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Abstract: The present study aimed to investigate the effect of cold deformation on the precipitation
kinetics of a binary CuSc alloy containing 0.4 wt.% scandium using the experimental analysis method
of differential scanning calorimetry (DSC). Non-deformed and 75% cross-section-reduced cold-rolled
supersaturated specimens were tested in non-isothermal DSC runs at up to five different heating rates.
The DSC results showed that cold rolling significantly accelerated the precipitation process in the
binary alloy, leading to a decrease in the initial and peak temperatures of the exothermic reactions. The
activation energies calculated with the Kissinger method indicated that the precipitation activation
energy decreased with increasing cold deformation. The findings of this study provide worthy
implications to further optimize the processing of Cu-Sc alloys with improved mechanical properties.

Keywords: copper–scandium CuSc; copper alloy; differential scanning calorimetry DSC; precipitation
kinetics; cold-working; cold-rolling; activation energy; Kissinger method

1. Introduction

Microalloyed copper alloys are used in many areas of industry, exhibiting high elec-
trical and thermal conductivity as well as increased mechanical strength [1]. Therefore,
they are frequently used for signal cables, connectors, or welding electrodes, particularly
in the electrical industry. There are several hardening mechanisms for copper, which is
very soft in its pure state [2], that can bring about the desired properties. One of the most
important in this context is precipitation hardening, which allows both, the otherwise
conflicting mechanical strength of an alloy and the electrical conductivity to be increased
by optimizing the microstructural properties during specific heat treatments [2–5].

However, a conflict arises from the fact that precipitates can act as scattering centers for
current flow. The smaller and more numerous the precipitates are, the more they impede
the flow of electric current and reduce the conductivity of the material [6]. To balance the
trade-off between mechanical strength and electrical conductivity, it is essential to carefully
control the size, distribution, and morphology of precipitates. This can be achieved through
a combination of processing conditions such as heating rate, aging temperature, and prior
cold working, as well as the alloy composition [2,3,6,7].

Recently published studies by Franczak et al. [8] and Dölling et al. [9] have shown
that a combination of copper and scandium has potential in terms of electrical conductivity
and mechanical strength, in addition to having advantages in terms of recrystallization
behavior and grain refinement [9–11]. In particular, cold working prior to hardening of the
precipitates increases the density of dislocations and strain-induced defects in the material,
creating more nucleation sites for fine precipitates to form.
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Figure 1 shows the phase diagram of binary Cu-Sc alloy. The maximum solubility
of scandium in copper is reported to be 0.35 wt.% at 865 ◦C [12–14] and decreases with
decreasing temperature, leading to the possibility of precipitation formation in binary
Cu-Sc alloy [15].
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Hao et al. investigated the precipitation behavior and hardening effects of a highly
deformed and cryorolled CuSc0.4 wt.%. The precipitation reaction started initially from the
supersaturated solid solution, forming Sc-rich atomic clusters. Subsequently, these formed
coherent lamellar precipitates and became increasingly detached from the matrix structure
to become tetragonally-oriented lamellar Cu4Sc precipitates [11,16]. The precipitation
strengthening that occurs at this point is described by Hao et al. as a combination of
coherent strengthening with significant matrix distortion and presence of the incoherent
Orowan bypass mechanism at larger precipitate sizes [11,17].

To optimize precipitation treatments for materials with desired properties, differential
scanning calorimetry (DSC) can be used to develop a deeper understanding of the under-
lying precipitation mechanisms. DSC analysis is a common thermal analysis technique
that measures the heat flow into or out of a material as a function of temperature and time.
Therefore, it can detect reactions within the microstructure as exothermic (precipitation and
recrystallization) or endothermic (dissolution) processes [18,19]. This analysis provides
valuable information about the thermal behavior of a material, such as the melting point,
crystallization kinetics and phase transitions [18,20–22]. In the context of precipitation
kinetics, DSC analysis can be used to study the evolution of precipitates in a material during
aging or heating. By monitoring the heat flux, DSC provides information on precipitation
kinetics such as the nucleation and growth rate of precipitates, as well as the temperature
dependence of precipitation reactions [21,23,24].

