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Abstract: To improve electromagnetic wave (EMW) absorption performance, a novel nano-laminated
Dy3Si2C2 coating was successfully in situ coated on the surface of SiC whisker (SiCw/Dy3Si2C2)
using a molten salt approach. A labyrinthine three-dimensional (3D) net was constructed by the
one-dimensional (1D) SiCw coated with the two-dimensional (2D) Dy3Si2C2 layer with a thickness
of ~100 nm, which significantly improved the EMW absorption properties of SiCw. Compared to
pure SiCw with the minimum reflection loss (RLmin) value of −10.64 dB and the effective absorption
bandwidth (EAB) of 1.04 GHz for the sample with a thickness of 4.5 mm, SiCw/Dy3Si2C2 showed
a significantly better EMW absorption performance with RLmin of −32.09 dB and wider EAB of
3.76 GHz for thinner samples with a thickness of 1.76 mm. The enhancement of the EMW absorption
performance could be ascribed to the improvement of impedance matching, enhanced conductance
loss, interfacial polarization as well as multiple scattering. The SiCw/Dy3Si2C2 can be a candidate
for EMW absorber applications due to its excellent EMW absorption performance and wide EAB
for relatively thin samples, light weight, as well as potential oxidation and corrosion resistance at
high temperatures.

Keywords: SiC whisker; Dy3Si2C2; electromagnetic wave absorption; molten salt method

1. Introduction

Electromagnetic wave (EMW) radiation pollution seriously endangers human health, as
a consequence of the widespread applications of the high frequency electronic devices [1–5].
In recent years, numerous EMW absorption materials have been developed to solve these
problems [6,7], including carbon-based materials [8,9], magnetic metal materials [10–12], fer-
rite and its composites [13–15], and polymer matrix composites [16–18]. However, the poor
oxidation resistance of carbon-based materials and polymer matrix composites at high temper-
atures has impeded their applications, despite their excellent EMW absorption properties [19].
Magnetic materials also cannot be used at high temperatures due to the demagnetization [20].
Furthermore, a relatively high density of ferrite materials also hinders their applications in
some special fields, such as aerospace. Therefore, the development of high performance EMW
absorption materials with high absorption capability, broad effective absorption bandwidth
(EAB), low density as well as small thickness, and excellent oxidation resistance at high
temperatures is a critical challenge in this field to minimize EMW radiation pollution.

SiC has been considered a promising candidate for EMW absorbers because it has
excellent dielectric properties, high temperature stability, as well as outstanding oxidation
and corrosion resistance [21,22]. Most of the works on SiC-based EMW absorption materials
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have been focused on the SiC nanoparticles (SiCNP), SiC fibers (SiCf), SiC nanowires
(SiCNWs), and SiC whiskers (SiCw) [23–28]. Among all of them, one-dimensional (1D)
SiCw or SiCNWs have drawn the most significant attention, since they have large aspect
ratio, which is good for dissipating current by providing long transport paths, resulting in
a strong conduction loss [29]. Furthermore, a three-dimensional (3D) network can be easily
constructed, which is beneficial to improving the EMW absorption performance [27,30].
However, the EMW absorption properties of pure SiCw cannot meet the strict requirements
of a strong absorption and a broad EAB because of the poor impedance matching and
single EMW loss mechanism [31–33]. Therefore, many research works have been conducted
to improve the EMW absorption properties of SiCw, including elemental doping, surface
modification, and fabrication of SiCw-based composites [34,35]. For example, Kuang et al.
reported that the electrical conductivity of SiCw was significantly enhanced by Al-doping.
The lowest reflection loss (RL) value was−25.4 dB, and the EAB was 2 GHz when the Al/Si
ratio was 0.03/0.97 [29]. In particular, surface modification of SiCw has been demonstrated
to be an efficient and feasible method for improving the EMW absorption [27,31,36].

