curvature and boundary conditions,
while maintaining good connectivity. This limits some of the advantages of 3D printing
in shape designs. One challenge in functional metamaterials is to link them with other
functionally graded metamaterials or conventional metamaterials, as different metamaterial
cells typically result in different boundaries and, therefore, different connecting nodes or
surfaces. The mixture of graded auxetic metamaterials and auxetic with non-auxetic
metamaterials presents significant challenges due to strain inhomogeneity in connecting
zones [34,35].

Many metamaterial designs have tunable auxetic behaviors, most in 2D, but some in
3D; see, e.g., [36-39] for more details. The salient feature of this metamaterial is that it allows
for a wide range of auxetic or conventional behaviors. The structure is three-dimensional,
and changes in the topology of the metamaterial (to provide different behaviors) are
minimal, involving mere position relocations of some nodes or changes in internal con-
nectivities. Additionally, the auxetic behavior in the transverse plane is orthotropic and can
be close to the transverse isotropic, if desired. The metamaterial presented in this paper
allows for a smooth (or abrupt) transition between the auxetic and non-auxetic configura-
tions, and even different levels of auxeticity, as both behaviors can be obtained and tailored
using the same unit cell size, overall shape, and the same boundary connectivity. Only a
change in the connectivity or the positions of internal lattices is needed to tailor its beha-
vior. Moreover, the 3D triangularization and overlapped cell volumes allow for simpler
accommodation of curvatures and boundaries, typically needed in component design, by
simply changing nodal locations and bar lengths (note that the simplest mesh generators
to adapt volumes are based on triangularization). The type of triangularization used in
our metamaterial results in an in-plane hexagonal honeycomb-like structure, making the
resulting metamaterial quasi-transversely isotropic, in contrast to typically markedly ortho-
tropic metamaterials. Notably, unlike other recent works [40,41], the change from auxetic
to conventional behavior is not pursued through the deformation of the metamaterial, but
rather through a versatile connectable family of undeformed cell designs.

The goal of this paper is to present the General Auxetic Metamaterial (GAM), a
structure with tunable macroscopic properties, whose unit cell is registered under patent
reference ES2907514 A1 [42]. This patent has novelty against inventions in the INVENES
(Spanish) [43] and EPODOC (EPO worldwide bibliographic data) [44] databases. While
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some patents describe auxetic metamaterial configurations, none present tunable properties
similar to the invention in this paper [45,46]. The presented metamaterial allows for the
spatial changes of mechanical properties by varying relative cell dimensions, lattice radii,
volume fractions, or curvatures [47-50], which are the primary techniques used for the
graded variation of mechanical properties in metamaterials. In addition, the proposed unit
cell can change the Young’s modulus and Poisson’s ratio through different connectivity
configurations while keeping the same radius and dimensions of the cell and the same
number of lattices, maintaining more constant density and porosity properties.

Section 2 is dedicated to the geometrical description of the unit cell and how the
auxetic and non-auxetic effects are obtained. Then, we show how the properties of the
cell allow for a very simple methodology to create shell structures with this metamater-
ial. Moreover, given the simple geometric variables defining the cell and the resulting
behavior, we demonstrate that a machine learning algorithm can be developed to link the
set of geometric features and desired output. These techniques can be used to perform
straightforward nonlinear inverse analyses to obtain the metamaterial layout for specific
mechanical requirements.

2. Theoretical Description of the Unit Cell

As mentioned earlier, the GAM is designed to reproduce a wide range of auxetic/non-
auxetic behaviors by changing the geometrical configuration of its unit cell. Specifically,
the unit cell is a lattice structure comprised of connected struts at given joints, or nodes.
Therefore, modifying the position of these nodes leads to different macroscale behaviors,
while the global shape of the unit cell is preserved. This means that cells with different
auxetic properties can be combined to create graded variations of the mechanical properties
in the resulting component. This behavior is studied when the resulting material is loaded
and aligned with the height of the prism in the unit cells. Figure 1 shows the auxetic (a) and
non-auxetic (b) configurations, as well as the link between unit cells (c), both vertically and
horizontally.

@ e C© @

w i

Figure 1. The unit cell in auxetic configuration (a), the non-auxetic configuration (b), the connection
between the auxetic unit cell with its neighbors (c), and the connection between the conventional unit
cell with its neighbors (d).