An important parameter characterizing the kinetics of a reaction is the activation
energy, which can be obtained from DSC data using one of several available methods,
including the Kissinger [25,26], Ozawa [27,28], and Boswell [29] methods. This can be
used to predict the reaction behavior at different temperatures, such as the time required
to complete the reaction to a certain degree, or to predict the temperature at which the
reaction will occur. The Kissinger method is often the preferred approach for determining
the activation energy of precipitation reactions using DSC, as it assumes a single reaction
mechanism and only requires a single DSC measurement at each heating rate, making it
a simple and convenient approach that can provide valuable information for materials
science and engineering applications [23,30].
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This study aims to determine the activation energy required for the precipitation
reaction in an undeformed alloy and a 75% cold-worked CuSc0.4 alloy.

2. Materials and Methods

The composition of the alloy was analyzed using a specially calibrated optical emission
spark spectrometer (Spectrotest, SPECTRO Analytical Instruments GmbH, Kleve, Germany)
and determined to be Cu with a content of 0.40 wt.% Sc. From this, an ingot was cast on a
VC400 casting machine (Indutherm Blue Power Casting Systems, Walzbachtal, Germany)
utilizing the raw materials Cu-OFE and CuSc23 as a master alloy. Melting was performed
in a boron nitride-covered graphite crucible up to 1300 ◦C, which along with the casting
process was performed under vacuum conditions. After pouring in a graphite mold (heated
at 250 ◦C), the 5 mm thick bar was solution annealed at 870 ◦C for 120 min in a preheated
furnace (ME65/13, Helmut ROHDE GmbH, Prutting, Germany) and then quenched to
room temperature in circulated water. The as-quenched plate was divided and one part
was longitudinally cold rolled on a duo-roll stand (Bühler, Pforzheim, Germany) with
110 mm diameter rolls driven with a speed of 27 min−1.

Differential scanning calorimetry (DSC) analysis of Cu-Sc alloys was performed using
a Netzsch STA 449 C. The calorimeter calibration was performed thermally with Al2O3
crucibles by melting In, CsCl, Ag, and Au to obtain a baseline. The mass of the samples
ranged from 40 to 202 mg. Several measurements of the same heating rate with higher
sample mass resulted in identical curves, though with an increased signal-to-noise ratio
(SNR). During the heating process, a protective argon atmosphere (20 mL/min) and purge
gas (30 mL/min) were utilized, and an empty crucible was used as a reference. The
precipitation experiments were carried out using continuous heating rates (5, 10, 15, 20,
and 40 K/min) with a temperature ranging from room temperature (RT) to 750 ◦C. Data
output was performed with an accuracy of 0.5 ◦C; the error for the DSC measurements as
compared to the calibration measurements is shown in Table A1 of Appendix A.

The raw data from the DSC measurements were smoothed using a locally-weighted
linear regression with the second-degree polynomial (LOESS) function in MATLAB with a
span of 5%. Then, the second derivative of the function was calculated in order to determine
the initial and final temperatures of the exothermic peak (Ti and Tf), which can be seen
as inflection points in the curve. Estimation of the baseline of each curve was performed
by spline interpolation of the smoothed DSC signal, with the maximum difference value
between the smoothed DSC signal and the baseline indicating the peak temperature of the
exothermic reaction (Tp).

The activation energy of the precipitation of the Cu4Sc phase was calculated based on
the dependence of previously determined Tp temperatures on the heating rates using the
Kissinger equation [25,26] provided by

ln
(

V
Tp2

)
= C− E

RTp
(1)

where V is the heating rate, Tp is the peak temperature, C is a constant, E is the apparent
activation energy, and R is the molar gas constant. By plotting ln(V/Tp

2) as a function
of 1/Tp and fitting a linear regression line y to the data, the activation energy E can be
calculated from the slope of the line using the relationship

E = −slope× R. (2)

For microscopic analysis, one of the non-deformed CuSc0.4 specimens were heated
using an identical heating process with a heating rate of 10 K/min up to 610 ◦C and
cooled with the same temperature gradient. Thus, the microscopic evolution is directly
comparable to measured exothermic peaks during the precipitation reaction in the DSC.
Microstructure characterizations were observed with a scanning electron microscope (SEM)
(Gemini Sigma VP with the used NTS BSD (Carl Zeiss Microscopy Deutschland GmbH,
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Oberkochen, Germany)) operating at 12 kV and Bruker XFlash 6|30 detector (Bruker Nano
GmbH, Berlin, Germany).