Rare earth silicide carbides (RE3Si2C2, where RE is a rare earth element) are a new
group of ternary layered structure materials, which are similar to MAX phases (where M is
an early transition metal, A is an A-group element, and X is either C or N) [37,38]. RE3Si2C2
has been successfully used as the joining layer material and/or sintering additive for
SiC-based ceramics and composites due to its ability to form a liquid phase by the eutectic
reaction with SiC [39–46]. Furthermore, the addition of a second phase can significantly
promote the EMW absorption properties of the resulting composites [47,48]. Our previous
work indicated that the EMW absorption properties of SiCf can be significantly improved
by the incorporation of Y3Si2C2 coating on the SiCf surface [3]. The minimum RL of
SiCf/Y3Si2C2 was -16.98 dB at a thin thickness of 2.19 mm. Furthermore, compared to
the EAB of 1.92 GHz at the thickness of 3.38 mm for pure SiC fiber, SiCf/Y3Si2C2 shows
significantly wider optimal EAB of 5.44 GHz at a much thinner thickness of 2.64 mm [3].
SiCw whiskers have a larger aspect ratio compared to the chopped SiC fibers. It is relatively
easy to form a 3D net, which is beneficial for increasing the heterogeneous interfaces and
multiple reflections and scattering. Therefore, it is expected that SiCw/Dy3Si2C2 could
show even better EMW absorption properties when compared to SiCf/Y3Si2C2.

In this work, the two-dimensional (2D) Dy3Si2C2 coating is formed on the one-
dimensional (1D) SiCw surface by the molten salt method to improve the EMW absorption
properties. Combining Dy3Si2C2 with SiCw not only effectively improved the impedance
matching but also provided a large number of heterogeneous interfaces as well as enhanced
interface polarization loss. At the same time, the stacking effect of one-dimensional struc-
tures builds an efficient three-dimensional conductive network that enhances resistance loss.
Furthermore, the two-dimensional layered structure of Dy3Si2C2 can improve multiple
reflections, which is beneficial to improving the EMW absorption properties. Microstruc-
ture, phase composition, dielectric, and EMW absorption properties of the as-obtained
SiCw/Dy3Si2C2 coated whiskers were investigated. The possible EMW absorption mecha-
nism of SiCw/Dy3Si2C2 was summarized. EMW absorption properties of the as-obtained
SiCw/Dy3Si2C2 were compared to the previously reported materials.

2. Experimental Procedure
2.1. Materials and Experiments

DyH2 powder with a purity of 99.9% and a mean particle size of ~75 µm was purchased
from Institute of Hunan rare earth metal materials Co., Ltd., Changsha, China. SiC whiskers
(Union Materials Co., Daegu, Republic of Korea) with a diameter of 0.4–0.9 µm and a length
of 6–120 µm; NaCl; and KCl powders (purity: 99.5%, mean particle size: 75 µm; Sinopharm
Chemical Reagent Co., Ltd., Shanghai, China) were used as the raw materials.

The DyH2, SiCw, NaCl, and KCl powders with the molar ratio of DyH2: SiCw =1:4 and
NaCl:KCl = 1:1 were mixed for 30 min in an Ar atmosphere in a home-made glove box. The
mixed DyH2, SiCw, NaCl, and KCl powders were heated to a target temperature of 1000 ◦C
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in the molten salt furnace. The holding time was set 5 h. The heating and cooling rate
was 5 ◦C/min. The as-obtained samples were washed and filtered using deionized water
several times. The in situ coated SiCw/Dy3Si2C2 powder can be obtained after drying 12 h
at 60 ◦C in a vacuum oven.

2.2. Characterizations

The phase compositions of the as-obtained SiCw/Dy3Si2C2 were detected using an
X-ray diffractometer (XRD: D8 Advance, Bruker AXS, Karlsruhe, Germany) using Cu Kα