Additionally, Figure 2 shows that the height and position of the blue nodes are defined
by the shape parameters of the unit cell, namely Ds;,, (see Figure 2b), which represents the
penetration of the star within the apothem of the hexagon, and H;,r, which represents the
height of the external nodes. Finally, the height of the external nodes (in orange and green
in Figure 2) is defined as Djyjy-
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Figure 2. Lateral (a) and top (b) views of the unit cell and its key dimensions.

In Figure 2b, a 12-sided polygon is displayed in the plan view. It should be noted that
other configurations are also possible, such as one with a concave 8-sided octagon plan
view or one with a concave 16-sided polygon plan view.

The main factor determining the switch between the auxetic and non-auxetic response
is how the unit cells are stacked vertically, which is indicated by the green and orange bars
in Figure 1. These bars are respectively connected to the nodes above and below the mean
transverse plane (MTP) of their vertically adjacent cells, and vice versa.

The geometric ideas that give rise to the desired properties of GAM are depicted
in Figure 3. The metamaterial is quasi-transversely isotropic, with a mean transverse
plane (MTP in Figure 3) where most of the internal nodes are located. The top drawings
of Figure 3 illustrate how the auxetic or conventional behavior is achieved by actions
perpendicular to the MTP. These actions cause the folding or unfolding of the 3D star
depicted in the bottom elevation-and-plan drawings of that star in Figure 3 (note that itis a
3D structure with nodes above and below the MTP, which facilitates folding and unfolding
resulting in conventional and auxetic behavior). The connection of the basic parts shown
in Figure 3 is provided in the metamaterial cell described in Figure 1. Note that, despite
the explanation given to justify the geometry, the auxetic behavior is also achieved in the
transverse direction if the metamaterial is loaded in the transverse plane (i.e., it is an auxetic
metamaterial in 3D).

The green and orange bars in Figure 1 are responsible for changing the auxetic proper-
ties by linking to the top or bottom nodes of the neighboring unit cells (as also shown in
Figure 3). The resulting Poisson’s ratio is calibrated by the position of the internal nodes.
The evolving hexagonal prism, shown in light gray in Figure 1a,b, can be considered as the
volume of the unit cell, with the centers of the top and bottom neighbors located at both
ends of the prism. This means that, in contrast with classical metamaterials, there is no
definite space dedicated only to one unit cell. In the vertical direction (Figure 1), cells are
engaged in a less trivial way than in the typical metamaterial configuration, where each
unit cell is typically an independent block without overlapping with its neighbors.
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A Boundary node above mean transverse plane (MTP)
v Boundary node below mean transverse plane (MTP)

o Internal node in the mean transverse plane (MTP)

Figure 3. Auxetic (a) and conventional (b) lateral and top (plan) schematic views of the unit cells in
different configurations.

Parameters W and H (Figure 1c) define the height between layers as well as the
horizontal sizes of the metamaterial. In terms of the evolving hexagonal prism, H is half of
the height of the prism, and W is two times the apothem of the base. With these dimensions,
the unit cells are defined, and the hexagons are configured as a honeycomb to engage with
their neighbors in the layer. This is then replicated in space to create the different layers of
the metamaterial.

In the auxetic configuration, the internal star will open when a vertical tension (i.e.,
loading along the z-axis according to Figures 1 and 2) is applied, which is the load that will
reduce the distance between the top and bottom nodes. This behavior will show a negative
Poisson ratio.

The other configuration, shown in Figure 1b, exhibits non-auxetic behavior with a
positive Poisson ratio. This case is achieved by configuring the star to open when the
external nodes (top and bottom) are closer. This is accomplished by directly connecting the
unit cells vertically (Figure 1b) instead of using cross-connections (Figure 1a).

Finally, we note that the 3D triangular-based structure along the honeycomb plan
allows for simple solutions to accommodate complex boundaries. Figure 4 shows some
simple solutions to accommodate general boundaries through external nodes.
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Boundary adaptation
AN through external node
N\,  displacement

Boundary adaptation
through connection
to external node

Figure 4. Simple solution to accommodate general boundaries through external nodes.