3. Results and Discussion

The following chapter presents and discusses the results obtained from investigating
the effect of cold deformation on the precipitation kinetics of a binary Cu-Sc alloy. This
chapter is divided into three sections: DSC analysis, calculation of the activation energy,
and microscopic analysis. Each section provides a comprehensive examination of the
experimental findings and their implications for understanding the alloy’s precipitation
behavior with and without prior cold deformation.

3.1. DSC Analysis

During the DSC analysis, precipitation reactions with a clearly visible exothermic peak
appeared. Depending on the chosen heating rate, the location of this peak was slightly
different.

The DSC scans at different heating rates (10, 15, 20, and 40 K/min) for the non-
deformed CuSc0.4 specimen (Figure 2a) all show an exothermic peak (Exo) between 760 K
and 950 K. A closely related study by Dölling et al. [31] showed highly comparable curves
for a non-deformed CuSc0.3 alloy at a 10 K/min heating rate with a peak temperature
of 842.1 K. Furthermore, there was no recrystallization detected for non-formed Cu-Sc
specimens, resulting in only a single peak indicating the precipitation reaction.
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and 40 K/min (a); difference between heat flow and the baseline of the precipitation reaction (b).

The difference between the smoothed DSC signal and the baseline and spline inter-
polations is displayed in Figure 2b. Obviously, the maximum temperature of the Cu4Sc
precipitation shifts to higher values as the heating rate increases, implying that the precipita-
tion reaction is thermally activated. Similar findings have been reported for recrystallization
in cold-rolled pure copper [32], Cr clustering in equal-channel angular pressing (ECAP)
processed CuCrZr [1], and recrystallization phenomena in Cu–Ni–Si alloy processed by
high-pressure torsion (HPT) [33]. Due to the baseline shape extracted from the experiment,
the determination of the 20 K/min curve using spline interpolation resulted in an exagger-
atedly large area for the peak. At this point, manual adjustment of the baseline calculation
parameters was necessary. Despite this adjustment, the peak temperature Tp remained
unchanged, thereby keeping any potential impacts on the calculation of the activation
energy unaffected. Comprehensive insights pertaining to the interpolated baselines are
provided in Appendix A, Figure A1.
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With an increase in the heating rate, the temperature range at which the precipitation
reaction takes place is widened. In addition, the initial (Ti), peak (Tp), and final (Tf)
temperatures shift to higher values, which can be attributed to the kinetics of the reaction.
Reactions and transitions, such as precipitation or recrystallization, need time to transform,
resulting in a narrower time range at lower heating rates due to the longer duration. On the
other hand, at higher heating rates the time required to complete the reaction may not
be sufficient because of the limitations imposed by the kinetics. For this reason, the peak
expands at higher temperatures and widens with increasing heating rates.

However, scans of the non-deformed specimen at a heating rate of 5 K/min did not
show a significant peak, which is why it is not mentioned in this study.

Figure 3 shows the DSC scans of the 75% cold-rolled Cu-Sc specimen at all heating
rates (Figure 3a) and the differences between the precipitation peak curve and baseline
(Figure 3b). Again, the maximum temperature shifts to higher temperatures at higher heat-
ing rates. However, in direct comparison to the non-deformed specimen, the precipitation
reaction of the cold-rolled specimen starts about 100 K earlier (660–840 K).
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Figure 3. DSC scans of 75% cold-rolled CuSc0.4 alloy at heating rates of 5 K/min, 10 K/min,
15 K/min, 20 K/min, and 40 K/min (a); difference between heat flow and baseline of the precipitation
reaction (b).