radiation (λ = 1.5406 Å). The operating current and voltage were 40 mA and 40 kV, respec-
tively. The step scan and step time was 0.02◦ 2θ and 0.2 s, respectively. The microstructure
of the SiCw/Dy3Si2C2 powders was observed using a scanning electron microscope (SEM,
8230, Hitachi, Tokyo, Japan). The microstructure and phase compositions of the Dy3Si2C2
coating were further investigated using a transmission electron microscope (TEM, Talos
F200X, Thermo Fisher Scientific, Waltham, MA, USA) equipped with an energy disper-
sive spectroscopy (EDS) system. The samples for TEM observations were prepared using
the focused ion beam (FIB, Auriga, Carl Zeiss, Jena, Germany) technique. The complex
permittivity and complex permeability were measured at a frequency range from 2 to
18 GHz using a Network Analyzer of Agilent N5230A. In order to measure the complex
permittivity and complex permeability, SiCw/Dy3Si2C2 powder was mixed with 50 wt.%
paraffin with a size of an inner and outer diameter of 3 and 7 mm as well as a thickness of
2 mm, respectively. For the sake of comparison, the electromagnetic properties of the pure
SiC whiskers were detected using the same method.

3. Results and Discussion
3.1. Microstructure and Phase Composition of SiCw/Dy3Si2C2

Figure 1 presents the XRD patterns of the pure SiC whiskers and the as-obtained
SiCw/Dy3Si2C2 whiskers.
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The XRD pattern of pure SiC whiskers indicated that they are formed by the 3C-SiC
phase (JCPDS No. 75-0254). A small peak at approximately 33.5◦ corresponds to the
stacking faults, which spontaneously formed during the growing process of SiC whiskers.
The XRD pattern of the SiCw/Dy3Si2C2 powder revealed that besides SiCw, it also contained
characteristic peaks of Dy3Si2C2 (JCPDS No. 97-005-1299) along with some impurities of
Dy2O3 (JCPDS No. 97-018-5606). This confirmed that the Dy3Si2C2 modification of SiC
whiskers was successfully obtained.

Figure 2 shows the SEM images of both SiCw and SiCw/Dy3Si2C2 whiskers.
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The diameter of the pure SiC whiskers was ~500 nm. A dense 2D structure Dy3Si2C2
coating with a structure of randomly oriented nano-laminated sheets was in situ coated on
the surface of SiC whiskers (Figure 2b,c). The thickness of Dy3Si2C2 coating was around
100 nm, as shown in the SEM image of the fracture surface of the SiCw/Dy3Si2C2 whisker
(Figure 2d). The corresponding elemental distribution of Si and Dy indicated that most of
the Dy3Si2C2 was homogenously coated on the surface of SiC whisker (Figure 2e,f).

To further confirm the microstructure and phase composition of the Dy3Si2C2 coating,
semi-quantitative EDS and high-resolution transmission electron microscope (HR-TEM)
analysis along with selected-area electron diffraction (SAED) were performed. Figure 3
presents a high-angle annular dark-field (HAADF) image of the as-synthesized SiCw/
Dy3Si2C2 and the corresponding Dy, Si, C, and O elemental distributions, respectively.
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by a yellow rectangle in (a), and (g) the SAED pattern taken from the area highlighted by the yellow
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The semiquantitative EDS analysis results of areas 1–3 are shown in Table 1, suggesting
the presence of SiC, Dy3Si2C2, and/or Dy2O3.

Table 1. EDS results collected from points 1–3 in Figure 3a.

No.
Composition in Atomic %

Probable Phases
Dy Si C O

1 45.92 23.11 15.72 15.25 Dy3Si2C2, Dy2O3
2 0.39 59.29 36.12 4.20 SiCw
3 42.11 22.98 16.99 17.93 Dy3Si2C2, Dy2O3

Furthermore, the HR-TEM image of the interface between SiCw and Dy3Si2C2 coating
is shown in Figure 3f. The lattice fringe spacing was 0.2878 nm, which can be assigned to
the (041) planes of Dy3Si2C2. Therefore, taking into account all the results obtained by XRD,
EDS, and HR-TEM analysis, it can be concluded that a dense ~100 nm Dy3Si2C2 coating
was successfully fabricated on the surface of SiCw using the molten salt approach.