3. Examples of Simple Implementations of the Metamaterial

The objective of this section is to demonstrate that the proposed metamaterial can
achieve a wide range of mechanical properties and be used in complex geometries using
simple techniques. Therefore, this section does not present specific methodologies but
focuses on the potential of the metamaterial. Firstly, we demonstrate that the metamater-
ial can be applied to construct components with different curvatures, such as fuselages.
Secondly, we use an Euler-Bernoulli beam model with two nodes per beam and infin-
itesimal strains to model the metamaterial. The model shows that a wide spectrum of
mechanical properties can be achieved by varying the geometrical variables. Finally, we
demonstrate that the behavior of the metamaterial can be predicted using a simple machine
learning model that acts as a high-dimensional nonlinear interpolation method. Even
with a small training dataset, the model can accurately reproduce the performance of the
metamaterial in an elastic compressive test.

3.1. Shell Generation with Layers of This Metamaterial

Interestingly, the proposed metamaterial cell has the same dimensions and connectivity
regardless of the intended mechanical behavior. Additionally, the cell is based on a simple
spatial triangularization, which allows for any curvature without significantly changing the
properties. As a result, a whole metamaterial shell can be easily generated by considering
the shape and size of the unit cell, the number of layers, and the desired final size of the
shell. Although the geometry is not as straightforward as other cells, such as the cubic cell,
it is periodic and can be implemented and computed with versatility. By stacking the unit
cell, a rectangular periodic lattice is formed, which can be mapped to the desired spatial
shape. In the following, a couple of examples are displayed by adding to the z-coordinate
of each node a mapping function Az, = f(xy,y») for illustration purposes (of course, more
complex transformations of the nodal coordinates are possible). The example in Figure 5 is
calculated by simply using:

Azp =20 sin(%) )

to calculate the added Az, to the z; coordinate for every point in a (xy, y,) location of the
layer. Figure 5 shows different views of the sample calculated, which can be used, for
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example, to protect the edge of a blade or as a structure to guarantee the impact resistance
(local and global through the shell effect).

Figure 5. Three-dimensional (a) and top (b) views of a shell created from the proposed metamaterial

cell simply using Az, = 20 sin(%).

For the different shell metamaterial structure given in Figure 6, we simply use

Az, =10 sm(lg) sm(?o) 2)

The resulting shape of Figure 6 demonstrates that complex geometries and configura-
tions, with tailored localized behaviors, may be obtained by simple transformations thanks
to the salient properties and connectivity of the proposed metamaterial cell.

Figure 6. Different sections of a shell created from the proposed metamaterial cell using Az, =
10 sin(34) sin(%3), where (a) is a slice perpendicular to the x-axis, (b) is a top (plan) view of the

previous slice from the z-axis, and (c) represents the whole domain.

In the examples given in Figures 5 and 6, the color scheme only shows the z, co-
ordinates of the bars in each of the five layers implemented. The unit cell parameters
used in the demonstrative examples of this section are H = 2 mm, W = 1 mm, Djy;; =
—0.6 mm (auxetic configuration), Dssr = 0.2 mm, Hgser = 0.3 mm. We also employed 5
layers through the thickness and a grid of 100 x 100 unit cells.

3.2. Numerical Testing of the Metamaterial

An Euler-Bernoulli beam model was used to test the different mechanical properties
presented by the metamaterial with the different geometrical configurations. For this, the
beam model with 6 degrees of freedom per node was composed of 5 vertical layers, and in
each one, there was a 5 x 5 grid of unit cells. A detailed description of the structural matrix
calculus, the Young’s modulus, and Poisson’s ratio calculation can be found in Appendix A.
The model was loaded under compression by imposing a vertical displacement (Au along
the z-axis according to Figures 1 and 2) on the top face nodes, and a vertical displacement
restriction on the bottom face nodes. The base material parameters are shown in Table 1.
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Table 1. Base material parameters used in the GAM code.

E [GPa] v
200 0.33

A total of 10,539 simulations were performed with different geometrical configurations
of the key shape variables. These simulations resulted in both auxetic and non-auxetic
behaviors with a wide range of Poisson’s ratios and stiffness values.

As demonstrative examples of such models, two configurations are shown here with
the auxetic response in Figure 7a—d and the non-auxetic response in Figure 7e-h. The
non-auxetic behavior is achieved by changing the sign of D)y, which is equal to 0.6 mm
in this case.

(@) s ()

Figure 7. Typical numerical results for the auxetic (top, a-d), and non-auxetic (bottom, e-h)

configurations. In both configurations, an increasing incremental vertical displacement load is
applied—from unloaded (left) to fully loaded (right).