In addition, the curves show the peak of the second exothermic reaction (indicated by
the number 1 with arrows), which can be attributed to recrystallization of the microstructure.
This investigation agrees with the findings of Dölling et al. [31] obtained with a directly
comparable experimental setup and raw materials.

The obtained peak temperature values related to Cu4Sc precipitation as a function
of heating rates are shown in Table 1. The temperature peaks ranged from 837.7 K to
872.3 K without prior cold deformation, while the peak temperatures of the 75% cold-rolled
specimens ranged from 711.7 K to 769.0 K. It is obvious that the temperature peaks of
the precipitation reaction decrease when increasing deformation is applied. This can be
attributed to the fact that cold rolling introduces various lattice defects such as dislocations
and vacancies into the material, which provide additional nucleation sites for precipitation,
leading to an accelerated reaction. This effect was shown during isothermal aging experi-
ments for comparable alloys (CuSc0.15 and CuSc0.3) and identical experimental processing
conditions by Dölling et al. [9]. The mechanical and physical properties were analyzed
under varying degrees of cold rolling during isothermal heat treatments, and the precipi-
tation reactions occurred reproducibly earlier with higher degrees of cold rolling prior to
aging at different temperatures. This phenomenon was evident due to the evolution of the
material properties, namely, the concurrent increase in electrical conductivity and hardness.
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Furthermore, several previous investigations have shown that a high dislocation density
significantly improves the kinetics of precipitation [5,34–36] and recrystallization [33,37,38].

Table 1. Values of maximum temperatures Tp [K] of the Cu4Sc precipitation reaction in non-deformed
(0%) and 75% cold-rolled CuSc0.4 wt.% alloy.

V [K/min] 0% 75%

Tp [K] 5 - 711.7
10 837.7 726.3
15 851.4 739.7
20 856.8 745.2
40 872.3 769.0

3.2. Determination of Precipitation Activation Energies

The activation energy for scandium precipitation was calculated using the Kissinger
method [25,26] using Formula 1. For this purpose, the values of the peak temperature
Tp and the corresponding heating rate V are used for the equation and then ln(V/Tp

2) is
plotted versus 1000/K. Using Formula 2, the activation energy is derived from the slope of
the linear fitting curve of the calculated points multiplied by the molar gas constant R.

Figure 4 shows the Kissinger plots of the non-deformed (Figure 4a) and cold-rolled
specimens (Figure 4b) versus 1000/T for the precipitation reaction in the utilized CuSc0.4
alloys. All plots show straight lines, with high Pearson correlation coefficients of r2 = 0.991
for the undeformed specimen and r2 = 0.982 for the cold-rolled specimen. The activa-
tion energies were calculated from their slopes, and are listed in Table 2. The mean
values of the activation energy for precipitation of the Cu4Sc phase are 232.02 kJ/mol and
151.51 kJ/mol, respectively.
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Table 2. Mean values of estimated activation energies of the Cu4Sc precipitation reaction in non-
deformed (0%) and cold-rolled (75%) CuSc0.4 wt.% alloy using the Kissinger method.

0% 75%

E [kJ/mol] 232.02 151.51
r2 0.9913 0.9816

However, temperature errors can cause inaccuracies in determination of the peak
temperature during DSC measurements, potentially having a significant influence on the
calculated activation energy. An error of just a few degrees between high and low heating
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rates can lead to an activation energy error of 10–20% [30]. Thus, careful temperature
calibration and control to minimize such errors are crucial in DSC measurements.

Considering the temperature deviations during the temperature calibration shown in
Appendix A, Table A1, a range of activation energy of 226.91–244.25 kJ/mol can be deter-
mined for the non-deformed specimen and 147.82–156.24 kJ/mol for the cold-rolled specimen.