The formation process of the Dy3Si2C2 coating using the molten salt approach is
similar to the formation mechanism of Y3Si2C2 and Pr3Si2C2 powders [45,48]. First, DyH2
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decomposed to Dy and released H2 [49]. The Dy element diffused to the surface of SiC
whiskers via the liquid molten salt, and then the Dy3Si2C2 coating was formed. The main
reactions can be summarized as follow:

DyH2 → Dy + H2 (1)

3Dy + 2SiC→ Dy3Si2C2 (2)

On the other hand, the potential formation barrier of the Dy3Si2C2 could decline
because the surface energy of both DyH2 and SiCw could be remarkably promoted by
polarization effect of the molten salt [50,51]. In addition, the diffusion rate of the Dy, Si, and
C atoms can be obviously promoted in the liquid molten salt reaction medium. Therefore,
the Dy3Si2C2 coating can be in situ formed on the surface of SiC whiskers at a relatively
low temperature (1000 ◦C) and adhered well to the surface of SiCw.

3.2. Dielectric Properties of SiCw/Dy3Si2C2

The EMW absorption property of materials is mainly confirmed by their complex
permittivity and permeability. Meanwhile, good impedance matching between absorbing
materials and free space can make EMW incident into materials with less reflection. While
SiCw and SiCw/Dy3Si2C2 are nonmagnetic materials, the real (µ′) and imaginary (µ”) parts
of the complex permeability is around 1 and 0, respectively (not shown here). Therefore,
the EMW absorption capability of SiCw and SiCw/Dy3Si2C2 is highly dependent on their
complex permittivity. The real (ε′) and imaginary (ε”) parts of complex permittivity of the
pure SiCw and SiCw/Dy3Si2C2 whiskers are shown in Figure 4.
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the pure SiCw and SiCw/Dy3Si2C2 whiskers.

Most of the real (ε′) and imaginary (ε”) parts of the complex permittivity of SiCw/
Dy3Si2C2 were higher than that of pure SiCw, indicating that the Dy3Si2C2 coating could
promote the dielectric properties of SiCw.

According to the Debye theory, ε′ and ε” can be calculated by the following equations [52]:

ε′ = ε∞ + (εs − ε∞)/
(

1 + (ωτ)2
)

(3)

ε′′ = (εs − ε∞)/
(

1 + (ωτ)2
)
+ δac/ωε0 = εp ′′ + εc ′′ (4)

where ε0, εs, and ε∞ represent free space dielectric constant, the permittivity in static state,
and light frequency, respectively. ω and τ are angular frequency and polarization relaxation
time, respectively. σ is electric conductivity. εp

′′ and εc
′′ correspond to the contributions

to ε′′ from polarization loss and conductance loss, which are associated with σ. Generally,
the real part of the permittivity signifies the storage capability of the dielectric energy,
while the imaginary part of the permittivity stands for the loss of dielectric energy [53].
Thus, the improvement of ε′ can be ascribed to the interfacial polarization caused by the
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improved heterogeneous interfaces in SiCw/Dy3Si2C2 whiskers, which were generated by
the incorporation of nano-laminated (2D) Dy3Si2C2 coating on the surface of SiCw. The
enhancement of ε′′ was mainly decided by the increasing of the electrical conductivity (σ),
where σ can be confirmed by the follow equation [54]:

σ = 2πε0εε′′ (5)

where ε0 represents the permittivity in a vacuum.
The electrical conductivity of SiCw/Dy3Si2C2 was higher than that of pure SiCw, as

shown in Figure 5a.
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This can be mainly attributed to the metallic conductivity characteristic of the 2D
structural Dy3Si2C2 coating, as the coating formed a net structure, increasing the trans-
mission channels of carriers [55]. In addition, both ε′ and ε” of SiCw/Dy3Si2C2 showed a
fluctuation corresponding to the resonance, while this was not observed for the pure SiCw.
The permittivity of the SiCw/Dy3Si2C2 whiskers showed typical nonlinear resonant char-
acteristics, indicating the existence of polarization and relaxation behavior, which implied
better dielectric loss performance in the corresponding frequency range. The Cole–Cole
semicircle was used to investigate the relaxation polarization process. According to the
Debye theory, the relationship between ε′ and ε” can be expressed by Equation (6) [56]:

(ε′′ − (εs + ε∞)/2)2 + ε′′ = (εs − ε∞)/2 (6)

The Cole–Cole curves of pure SiCw and SiCw/Dy3Si2C2 are shown in Figure 5b. Each
Deby relaxation process is manifested by one Cole-Cloe semicircle [55,56]. There was
only one Cole–Cole semicircle observed in pure SiCw, indicating one relaxation process,
while four semicircles were observed in SiCw/Dy3Si2C2, confirming the improvement
of dielectric loss capacity in SiCw/Dy3Si2C2. The improvement of the relaxation process
of SiCw/Dy3Si2C2 was mainly caused by the significantly increased interface relaxation,
which resulted from the improved number of heterogeneous interfaces in SiCw/Dy3Si2C2.

3.3. Electromagnetic Wave Absorption Performance

Reflection loss (RL) and effective absorption bandwidth (EAB, the corresponding
frequency range of RL < −10 dB, which presents more than 90% EMW energy absorbed)
are usually used to evaluate the EMW absorption performance of materials. According to
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the transmission line theory, the RL values of SiCw and SiCw/Dy3Si2C2 can be calculated
by the following equations [57–59]:

RL(dB) = 20 log|(Zin − Z0)/(Zin + Z0)| (7)

Zin = Z0
√

µr/εrtanh[j(2π f d/c)
√

µrεr] (8)

Z0 =
√

µr/εr (9)

where Z0 and Zin is space free impedance and input impedance, respectively. c, d, and f
are speed of light, thickness, and frequency, respectively. µr = µ′ − jµ′′ and εr = ε′ − jε′′

represent the complex permeability and permittivity of material.
Figure 6 shows the 3D and 2D plots of RL values at the frequency range of 2 to 18 GHz

at different thicknesses of the SiCw and SiCw/Dy3Si2C2 samples.
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The minimum RL (RLmin) value of the pure SiCw is −10.64 dB at the frequency of
5.52 GHz with the 4.5 mm sample thickness. After coating of SiCw with 2D Dy3Si2C2 sheets,
the RLmin value was improved to −32.09 dB at the frequency of 14.48 GHz for the 1.54 mm
sample thickness. For convenience of comparison, the selected theoretical calculated RL
of pure SiCw and SiCw/Dy3Si2C2 with different thicknesses in the frequency range of 2 to
18 GHz is shown in Figure 7a,b.
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It is obvious that the EAB of SiCw/Dy3Si2C2 is much wider than that of SiCw for the
samples with the thickness range of 1 to 4.5 mm at the frequency ranging from 2 to 18 GHz.
The widest EAB can be as high as 3.76 GHz for thin SiCw/Dy3Si2C2 samples with the
thickness of 1.76 mm (Figure 7c). However, the widest EAB of pure SiCw is only 1.04 GHz
for the sample with a thickness of 4.5 mm (Figure 7c). This indicates that the Dy3Si2C2
coating can significantly improve the EMW absorption properties of SiCw.

In order to reveal the intrinsic reason for the improved EMW absorption performance
for SiCw/Dy3Si2C2, the impedance match (Z) as well as the attenuation constant (α) were
calculated. Z was confirmed by the following equation [60]:

Z = |Zin/Z0| =
√

µr/εrtanh[j(2π f d/c)
√

µrεr] (10)

A favorable impedance match is the basic requirement to obtain an excellent EMW
absorption performance, which ensures the EMW can enter materials instead of being
reflected [61–64]. According to Equation (10), when the input impedance (Zin) is infinitely
close to the air impedance (Z0), the ideal impedance matching can be obtained. Figure 8a,b
presents the calculated Z values of the pure SiCw and SiCw/Dy3Si2C2 samples with the
thickness of 1–4.5 mm at the frequency ranging from 2 to 18 GHz.
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The frequency range with good impedance match (Z-value is close to 1) of SiCw/Dy3Si2C2
was much larger than that of pure SiCw, which indicates that the impedance match of
the SiCw was well improved by the Dy3Si2C2 coating. Therefore, the EMW can enter the
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SiCw/Dy3Si2C2 sample, while most of the EMW was reflected in the case of pure SiCw due to
the poor impedance matching.