In Figure 7, each column represents a different load step. In the next subsection, a
sensitivity analysis of the numerical results is presented to study the relationship between
the mechanical properties related to the main direction and the geometrical variables
presented in the previous sections of the paper.

For each set of geometric parameters, the vertical Young’s modulus and the transverse
Poisson’s ratio are calculated. Figure 8 shows these mechanical properties plotted against
the values of the unit cell’s geometric variables. These results may not be easy to interpret
directly as a raw dataset. For this reason, the next subsection demonstrates (through a
simple machine learning model) that those results can be easily interpreted.

Figure 8 shows the values of the different geometrical descriptors and their correlation
with the mechanical properties, as well as the relationship between the Young’s modulus
and the Poisson’s ratio of each calculation. E;, is the macroscopic Young’s modulus in the
loading direction (z-axis) of the uniaxial test from numerical simulation (Figure 7), and v; is
the Poisson’s ratio relating to the transverse strain ¢, with respect to the loading direction
€27, where the transverse strain is computed as

1
&t = E (Exx + Eyy) . (3)

The width W was considered constant and equal to 1 for all calculations. Table 2
shows the range and basic statistics of the geometrical and mechanical variables of this
numerical model to provide an illustration of how are they distributed.
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— H — Dstar == Hstar = Djoint

Figure 8. Range of mechanical properties obtained from the numerical models, considering different
geometries, where (a,b) represent the magnitude (size) of these geometrical variables against the
equivalent Young’s modulus E; and transverse Poisson’s ratio v, respectively, and (c) displays the
relationship between Young’s modulus and Poisson’s ratio in the simulations.

Table 2. Basic statistics of geometrical and mechanical variables of the numerical model, namely the
mean, standard deviation (std), minimum, quartiles, and maximum values.

Mean Std Min 25% 50% 75% Max
Djoim —0.38 0.38 —1.40 —0.60 —0.36 —0.12 1.2
Hgtar —0.09 0.12 —0.70 —-0.14 —0.06 —0.01 0.4
Dstar 0.38 0.20 0.05 0.20 0.40 0.55 0.7
H 241 0.69 1.50 2.00 2.50 3.00 35
E, [MPa] 184.78 159.64 0.00 87.78 148.62 242.30 766.2
Ut —0.18 0.28 —1.00 —-0.33 —0.10 0.00 0.5

As can be observed from the figure and the table, most of the simulated cases are auxetic
ie., vy < 0since in the 75% quartile of its distribution, the Poisson’s ratio is lower or equal than
0. This is due to the distribution of D),;,;—the main variable controlling the auxeticity—which
presents negative values up to the third quartile, at least. In Table 3, the cell parameters and
Young’s modulus of three extreme cases for the Poisson’s ratio (i.e., v; € {—1,0,0.5}) are
displayed, as well as a representation of the tessellation of a few unit cells.

Table 3. Cell parameters, Young’s modulus, and schematic representation of three extreme cases for
the transverse (to the z-axis) Poisson’s ratio i.e., vy € {—1,0,0.5}.

Dijoint Hstar Dstar H E, [MPa] Representation

v =—1 —0.8 —0.24 0.25 2.0 272.03

=0 0.0 0.00 0.05 3.0 88.36

v =05 0.6 0.00 0.20 3.0 266.09 P50\
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The previously highlighted influence of the parameter Djy;,; in the auxeticity of the
metamaterial can be seen from the schematic drawings of Table 3. However, this relation is
not always straightforward, as Figure 8b suggests. Moreover, rather different configurations
can yield the same Young’s modulus; see, e.g., v; = —1 and v; = 0.5.

The calculation demonstrates the range of Young’s moduli and Poisson’s ratios that
can be obtained in the metamaterial. Moreover, there is no simple correlation between
the geometrical descriptors of the metamaterial and the mechanical properties that can
be used for its design. The next section shows that even with a very simplistic machine
learning nonlinear regression, the mechanical properties in the loading direction can be
predicted from the geometrical parameters (features) of the unit cell. With the same volume
(and approximate density) of the unit cell and an equal lattice radius, a wide range of
mechanical properties (both Young’s modulus and Poisson’s ratio) can be designed through
an inverse analysis and achieved with the proper features. In practice, this is done by
varying only the connectivity of the lattices and the position of the internal nodes, without
changing the global shape of the unit cell. This is a very important property in the design
because it means that the shape of the component can be designed independently of the
metamaterial design.