The estimated activation energy for the cold-rolled specimen in the present study is
lower than the value of self-diffusion through the lattice in copper (∼197 kJ/mol) [39],
whereas the activation energy for the non-deformed specimen is slightly higher. This may
be due to residual scandium atoms in the copper matrix. During aging, not all scandium
atoms are transferred to the Cu4Sc phase; residues remain in the copper matrix depending
on the temperature and duration of the aging treatment. Because the alloying element has a
larger atomic radius than copper, distortions in the lattice of the copper matrix result, which
act as impediments to dislocation movement and thereby hinder diffusion [3]. Therefore,
a higher amount of energy needs to be applied to overcome this barrier, resulting in higher
activation energy.

3.3. Microstructure Analysis

Changes in microstructure that occur during thermal treatment can be visually inves-
tigated by metallographic analysis. An SEM backscatter detector can be used to identify
differences in chemical composition and distinguish between the phases of different ele-
mental compositions [40]. The material contrast is determined by the atomic number of the
elements. As the atomic number increases, the degree of backscattering increases as well,
resulting in higher brightness in the SEM image of regions containing elements with higher
atomic numbers. [41].

Figure 5 shows the microstructure of the non-deformed CuSc0.4 specimen after heating
with 10 K/min up to 610 ◦C followed by cooling with 10 K/min. The selected temperature
can be deduced from the DSC curve shown in Figure 2b, which shows that the selected
temperature of 883.15 K is just below the precipitation’s final peak temperature.
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Figure 5. Microstructure of non-deformed CuSc0.4 specimen after DSC analysis heated up to 610 ◦C
at a heating rate of 10 K/min with magnitude of 7000 (a) and 12,000 (b) showing homogeneously
distributed lamellar Cu4Sc phases (1) and coarsened phases detached from the structure (2).

Because the light metal Sc has a lower atomic number than copper [6], the Cu4Sc
phase containing one-fifth scandium atoms appears darker compared to the copper matrix.
The fine lamellar structures (dark grey) are homogeneously distributed within the copper
matrix (light grey).

The characteristics of the Cu4Sc precipitates are comparable to those reported by
Dölling et al. [31], which were analyzed at the same heating rate and a slightly lower
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final temperature (600 ◦C). Energy Dispersive X-ray spectroscopy (EDS) proved that the
darker periodically-appearing structures are directly associated with enhanced scandium
content (Appendix A, Figure A2). This observation is further supported by the EDS images
obtained by Dölling et al. [9,31] with a slightly lower scandium content of 0.3 wt.%.

In direct comparison to the microstructural images of the non-deformed specimen,
the 75% cold-rolled specimen with identical heat treatment already shows the first signs
of partially recrystallized areas within the microstructure (Figure 6a). This observation
fits the analysis of the 10 K/min DSC curve depicted in Figure 3a. The DSC measurement
shows that the precipitation reaction has already been completed at the same maximum
temperature of 883.15 K and that the recrystallization of the microstructure has started.
However, it is notable that the Cu4Sc precipitates exhibit a significant decrease in size
(Figure 6b), making them discernible only at higher magnifications.
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Figure 6. Microstructure of 75% cold-rolled CuSc0.4 specimen after DSC analysis heated up to
610 ◦C at a heating rate of 10 K/min with a magnitude of 1000 (a) and 20,000 (b), showing partly
recrystallized areas within the strongly deformed microstructure (1), Cu4Sc precipitates (2), and
twins (3).

4. Conclusions

The present paper describes the kinetics of Cu4Sc precipitation of a CuSc0.4 wt.%
alloy with and without prior cold working using differential scanning calorimetry (DSC).
The results showed that a prior 75% cross-section reduction by cold working can accel-
erate the precipitation reaction and lower the reaction’s starting temperature by about
100 K. The activation energies needed for the reaction were determined by the Kissinger
method and resulted in values of 226.91–244.25 kJ/mol for the non-deformed specimen and
147.82–156.24 kJ/mol for the 75% cold-rolled specimen. The differences observed in the ac-
tivation energies provide new insights into the effects of cold deformation on precipitation
kinetics in binary alloys, and can help in the design and optimization of such materials.
The results of this study highlight the importance of carefully considering the effects of
processing on precipitation behavior in order to achieve the desired material properties.
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for her doctoral research. J.D. was responsible for alloy production, specimen preparation, and
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the manuscript.
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