Furthermore, to evaluate the attenuation ability of EMW energy of the samples, the α

(Figure 9) was evaluated by the following formula [53]:

α =

√
2π f
c

√
(µ′′ ε′′ − µ′ε′) +

√
(µ′′ ε′′ − µ′µ′)2 + (µ′ε′′ − µ′′ ε′)2 (11)
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18 GHz.

A larger value of α implies a stronger attenuation ability [65]. The sole high dielectric
loss of SiCw at a low frequency resulted in a high attenuation constant, which meant that
most of the EMW was reflected. This is in good agreement with the poor impedance
matching of the SiCw sample. On the other hand, the introduction of the nano-laminated
(2D) Dy3Si2C2 coating significantly improved the impedance match as well as the atten-
uation ability of the SiCw/Dy3Si2C2. As a result, the EMW absorption property was
significantly improved.

The possible EMW absorption mechanism of SiCw/Dy3Si2C2 is illustrated in Figure 10.
Firstly, the favorable impedance matching suggests that the majority of the EMW can

enter the SiCw/Dy3Si2C2 sample, while just a small part of the EMW is reflected. This is the
premise of excellent EMW absorption performance of the material. Secondly, the metallic
conductivity characteristic of Dy3Si2C2 coating improved the electrical conductivity of
SiCw/Dy3Si2C2, which enhanced the conductance loss by improving the electron transition
channel in SiCw/Dy3Si2C2. Thirdly, a large number of heterogeneous interfaces in the
SiCw/Dy3Si2C2 sample, such as Dy3Si2C2/Dy3Si2C2, SiCw/Dy3Si2C2, and SiCw/SiCw,
significantly increased the interfacial polarization and hopping electrons between Dy3Si2C2
nanosheets. This is beneficial for the improvement of the dielectric loss of the material.
Finally, the high aspect ratio of SiCw with the 2D nano-laminated Dy3Si2C2 coating con-
structed a 3D microstructure and formed an effective conductive network, resulting in
the enhancement of multiple scattering and reflections. Therefore, the excellent EMW
absorption performance of SiCw/Dy3Si2C2 was attributed to the synergistic effect of fa-
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vorable impedance matching, enhanced conductance loss, interfacial polarization, dipole
polarization, and multiple scattering and reflections.
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The EMW absorption property of SiCw/Dy3Si2C2 is better when compared to most of
the previously reported materials, as shown in Figure 11.
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It can be concluded that the as-obtained SiCw/Dy3Si2C2 whiskers could be a promising
candidate for EMW absorbers for aerospace applications due to their excellent EMW ab-
sorption performance and wide EAB for thin samples, light weight, and potential oxidation
resistance at high temperatures.

4. Conclusions

In summary, a novel nano-laminated Dy3Si2C2 coating was in situ fabricated on the
surface of SiCw using the molten salt method to improve EMW absorption performance.
A randomly stacked 2D Dy3Si2C2 nanosheet coating with a thickness of ~100 nm was
uniformly coated on the surface of 1D SiCw, which further formed a 3D microstructure.
The EMW absorption performance of the as-obtained 3D structural SiCw/Dy3Si2C2 sample
was significantly improved when compared to the pure SiCw sample. The minimum RL
value increased from −10.64 dB for the pure SiCw to −32.09 dB for the SiCw/Dy3Si2C2.
At the same time, the corresponding thickness of 1.54 mm was much thinner than that
of the pure SiCw (4.5 mm). The possible EMW absorption mechanism of the as-obtained
SiCw/Dy3Si2C2 sample was ascribed to the synergic effect of favorable impedance match-
ing, enhanced conductance loss, interfacial polarization, dipole polarization, and multiple
scattering. The as-obtained 3D structural SiCw/Dy3Si2C2 could be a candidate for EMW
absorber applications due to its excellent EMW absorption performance and wide EAB for
relatively thin samples, light weight, as well as potential oxidation and corrosion resistance
at high temperatures.
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