3.3. Determination of the Mechanical Properties through Inverse Analysis with a Simple ML Model

In the design procedure, we typically know the desired final mechanical properties
and aim to determine the corresponding metamaterial design. To perform such designs
through inverse analysis, the general nonlinear relations between the set of cell geometric
parameters and the desired behavior are obtained using a simple machine learning (ML)
algorithm. This ML model is trained using the numerical beam model described in the
previous subsection, which is used to obtain the mechanical properties for a variety of
geometrical combinations.

Designing a metamaterial with the desired mechanical properties and embedding
a lattice architecture made of GAM in complex geometries requires simulating models
with a higher computational cost. Surrogate ML models can simplify this process by
establishing the relationship between geometrical features and the desired behavior. They
can either accelerate the computation of the behavior of the metamaterial cell for a variety
of geometrical parameters or solve a progression of unit cell parameters in the component
to obtain the desired whole component behavior. In this section, we demonstrate that these
types of ML surrogate models can be easily created for such tasks.

To this end, the full data analysis cycle was applied, namely, gathering and cleaning
the available data (data wrangling, [51]), statistical exploration of the data, generation/-
modification of the features (feature engineering, [52]), and applying an ML model with
further validation in a test set.

After noticing some patterns relating to the cleaned input variables and the output
(mechanical) variables in terms of the correlation coefficient, either the Pearson’s correla-
tion [53] (Chapter 5) or Spearman’s correlation [54] (Chapter 19), in exploratory analyses of
the data, an ML model was run to validate the feasibility of developing a surrogate model.
The objective of this step is not to develop a highly complex ML model, but to fit a more
classical, explainable ML model to illustrate this point. To this end, the available variables
are separated into features (inputs) and targets (outputs), as is typically done, in order to fit
a multi-output regressor. Namely,

* Inputs. Geometrical parameters: H, Hstar, Dstar, Djoint-
*  Outputs. Mechanical properties: E;, v;

Regarding the regressor model, a random forest (RF) algorithm was used [55]—due
to its simplicity and interpretability—making use of the scikit-learn library from the
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Python programming language [56]. As a loss function for this model, the mean squared
error (MSE) was used, which, denoting the label (output) as y, is expressed as:

L& o )2
_ Ly g0
MSE—nl;(yl "), @

where 7 is the number of samples and y) and §() are the i—th values of the true and
predicted labels, respectively. Additionally, the coefficient of determination R? is used
as the metric to assess the performance of the model in the test set. This coefficient is

expressed as [57]:
2

_SSwes _, L (v -99)
SStot i (y@ — y_)z
where SS stands for sum of squares, and 7 is the mean of the ground-truth output variable.

Note that SSt is a representation of the variance of the output data.

From the (raw) dataset of 10,539 samples, cases with meaningless values such as
negative Young’s modulus or Poisson’s ratio out of bounds, as well as repeated cases, were
dropped. This resulted in a cleaned dataset of 6598 cases. A train/test split was then
performed randomly, with an 80%/20% scheme. After properly scaling the features and
targets by means of a classical standardization, the RF model was run.

The predictions of the two mechanical properties of interest in this paper (Young’s
modulus E; and transverse Poisson’s ratio v;) for the train and test sets are shown in
Figure 9. In both plots, the true values are displayed on the horizontal axis, while the
predictions are represented on the vertical axis, denoted by a hat decoration (%). The
coefficient of determination R? is used as a metric to assess the performance of the model,
and this value is also displayed in the figure.

R2=1 (5)

(a) Ground-truth vs. prediction E, (b) Ground-truth vs. prediction v;

800
0.501
Train o y
Test 0.251 /
600 1 )
= ' 0.00 - /
d: y - 5
= 400 { Bl = 09991 - L .95 R =0.9963
w . i) r
0 -
/" —U.oU 7 7 '8
200 - b
/ —0.751
: T T T _100 1 T T T T
200 400 600 800 1.0 05 0.0 05
E, [MPa] v [—]

Figure 9. The ML model predictions of longitudinal Young’s modulus E; (a) and transverse Poisson’s
ratio v; (b), using RF as the regressor. Blue represents the training set, and orange represents the test
set. Ground-truth values (from simulations) are on the horizontal axes, while predicted values are on
the vertical axes (perfect prediction lies on the bisectrix). A high accuracy is achieved in the test set in
terms of the coefficient of determination R?.

As it can be observed, the model performs well in this simulated dataset as the
coefficients of determination of both mechanical properties, i.e., R?(E, E.) and R?(v;, 1),
are greater than 0.995, achieving a virtually perfect prediction—almost all of the data points
lie on the bisectrix of the graph. Note that these predictions were carried out using a rather
simple ML model, which shows that this technology may be used to develop complex
concurrent structure-metamaterial designs in which the metamaterial has functionally
graded structures to meet complex overall structural behavior.
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4. Conclusions

The proposed (and patented) metamaterial design can be tailored ad libitum to repro-
duce a wide range of mechanical properties, both Young’s modulus and Poisson’s ratio,
in the loading direction. We have shown that there is a direct relationship between the
variation of the connectivity of the lattices and the position of the internal nodes and the
resulting mechanical properties of the metamaterial. This metamaterial can exhibit a wide
spectrum of auxetic or non-auxetic behaviors and mechanical properties, such as stiffness.
The main salient feature of this triangularization-based tunable metamaterial cell is that
the dimensions and connectivity (boundary) remain the same regardless of the auxeticity,
enabling the development of very simple functionally graded materials, including shells
and other complex topologies, and allowing for concurrent structure-metamaterial op-
timization to obtain desired component-level properties. Furthermore, the geometrical
parameters defining the metamaterial cell are few and simple, with a direct relationship to
the desired mechanical behavior. Very simple machine learning models can be generated
as surrogate models to facilitate parametric nonlinear inverse analyses for the mentioned
concurrent two-level design. The metamaterial has versatile mechanical properties and can
be reproduced and calculated even with simple methodologies, which are important for
success in the industry.
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Appendix A. Structural Matrix Calculus Model and Equivalent Young’s Modulus and
Poisson’s Ratio Calculation

The governing equation of the discretized structure in the static case is given by
Ku = f, (AT)

where K, u, and f are, respectively, the stiffness matrix, the nodal displacements, and the
nodal force vectors of the whole structure. The stiffness matrices for both Euler-Bernoulli
and Timoshenko with 12 degrees of freedom can be found in Equation (5.116) of [58].
Therefore, denoting the free degrees of freedom as f and the restricted ones as 7, the
previous system can be split as:

|
KyriKpr | | ur 0
- oo = | (A2)
Krf!Krr Uy fr
|
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where the nodal force vector in the free degrees of freedom is set to fy = 0 since the loading
is purely displacement imposition. By performing static condensation, the vectors of nodal
displacements of the free degrees of freedom 1 can be obtained as follows:

up = —Kz/ Ky, (A3)
and the nodal forces on the restricted nodes (reactions) are
_ -1
fr = (Krr _Kerff Kfr)ur' (Ad)

Then, for a uniaxial test, we prescribe a vertical displacement Au at the top face nodes,
while the vertical displacement at the bottom is restrained (e.g., #,). The macroscopic
imposed strain (continuum-equivalent) is given by:

A
€2z = l/ (A5)
L,

where [, is the vertical dimension of the structure. To determine the strains in the two
perpendicular directions, the macroscale displacements in the x and y directions are estim-
ated by averaging the displacements at the external faces of the structure perpendicular to
those directions. The strains e,y and ¢, are then calculated by dividing the displacement
magnitudes by their respective lengths. Once all strains are computed, Poisson’s ratios vy,
and vy are

Exx Eyy
Vxz = ——, Vyz = ———. (A6)
€2z €2z

Furthermore, by dividing the result of the reaction forces f, at the top face by the
cross-sectional area perpendicular to the loading application, the stress 0, can be estimated,
and therefore the Young’s modulus can be computed as

o;
E, = 2. (A7)
€2z
This model was validated by simulating the same structures using the Finite Element
commercial software package, NASTRAN. Table Al shows a comparison between the
macroscopic results of the same test structure.

Table Al. Comparison of macroscale variable results between NASTRAN and the GAM code (code
used for the ML examples).

Vxz Vyz E, [MPa]
NASTRAN —0.84 —-0.73 174
GAM code —0.85 —0.65 186

The results displayed in Table A1 are similar although not exact. This difference may
be due to the beam model selected: NASTRAN uses the Timoshenko beam, whereas we
implemented the Euler-Bernoulli beam.
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